小學(xué)數(shù)學(xué)復(fù)習(xí)教案
發(fā)表時(shí)間:2020-11-24高二數(shù)學(xué)下冊(cè)《算法初步》知識(shí)點(diǎn)復(fù)習(xí)。
一名優(yōu)秀的教師在每次教學(xué)前有自己的事先計(jì)劃,高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓學(xué)生能夠在教學(xué)期間跟著互動(dòng)起來,幫助高中教師掌握上課時(shí)的教學(xué)節(jié)奏。那么怎么才能寫出優(yōu)秀的高中教案呢?以下是小編為大家精心整理的“高二數(shù)學(xué)下冊(cè)《算法初步》知識(shí)點(diǎn)復(fù)習(xí)”,大家不妨來參考。希望您能喜歡!
高二數(shù)學(xué)下冊(cè)《算法初步》知識(shí)點(diǎn)復(fù)習(xí)
1:算法的概念
(1)算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的算法通常是指可以用計(jì)算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
(2)算法的特點(diǎn):
①有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
②確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
④不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對(duì)于一個(gè)問題可以有不同的算法.
⑤普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.
2:程序框圖
(1)程序框圖基本概念:
①程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。
一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
②構(gòu)成程序框的圖形符號(hào)及其作用
學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標(biāo)準(zhǔn)的圖形符號(hào)。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類,一類判斷框是與否兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。
3:算法的三種基本邏輯結(jié)構(gòu)
(1)順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所
指定的操作。
(2)條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。
條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。
(3)循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
①一類是當(dāng)型循環(huán)結(jié)構(gòu),它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
②另一類是直到型循環(huán)結(jié)構(gòu),它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
練習(xí)題:
1.算法共有三種邏輯結(jié)構(gòu),即順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),下列說法正確的是()
A.一個(gè)算法只能含有一種邏輯結(jié)構(gòu)
B.一個(gè)算法最多可以包含兩種邏輯結(jié)構(gòu)
C.一個(gè)算法必須含有上述三種邏輯結(jié)構(gòu)
D.一個(gè)算法可能含有上述三種邏輯結(jié)構(gòu)
解析通讀四個(gè)選項(xiàng)知,答案D最為合理,應(yīng)選D.
答案D
2.下列賦值語(yǔ)句正確的是()
A.M=a+1[高分范文網(wǎng) WWW.977139.com]
B.a(chǎn)+1=M
C.M-1=aD.M-a=1
解析根據(jù)賦值語(yǔ)句的功能知,A正確.
答案A
3.學(xué)了算法你的收獲有兩點(diǎn),一方面了解我國(guó)古代數(shù)學(xué)家的杰出成就,另一方面,數(shù)學(xué)的機(jī)械化,能做許多我們用筆和紙不敢做的有很大計(jì)算量的問題,這主要?dú)w功于算法語(yǔ)句的()
A.輸出語(yǔ)句B.賦值語(yǔ)句
C.條件語(yǔ)句D.循環(huán)語(yǔ)句
解析由題意知,應(yīng)選D.
答案D
延伸閱讀
高二數(shù)學(xué)算法初步009
一名合格的教師要充分考慮學(xué)習(xí)的趣味性,作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生們有一個(gè)良好的課堂環(huán)境,幫助高中教師更好的完成實(shí)現(xiàn)教學(xué)目標(biāo)。那么怎么才能寫出優(yōu)秀的高中教案呢?下面是小編精心收集整理,為您帶來的《高二數(shù)學(xué)算法初步009》,歡迎大家閱讀,希望對(duì)大家有所幫助。
第一章算法初步
一、課標(biāo)要求:
1、本章的課標(biāo)要求包括算法的含義、程序框圖、基本算法語(yǔ)句,通過閱讀中國(guó)古代教學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
2、算法就是解決問題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算機(jī)科學(xué)的基礎(chǔ),利用計(jì)算機(jī)解決問需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計(jì)算機(jī)的算法,計(jì)算機(jī)可以解決多類信息處理問題,但人們必須事先用計(jì)算機(jī)熟悉的語(yǔ)言,也就是計(jì)算能夠理解的語(yǔ)言(即程序設(shè)計(jì)語(yǔ)言)來詳細(xì)描述解決問題的步驟,即首先設(shè)計(jì)程序,對(duì)稍復(fù)雜一些的問題,直接寫出解決該問題的程序是困難的,因此,我們要首先研究解決問題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計(jì)是使用計(jì)算機(jī)解決具體問題的一個(gè)極為重要的環(huán)節(jié)。
3、通過對(duì)解決具體問題的過程與步驟的分析(如二元一次方程組的求解等問題),體會(huì)算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。理解并掌握幾種基本的算法語(yǔ)句——輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句。進(jìn)一步體會(huì)算法的基本思想。
4、本章的重點(diǎn)是體會(huì)算法的思想,了解算法的含義,通過模仿、操作、探索,經(jīng)過通過設(shè)計(jì)程序框圖解決問題的過程。點(diǎn)是在具體問題的解決過程中,理解三種基本邏輯結(jié)構(gòu),經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過程,理解幾種基本的算法語(yǔ)句。
二、編寫意圖與特色:
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在義務(wù)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問題的過程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。
1、結(jié)合熟悉的算法,把握算法的基本思想,學(xué)會(huì)用自然語(yǔ)言來描述算法。
2、通過模仿、操作和探索,經(jīng)歷設(shè)計(jì)程序流程圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序流程圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
3、通過實(shí)際問題的學(xué)習(xí),了解構(gòu)造算法的基本程序。
4、經(jīng)歷將具體問題的程序流程圖轉(zhuǎn)化為程序語(yǔ)句的過程,理解幾種基本算法語(yǔ)句——輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,體會(huì)算法的基本思想。
5、需要注意的問題
1)從熟知的問題出發(fā),體會(huì)算法的程序化思想,而不是簡(jiǎn)單呈現(xiàn)一些算法。
2)變量和賦值是算法學(xué)習(xí)的重點(diǎn)之一,因?yàn)樵O(shè)置恰當(dāng)?shù)淖兞浚瑢W(xué)習(xí)給變量賦值,是構(gòu)造算法的關(guān)鍵,應(yīng)作為學(xué)習(xí)的重點(diǎn)。
3)不必刻意追求最優(yōu)的算法,把握算法的基本結(jié)構(gòu)和程序化思想才是我們的重點(diǎn)。
4)本章所指的算法基本上是能在計(jì)算機(jī)上實(shí)現(xiàn)的算法。
三、教學(xué)內(nèi)容及課時(shí)安排:
1.1算法與程序框圖(約2課時(shí))
1.2基本算法語(yǔ)句(約3課時(shí))
1.3算法案例(約5課時(shí))
復(fù)習(xí)與小結(jié)(約2課時(shí))
四、評(píng)價(jià)建議
1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評(píng)價(jià)
關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。
2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能
關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法
1.1.1算法的概念
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)了解算法的含義,體會(huì)算法的思想。(2)能夠用自然語(yǔ)言敘述算法。(3)掌握正確的算法應(yīng)滿足的要求。(4)會(huì)寫出解線性方程(組)的算法。(5)會(huì)寫出一個(gè)求有限整數(shù)序列中的最大值的算法。(6)會(huì)應(yīng)用Scilab求解方程組。
2、過程與方法:通過求解二元一次方程組,體會(huì)解方程的一般性步驟,從而得到一個(gè)解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法。由于思考問題的角度不同,同一個(gè)問題也可能有多個(gè)算法,能模仿求解二元一次方程組的步驟,寫出一個(gè)求有限整數(shù)序列中的最大值的算法。
3、情感態(tài)度與價(jià)值觀:通過本節(jié)的學(xué)習(xí),使我們對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)到計(jì)算機(jī)是人類征服自然的一各有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):算法的含義、解二元一次方程組和判斷一個(gè)數(shù)為質(zhì)數(shù)的算法設(shè)計(jì)。
難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。
三、學(xué)法與教學(xué)用具:
學(xué)法:1、寫出的算法,必須能解決一類問題(如:判斷一個(gè)整數(shù)n(n1)是否為質(zhì)數(shù);求任意一個(gè)方程的近似解;……),并且能夠重復(fù)使用。
2、要使算法盡量簡(jiǎn)單、步驟盡量少。
3、要保證算法正確,且計(jì)算機(jī)能夠執(zhí)行,如:讓計(jì)算機(jī)計(jì)算1×2×3×4×5是可以做到的,但讓計(jì)算機(jī)去執(zhí)行“倒一杯水”“替我理發(fā)”等則是做不到的。
教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:
算法作為一個(gè)名詞,在中學(xué)教科書中并沒有出現(xiàn)過,我們?cè)诨A(chǔ)教育階段還沒有接觸算法概念。但是我們卻從小學(xué)就開始接觸算法,熟悉許多問題的算法。如,做四則運(yùn)算要先乘除后加減,從里往外脫括弧,豎式筆算等都是算法,至于乘法口訣、珠算口訣更是算法的具體體現(xiàn)。我們知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解線性方程組的算法,求兩個(gè)數(shù)的最大公因數(shù)的算法等。因此,算法其實(shí)是重要的數(shù)學(xué)對(duì)象。
2、探索研究
算法(algorithm)一詞源于算術(shù)(algorism),即算術(shù)方法,是指一個(gè)由已知推求未知的運(yùn)算過程。后來,人們把它推廣到一般,把進(jìn)行某一工作的方法和步驟稱為算法。
廣義地說,算法就是做某一件事的步驟或程序。菜譜是做菜肴的算法,洗衣機(jī)的使用說明書是操作洗衣機(jī)的算法,歌譜是一首歌曲的算法。在數(shù)學(xué)中,主要研究計(jì)算機(jī)能實(shí)現(xiàn)的算法,即按照某種機(jī)械程序步驟一定可以得到結(jié)果的解決問題的程序。比如解方程的算法、函數(shù)求值的算法、作圖的算法,等等。
3、例題分析:
例1任意給定一個(gè)大于1的整數(shù)n,試設(shè)計(jì)一個(gè)程序或步驟對(duì)n是否為質(zhì)數(shù)做出判定。
算法分析:根據(jù)質(zhì)數(shù)的定義,很容易設(shè)計(jì)出下面的步驟:
第一步:判斷n是否等于2,若n=2,則n是質(zhì)數(shù);若n2,則執(zhí)行第二步。
第二步:依次從2至(n-1)檢驗(yàn)是不是n的因數(shù),即整除n的數(shù),若有這樣的數(shù),則n不是質(zhì)數(shù);若沒有這樣的數(shù),則n是質(zhì)數(shù)。
這是判斷一個(gè)大于1的整數(shù)n是否為質(zhì)數(shù)的最基本算法。
例2用二分法設(shè)計(jì)一個(gè)求議程x2–2=0的近似根的算法。
算法分析:回顧二分法解方程的過程,并假設(shè)所求近似根與準(zhǔn)確解的差的絕對(duì)值不超過0.005,則不難設(shè)計(jì)出以下步驟:
第一步:令f(x)=x2–2。因?yàn)閒(1)0,f(2)0,所以設(shè)x1=1,x2=2。
第二步:令m=(x1+x2)/2,判斷f(m)是否為0,若則,則m為所長(zhǎng);若否,則繼續(xù)判斷f(x1)f(m)大于0還是小于0。
第三步:若f(x1)f(m)0,則令x1=m;否則,令x2=m。
第四步:判斷|x1–x2|0.005是否成立?若是,則x1、x2之間的任意取值均為滿足條件的近似根;若否,則返回第二步。
小結(jié):算法具有以下特性:(1)有窮性;(2)確定性;(3)順序性;(4)不惟一性;(5)普遍性
典例剖析:
1、基本概念題
x-2y=-1,①
例3寫出解二元一次方程組的算法
2x+y=1②
解:第一步,②-①×2得5y=3;③
第二步,解③得y=3/5;
第三步,將y=3/5代入①,得x=1/5
學(xué)生做一做:對(duì)于一般的二元一次方程組來說,上述步驟應(yīng)該怎樣進(jìn)一步完善?
老師評(píng)一評(píng):本題的算法是由加減消元法求解的,這個(gè)算法也適合一般的二元一次方程組的解法。下面寫出求方程組的解的算法:
第一步:②×A1-①×A2,得(A1B2-A2B1)y+A1C2-A2C1=0;③
第二步:解③,得;
第三步:將代入①,得。
此時(shí)我們得到了二元一次方程組的求解公式,利用此公司可得到倒2的另一個(gè)算法:
第一步:取A1=1,B1=-2,C1=1,A2=2,B2=1,C2=-1;
第二步:計(jì)算與
第三步:輸出運(yùn)算結(jié)果。
可見利用上述算法,更加有利于上機(jī)執(zhí)行與操作。
基礎(chǔ)知識(shí)應(yīng)用題
例4寫出一個(gè)求有限整數(shù)列中的最大值的算法。
解:算法如下。
S1先假定序列中的第一個(gè)整數(shù)為“最大值”。
S2將序列中的下一個(gè)整數(shù)值與“最大值”比較,如果它大于此“最大值”,這時(shí)你就假定“最大值”是這個(gè)整數(shù)。
S3如果序列中還有其他整數(shù),重復(fù)S2。
S4在序列中一直到?jīng)]有可比的數(shù)為止,這時(shí)假定的“最大值”就是這個(gè)序列中的最大值。
學(xué)生做一做寫出對(duì)任意3個(gè)整數(shù)a,b,c求出最大值的算法。
老師評(píng)一評(píng)在例2中我們是用自然語(yǔ)言來描述算法的,下面我們用數(shù)學(xué)語(yǔ)言來描述本題的算法。
S1max=a
S2如果bmax,則max=b.
S3如果Cmax,則max=c.
S4max就是a,b,c中的最大值。
綜合應(yīng)用題
例5寫出求1+2+3+4+5+6的一個(gè)算法。
分析:可以按逐一相加的程序進(jìn)行,也可以利用公式1+2+…+n=進(jìn)行,也可以根據(jù)加法運(yùn)算律簡(jiǎn)化運(yùn)算過程。
解:算法1:
S1:計(jì)算1+2得到3;
S2:將第一步中的運(yùn)算結(jié)果3與3相加得到6;
S3:將第二步中的運(yùn)算結(jié)果6與4相加得到10;
S4:將第三步中的運(yùn)算結(jié)果10與5相加得到15;
S5:將第四步中的運(yùn)算結(jié)果15與6相加得到21。
算法2:
S1:取n=6;
S2:計(jì)算;
S3:輸出運(yùn)算結(jié)果。
算法3:
S1:將原式變形為(1+6)+(2+5)+(3+4)=3×7;
S2:計(jì)算3×7;
S3:輸出運(yùn)算結(jié)果。
小結(jié):算法1是最原始的方法,最為繁瑣,步驟較多,當(dāng)加數(shù)較大時(shí),比如1+2+3+…+10000,再用這種方法是行不通的;算法2與算法3都是比較簡(jiǎn)單的算法,但比較而言,算法2最為簡(jiǎn)單,且易于在計(jì)算機(jī)上執(zhí)行操作。
學(xué)生做一做求1×3×5×7×9×11的值,寫出其算法。
老師評(píng)一評(píng)算法1;第一步,先求1×3,得到結(jié)果3;
第二步,將第一步所得結(jié)果3再乘以5,得到結(jié)果15;
第三步,再將15乘以7,得到結(jié)果105;
第四步,再將105乘以9,得到945;
第五步,再將945乘以11,得到10395,即是最后結(jié)果。
算法2:用P表示被乘數(shù),i表示乘數(shù)。
S1使P=1。
S2使i=3
S3使P=P×i
S4使i=i+2
S5若i≤11,則返回到S3繼續(xù)執(zhí)行;否則算法結(jié)束。
小結(jié)由于計(jì)算機(jī)動(dòng)是高速計(jì)算的自動(dòng)機(jī)器,實(shí)現(xiàn)循環(huán)的語(yǔ)句。因此,上述算法2不僅是正確的,而且是在計(jì)算機(jī)上能夠?qū)崿F(xiàn)的較好的算法。在上面的算法中,S3,S4,S5構(gòu)成一個(gè)完整的循環(huán),這里需要說明的是,每經(jīng)過一次循環(huán)之后,變量P、i的值都發(fā)生了變化,并且生循環(huán)一次之后都要在步驟S5對(duì)i的值進(jìn)行檢驗(yàn),一旦發(fā)現(xiàn)i的值大于11時(shí),立即停止循環(huán),同時(shí)輸出最后一個(gè)P的值,對(duì)于循環(huán)結(jié)構(gòu)的詳細(xì)情況,我們將在以后的學(xué)習(xí)中介紹。
4、課堂小結(jié)
本節(jié)課主要講了算法的概念,算法就是解決問題的步驟,平時(shí)列論我們做什么事都離不開算法,算法的描述可以用自然語(yǔ)言,也可以用數(shù)學(xué)語(yǔ)言。
例如,某同學(xué)要在下午到體育館參加比賽,比賽下午2時(shí)開始,請(qǐng)寫出該同學(xué)從家里發(fā)到比賽地的算法。
若用自然語(yǔ)言來描述可寫為
(1)1:00從家出發(fā)到公共汽車站
(2)1:10上公共汽車
(3)1:40到達(dá)體育館
(4)1:45做準(zhǔn)備活動(dòng)。
(5)2:00比賽開始。
若用數(shù)學(xué)語(yǔ)言來描述可寫為:
S11:00從家出發(fā)到公共汽車站
S21:10上公共汽車
S31:40到達(dá)體育館
S41:45做準(zhǔn)備活動(dòng)
S52:00比賽開始
大家從中要以看出,實(shí)際上兩種寫法無本質(zhì)區(qū)別,但我們?cè)跁鴮憰r(shí)應(yīng)盡量用教學(xué)語(yǔ)言來描述,它的優(yōu)越性在以后的學(xué)習(xí)中我們會(huì)體會(huì)到。
5、自我評(píng)價(jià)
1、寫出解一元二次方程ax2+bx+c=0(a≠0)的一個(gè)算法。
2、寫出求1至1000的正數(shù)中的3倍數(shù)的一個(gè)算法(打印結(jié)果)
6、評(píng)價(jià)標(biāo)準(zhǔn)
1、解:算法如下
S1計(jì)算△=b2-4ac
S2如果△〈0,則方程無解;否則x1=
S3輸出計(jì)算結(jié)果x1,x2或無解信息。
2、解:算法如下:
S1使i=1
S2i被3除,得余數(shù)r
S3如果r=0,則打印i,否則不打印
S4使i=i+1
S5若i≤1000,則返回到S2繼續(xù)執(zhí)行,否則算法結(jié)束。
7、作業(yè):1、寫出解不等式x2-2x-30的一個(gè)算法。
解:第一步:x2-2x-3=0的兩根是x1=3,x2=-1。
第二步:由x2-2x-30可知不等式的解集為{x|-1x3}。
評(píng)注:該題的解法具有一般性,下面給出形如ax2+bx+c0的不等式的解的步驟(為方便,我們?cè)O(shè)a0)如下:
第一步:計(jì)算△=;
第二步:若△0,示出方程兩根(設(shè)x1x2),則不等式解集為{x|xx1或xx2};
第三步:若△=0,則不等式解集為{x|x∈R且x};
第四步:若△0,則不等式的解集為R。
2、求過P(a1,b1)、Q(a2,b2)兩點(diǎn)的直線斜率有如下的算法:
第一步:取x1=a1,y1=b1,x2=a2,y1=b2;
第二步:若x1=x2;
第三步:輸出斜率不存在;
第四步:若x1≠x2;
第五步:計(jì)算;
第六步:輸出結(jié)果。
3、寫出求過兩點(diǎn)M(-2,-1)、N(2,3)的直線與坐標(biāo)軸圍成面積的一個(gè)算法。
解:算法:第一步:取x1=-2,y1=-1,x2=2,y2=3;
第二步:計(jì)算;
第三步:在第二步結(jié)果中令x=0得到y(tǒng)的值m,得直線與y軸交點(diǎn)(0,m);
第四步:在第二步結(jié)果中令y=0得到x的值n,得直線與x軸交點(diǎn)(n,0);
第五步:計(jì)算S=;
第六步:輸出運(yùn)算結(jié)果
1.1.2程序框圖(第二、三課時(shí))
一、教學(xué)目標(biāo):
1、知識(shí)與技能:掌握程序框圖的概念;會(huì)用通用的圖形符號(hào)表示算法,掌握算法的三個(gè)基本邏輯結(jié)構(gòu);掌握畫程序框圖的基本規(guī)則,能正確畫出程序框圖。
2、過程與方法:通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)程序框圖表達(dá)解決問題的過程;學(xué)會(huì)靈活、正確地畫程序框圖。
3、情感態(tài)度與價(jià)值觀:通過本節(jié)的學(xué)習(xí),使我們對(duì)程序框圖有一個(gè)基本的了解;掌握算法語(yǔ)言的三種基本邏輯結(jié)構(gòu),明確程序框圖的基本要求;認(rèn)識(shí)到學(xué)習(xí)程序框圖是我們學(xué)習(xí)計(jì)算機(jī)的一個(gè)基本步驟,也是我們學(xué)習(xí)計(jì)算機(jī)語(yǔ)言的必經(jīng)之路。
二、重點(diǎn)與難點(diǎn):重點(diǎn)是程序框圖的基本概念、基本圖形符號(hào)和3種基本邏輯結(jié)構(gòu),難點(diǎn)是能綜合運(yùn)用這些知識(shí)正確地畫出程序框圖。
三、學(xué)法與教學(xué)用具:
1、通過上節(jié)學(xué)習(xí)我們知道,算法就是解決問題的步驟,在我們利用計(jì)算機(jī)解決問題的時(shí)候,首先我們要設(shè)計(jì)計(jì)算機(jī)程序,在設(shè)計(jì)計(jì)算機(jī)程序時(shí)我們首先要畫出程序運(yùn)行的流程圖,使整個(gè)程序的執(zhí)行過程直觀化,使抽象的問題就得十分清晰和具體。有了這個(gè)流程圖,再去設(shè)計(jì)程序就有了依據(jù),從而就可以把整個(gè)程序用機(jī)器語(yǔ)言表述出來,因此程序框圖是我們?cè)O(shè)計(jì)程序的基本和開端。
2、我們?cè)趯W(xué)習(xí)這部分內(nèi)容時(shí),首先要弄清各種圖形符號(hào)的意義,明確每個(gè)圖形符號(hào)的使用環(huán)境,圖形符號(hào)間的聯(lián)結(jié)方式。例如“起止框”只能出現(xiàn)在整個(gè)流程圖的首尾,它表示程序的開始或結(jié)束,其他圖形符號(hào)也是如此,它們都有各自的使用環(huán)境和作用,這是我們?cè)趯W(xué)習(xí)這部分知識(shí)時(shí)必須要注意的一個(gè)方面。另外,在我們描述算法或畫程序框圖時(shí),必須遵循一定的邏輯結(jié)構(gòu),事實(shí)證明,無論如何復(fù)雜的問題,我們?cè)谠O(shè)計(jì)它們的算法時(shí),只需用順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)這三種基本邏輯就可以了,因此我們必須掌握并正確地運(yùn)用這三種基本邏輯結(jié)構(gòu)。
3、教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:
算法可以用自然語(yǔ)言來描述,但為了使算法的程序或步驟表達(dá)得更為直觀,我們更經(jīng)常地用圖形方式來表示它。
基本概念:
(1)起止框圖:起止框是任何流程圖都不可缺少的,它表明程序的開始和結(jié)束,所以一個(gè)完整的流程圖的首末兩端必須是起止框。
(2)輸入、輸出框:表示數(shù)據(jù)的輸入或結(jié)果的輸出,它可用在算法中的任何需要輸入、輸出的位置。圖1-1中有三個(gè)輸入、輸出框。第一個(gè)出現(xiàn)在開始后的第一步,它的作用是輸入未知數(shù)的系數(shù)a11,a12,a21,a22和常數(shù)項(xiàng)b1,b2,通過這一步,就可以把給定的數(shù)值寫在輸入框內(nèi),它實(shí)際上是把未知數(shù)的系數(shù)和常數(shù)項(xiàng)的值通知給了計(jì)算機(jī),另外兩個(gè)是輸出框,它們分別位于由判斷分出的兩個(gè)分支中,它們表示最后給出的運(yùn)算結(jié)果,左邊分支中的輸出分框負(fù)責(zé)輸出D≠0時(shí)未知數(shù)x1,x2的值,右邊分支中的輸出框負(fù)責(zé)輸出D=0時(shí)的結(jié)果,即輸出無法求解信息。
(3)處理框:它是采用來賦值、執(zhí)行計(jì)算語(yǔ)句、傳送運(yùn)算結(jié)果的圖形符號(hào)。圖1-1中出現(xiàn)了兩個(gè)處理框。第一個(gè)處理框的作用是計(jì)算D=a11a22-a21a12的值,第二個(gè)處理框的作用是計(jì)算x1=(b1a22-b2a12)/D,x2=(b2a11-b1a21)/D的值。
(4)判斷框:判斷框一般有一個(gè)入口和兩個(gè)出口,有時(shí)也有多個(gè)出口,它是惟一的具有兩個(gè)或兩個(gè)以上出口的符號(hào),在只有兩個(gè)出口的情形中,通常都分成“是”與“否”(也可用“Y”與“N”)兩個(gè)分支,在圖1-1中,通過判斷框?qū)的值進(jìn)行判斷,若判斷框中的式子是D=0,則說明D=0時(shí)由標(biāo)有“是”的分支處理數(shù)據(jù);若D≠0,則由標(biāo)有“否”的分支處理數(shù)據(jù)。例如,我們要打印x的絕對(duì)值,可以設(shè)計(jì)如下框圖。
開始
輸入x
是x≥0?否
打印x-打印x
結(jié)束
從圖中可以看到由判斷框分出兩個(gè)分支,構(gòu)成一個(gè)選擇性結(jié)構(gòu),其中選擇的標(biāo)準(zhǔn)是“x≥0”,若符合這個(gè)條件,則按照“是”分支繼續(xù)往下執(zhí)行;若不符合這個(gè)條件,則按照“否”分支繼續(xù)往下執(zhí)行,這樣的話,打印出的結(jié)果總是x的絕對(duì)值。
在學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
(1)使用標(biāo)準(zhǔn)的圖形符號(hào)。
(2)框圖一般按從上到下、從左到右的方向畫。
(3)除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的惟一符號(hào)。
(4)判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
(5)在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。
2、典例剖析:
例1:已知x=4,y=2,畫出計(jì)算w=3x+4y的值的程序框圖。
解:程序框如下圖所示:
開始
輸入4,24和2分別是x和y的值
w=3×4+4×2
輸出w
結(jié)束
小結(jié):此圖的輸入框旁邊加了一個(gè)注釋框,它的作用是對(duì)框中的數(shù)據(jù)或內(nèi)容進(jìn)行說明,它可以出現(xiàn)在任何位置。
基礎(chǔ)知識(shí)應(yīng)用題
1)順序結(jié)構(gòu):順序結(jié)構(gòu)描述的是是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的。
例2:已知一個(gè)三角形的三邊分別為2、3、4,利用海倫公式設(shè)計(jì)一個(gè)算法,求出它的面積,并畫出算法的程序框圖。
算法分析:這是一個(gè)簡(jiǎn)單的問題,只需先算出p的值,再將它代入公式,最后輸出結(jié)果,只用順序結(jié)構(gòu)就能夠表達(dá)出算法。
程序框圖:
2)條件結(jié)構(gòu):一些簡(jiǎn)單的算法可以用順序結(jié)構(gòu)來表示,但是這種結(jié)構(gòu)無法對(duì)描述對(duì)象進(jìn)行邏輯判斷,并根據(jù)判斷結(jié)果進(jìn)行不同的處理。因此,需要有另一種邏輯結(jié)構(gòu)來處理這類問題,這種結(jié)構(gòu)叫做條件結(jié)構(gòu)。它是根據(jù)指定打件選擇執(zhí)行不同指令的控制結(jié)構(gòu)。
例3:任意給定3個(gè)正實(shí)數(shù),設(shè)計(jì)一個(gè)算法,判斷分別以這3個(gè)數(shù)為三邊邊長(zhǎng)的三角形是否存在,畫出這個(gè)算法的程序框圖。
算法分析:判斷分別以這3個(gè)數(shù)為三邊邊長(zhǎng)的三角形是否存在,只需要驗(yàn)收這3個(gè)數(shù)當(dāng)中任意兩個(gè)數(shù)的和是否大于第3個(gè)數(shù),這就需要用到條件結(jié)構(gòu)。
程序框圖:
a+bc,a+cb,b+ca是否
否同時(shí)成立?
是
3)循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。
循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
(1)一類是當(dāng)型循環(huán)結(jié)構(gòu),如圖1-5(1)所示,它的功能是當(dāng)給定的條件P1成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P1是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P1不成立為止,此時(shí)不再執(zhí)行A框,從b離開循環(huán)結(jié)構(gòu)。
(2)另一類是直到型循環(huán)結(jié)構(gòu),如下圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P2是否成立,如果P2仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P2成立為止,此時(shí)不再執(zhí)行A框,從b點(diǎn)離開循環(huán)結(jié)構(gòu)。
AA
P1?
P2?不成立
不成立
成立
bb
當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)
(1)(2)
例4:設(shè)計(jì)一個(gè)計(jì)算1+2+…+100的值的算法,并畫出程序框圖。
算法分析:只需要一個(gè)累加變量和一個(gè)計(jì)數(shù)變量,將累加變量的初始值為0,計(jì)數(shù)變量的值可以從1到100。
程序框圖:
i≤100?
否是
3、課堂小結(jié):
本節(jié)課主要講述了程序框圖的基本知識(shí),包括常用的圖形符號(hào)、算法的基本邏輯結(jié)構(gòu),算法的基本邏輯結(jié)構(gòu)有三種,即順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)。其中順序結(jié)構(gòu)是最簡(jiǎn)單的結(jié)構(gòu),也是最基本的結(jié)構(gòu),循環(huán)結(jié)構(gòu)必然包含條件結(jié)構(gòu),所以這三種基本邏輯結(jié)構(gòu)是相互支撐的,它們共同構(gòu)成了算法的基本結(jié)構(gòu),無論怎樣復(fù)雜的邏輯結(jié)構(gòu),都可以通過這三種結(jié)構(gòu)來表達(dá)
4、自我評(píng)價(jià):
1)設(shè)x為為一個(gè)正整數(shù),規(guī)定如下運(yùn)算:若x為奇數(shù),則求3x+2;若x為偶數(shù),則為5x,寫出算法,并畫出程序框圖。
2)畫出求21+22+23+…2100的值的程序框圖。
5、評(píng)價(jià)標(biāo)準(zhǔn):
1.解:算法如下。
S1輸入x
S2若x為奇數(shù),則輸出A=3x+2;否則輸出A=5x
S3算法結(jié)束。
程序框圖如下圖:
i≤30?是
否
2、解:序框圖如下圖:
i≥100?否
是
6、作業(yè):課本P11習(xí)題1.1A組2、3
1.2.1輸入、輸出語(yǔ)句和賦值語(yǔ)句(第一課時(shí))
教學(xué)目標(biāo):
知識(shí)與技能
(1)正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的結(jié)構(gòu)。
(2)會(huì)寫一些簡(jiǎn)單的程序。
(3)掌握賦值語(yǔ)句中的“=”的作用。
過程與方法
(1)讓學(xué)生充分地感知、體驗(yàn)應(yīng)用計(jì)算機(jī)解決數(shù)學(xué)問題的方法;并能初步操作、模仿。
(2)通過對(duì)現(xiàn)實(shí)生活情境的探究,嘗試設(shè)計(jì)出解決問題的程序,理解邏輯推理的數(shù)學(xué)方法。
情感態(tài)度與價(jià)值觀
通過本節(jié)內(nèi)容的學(xué)習(xí),使我們認(rèn)識(shí)到計(jì)算機(jī)與人們生活密切相關(guān),增強(qiáng)計(jì)算機(jī)應(yīng)用意識(shí),提高學(xué)生學(xué)習(xí)新知識(shí)的興趣。
重點(diǎn)與難點(diǎn)
重點(diǎn):正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的作用。
難點(diǎn):準(zhǔn)確寫出輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句。
學(xué)法與教學(xué)用具
計(jì)算機(jī)、圖形計(jì)算器
教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
在現(xiàn)代社會(huì)里,計(jì)算機(jī)已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ?,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數(shù)據(jù)等等,那么,計(jì)算機(jī)是怎樣工作的呢?
計(jì)算機(jī)完成任何一項(xiàng)任務(wù)都需要算法,但是,我們用自然語(yǔ)言或程序框圖描述的算法,計(jì)算機(jī)是無法“看得懂,聽得見”的。因此還需要將算法用計(jì)算機(jī)能夠理解的程序設(shè)計(jì)語(yǔ)言(programminglanguage)翻譯成計(jì)算機(jī)程序。
程序設(shè)計(jì)語(yǔ)言有很多種。如BASIC,F(xiàn)oxbase,C語(yǔ)言,C++,J++,VB等。為了實(shí)現(xiàn)算法中的三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),各種程序設(shè)計(jì)語(yǔ)言中都包含下列基本的算法語(yǔ)句:
這就是這一節(jié)所要研究的主要內(nèi)容——基本算法語(yǔ)句。今天,我們先一起來學(xué)習(xí)輸入、輸出語(yǔ)句和賦值語(yǔ)句。(板出課題)
【探究新知】
我們知道,順序結(jié)構(gòu)是任何一個(gè)算法都離不開的基本結(jié)構(gòu)。輸入、輸出語(yǔ)句和賦值語(yǔ)句基本上對(duì)應(yīng)于算法中的順序結(jié)構(gòu)。(如右圖)計(jì)算機(jī)從上而下按照語(yǔ)句排列的順序執(zhí)行這些語(yǔ)句。
輸入語(yǔ)句和輸出語(yǔ)句分別用來實(shí)現(xiàn)算法的輸入信息,輸出結(jié)果的功能。如下面的例子:
用描點(diǎn)法作函數(shù)的圖象時(shí),需要求出自變量與函數(shù)的一組對(duì)應(yīng)值。編寫程序,分別計(jì)算當(dāng)時(shí)的函數(shù)值。
程序:(教師可在課前準(zhǔn)備好該程序,教學(xué)中直接調(diào)用運(yùn)行)
(學(xué)生先不必深究該程序如何得來,只要求懂得上機(jī)操作,模仿編寫程序,通過運(yùn)行自己編寫的程序發(fā)現(xiàn)問題所在,進(jìn)一步提高學(xué)生的模仿能力。)
〖提問〗:在這個(gè)程序中,你們覺得哪些是輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句呢?(同學(xué)們互相交流、議論、猜想、概括出結(jié)論。提示:“input”和“print”的中文意思等)
(一)輸入語(yǔ)句
在該程序中的第1行中的INPUT語(yǔ)句就是輸入語(yǔ)句。這個(gè)語(yǔ)句的一般格式是:
其中,“提示內(nèi)容”一般是提示用戶輸入什么樣的信息。如每次運(yùn)行上述程序時(shí),依次輸入-5,-4,-3,-2,-1,0,1,2,3,4,5,計(jì)算機(jī)每次都把新輸入的值賦給變量“x”,并按“x”新獲得的值執(zhí)行下面的語(yǔ)句。
INPUT語(yǔ)句不但可以給單個(gè)變量賦值,還可以給多個(gè)變量賦值,其格式為:
例如,輸入一個(gè)學(xué)生數(shù)學(xué),語(yǔ)文,英語(yǔ)三門課的成績(jī),可以寫成:
INPUT“數(shù)學(xué),語(yǔ)文,英語(yǔ)”;a,b,c
注:①“提示內(nèi)容”與變量之間必須用分號(hào)“;”隔開。
②各“提示內(nèi)容”之間以及各變量之間必須用逗號(hào)“,”隔開。但最后的變量的后面不需要。
(二)輸出語(yǔ)句
在該程序中,第3行和第4行中的PRINT語(yǔ)句是輸出語(yǔ)句。它的一般格式是:
同輸入語(yǔ)句一樣,表達(dá)式前也可以有“提示內(nèi)容”。例如下面的語(yǔ)句可以輸出斐波那契數(shù)列:
此時(shí)屏幕上顯示:
TheFibonacciProgressionis:11235813213455…
輸出語(yǔ)句的用途:
(1)輸出常量,變量的值和系統(tǒng)信息。(2)輸出數(shù)值計(jì)算的結(jié)果。
〖思考〗:在1.1.2中程序框圖中的輸入框,輸出框的內(nèi)容怎樣用輸入語(yǔ)句、輸出語(yǔ)句來表達(dá)?(學(xué)生討論、交流想法,然后請(qǐng)學(xué)生作答)
參考答案:
輸入框:INPUT“請(qǐng)輸入需判斷的整數(shù)n=”;n
輸出框:PRINTn;“是質(zhì)數(shù)。”
PRINTn;“不是質(zhì)數(shù)?!?/p>
(三)賦值語(yǔ)句
用來表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句。
除了輸入語(yǔ)句,在該程序中第2行的賦值語(yǔ)句也可以給變量提供初值。它的一般格式是:
賦值語(yǔ)句中的“=”叫做賦值號(hào)。
賦值語(yǔ)句的作用:先計(jì)算出賦值號(hào)右邊表達(dá)式的值,然后把這個(gè)值賦給賦值號(hào)左邊的變量,使該變量的值等于表達(dá)式的值。
注:①賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。
②賦值號(hào)左右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。
③不能利用賦值語(yǔ)句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)
④賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。
〖思考〗:在1.1.2中程序框圖中的輸入框,哪些語(yǔ)句可以用賦值語(yǔ)句表達(dá)?并寫出相應(yīng)的賦值語(yǔ)句。(學(xué)生思考討論、交流想法。)
【例題精析】
〖例1〗:編寫程序,計(jì)算一個(gè)學(xué)生數(shù)學(xué)、語(yǔ)文、英語(yǔ)三門課的平均成績(jī)。
分析:先寫出算法,畫出程序框圖,再進(jìn)行編程。
算法:程序:
〖例2〗:給一個(gè)變量重復(fù)賦值。
程序:
[變式引申]:在此程序的基礎(chǔ)上,設(shè)計(jì)一個(gè)程序,要求最后A的輸出值是30。
(該變式的設(shè)計(jì)意圖是學(xué)生加深對(duì)重復(fù)賦值的理解)
程序:
〖例3〗:交換兩個(gè)變量A和B的值,并輸出交換前后的值。
分析:引入一個(gè)中間變量X,將A的值賦予X,又將B的值賦予A,再將X的值賦予B,從而達(dá)到交換A,B的值。(比如交換裝滿水的兩個(gè)水桶里的水需要再找一個(gè)空桶)
程序:
〖補(bǔ)例〗:編寫一個(gè)程序,要求輸入一個(gè)圓的半徑,便能輸出該圓的周長(zhǎng)和面積。(取3.14)
分析:設(shè)圓的半徑為R,則圓的周長(zhǎng)為,面積為,可以利用順序結(jié)構(gòu)中的INPUT語(yǔ)句,PRINT語(yǔ)句和賦值語(yǔ)句設(shè)計(jì)程序。
程序:
【課堂精練】
P15練習(xí)1.2.3
參考答案:
1.程序:INPUT“請(qǐng)輸入華氏溫度:”;x
y=(x-32)*5/9
PRINT“華氏溫度:”;x
PRINT“攝氏溫度:”;y
END
〖提問〗:如果要求輸入一個(gè)攝氏溫度,輸出其相應(yīng)的華氏溫度,又該如何設(shè)計(jì)程序?(學(xué)生課后思考,討論完成)
2.程序:INPUT“請(qǐng)輸入a(a0)=”;a
INPUT“請(qǐng)輸入b(b0)=”;b
X=a+b
Y=a-b
Z=a*b
Q=a/b
PRINTa,b
PRINTX,Y,Z,Q
END
3.程序:p=(2+3+4)/2
t=p*(p-2)*(p-3)*(p-4)
s=SQR(t)
PRINT“該三角形的面積為:”;s
END
注:SQR()是函數(shù)名,用來求某個(gè)數(shù)的平方根。
【課堂小結(jié)】
本節(jié)課介紹了輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句的結(jié)構(gòu)特點(diǎn)及聯(lián)系。掌握并應(yīng)用輸入語(yǔ)句,輸出語(yǔ)句,賦值語(yǔ)句編寫一些簡(jiǎn)單的程序解決數(shù)學(xué)問題,特別是掌握賦值語(yǔ)句中“=”的作用及應(yīng)用。編程一般的步驟:先寫出算法,再進(jìn)行編程。我們要養(yǎng)成良好的習(xí)慣,也有助于數(shù)學(xué)邏輯思維的形成。
【評(píng)價(jià)設(shè)計(jì)】
1.P23習(xí)題1.2A組1(2)、2
2.試對(duì)生活中某個(gè)簡(jiǎn)單問題或是常見數(shù)學(xué)問題,利用所學(xué)基本算法語(yǔ)句等知識(shí)來解決自己所提出的問題。要求寫出算法,畫程序框圖,并寫出程序設(shè)計(jì)。
1.2.2-1.2.3條件語(yǔ)句和循環(huán)語(yǔ)句(第二、三課時(shí))
教學(xué)目標(biāo):
知識(shí)與技能
(1)正確理解條件語(yǔ)句和循環(huán)語(yǔ)句的概念,并掌握其結(jié)構(gòu)的區(qū)別與聯(lián)系。
(2)會(huì)應(yīng)用條件語(yǔ)句和循環(huán)語(yǔ)句編寫程序。
過程與方法
經(jīng)歷對(duì)現(xiàn)實(shí)生活情境的探究,認(rèn)識(shí)到應(yīng)用計(jì)算機(jī)解決數(shù)學(xué)問題方便簡(jiǎn)捷,促進(jìn)發(fā)展學(xué)生邏輯思維能力
情感態(tài)度與價(jià)值觀
了解條件語(yǔ)句在程序中起判斷轉(zhuǎn)折作用,在解決實(shí)際問題中起決定作用。深刻體會(huì)到循環(huán)語(yǔ)句在解決大量重復(fù)問題中起重要作用。減少大量繁瑣的計(jì)算。通過本小節(jié)內(nèi)容的學(xué)習(xí),有益于我們養(yǎng)成嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維以及正確處理問題的能力。
重點(diǎn)與難點(diǎn)
重點(diǎn):條件語(yǔ)句和循環(huán)語(yǔ)句的步驟、結(jié)構(gòu)及功能。
難點(diǎn):會(huì)編寫程序中的條件語(yǔ)句和循環(huán)語(yǔ)句。
學(xué)法與教學(xué)用具
計(jì)算機(jī)、圖形計(jì)算器
教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
試求自然數(shù)1+2+3+……+99+100的和。
顯然大家都能準(zhǔn)確地口算出它的答案:5050。而能不能將這項(xiàng)計(jì)算工作交給計(jì)算機(jī)來完成呢?而要編程,以我們前面所學(xué)的輸入、輸出語(yǔ)句和賦值語(yǔ)句還不能滿足“我們?nèi)找嬖鲩L(zhǎng)的物質(zhì)需要”,因此,還需要進(jìn)一步學(xué)習(xí)基本算法語(yǔ)句中的另外兩種:條件語(yǔ)句和循環(huán)語(yǔ)句(板出課題)
【探究新知】
(一)條件語(yǔ)句
算法中的條件結(jié)構(gòu)是由條件語(yǔ)句來表達(dá)的,是處理?xiàng)l件分支邏輯結(jié)構(gòu)的算法語(yǔ)句。它的一般格式是:(IF-THEN-ELSE格式)
當(dāng)計(jì)算機(jī)執(zhí)行上述語(yǔ)句時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行THEN后的語(yǔ)句1,否則執(zhí)行ELSE后的語(yǔ)句2。其對(duì)應(yīng)的程序框圖為:(如上右圖)
在某些情況下,也可以只使用IF-THEN語(yǔ)句:(即IF-THEN格式)
計(jì)算機(jī)執(zhí)行這種形式的條件語(yǔ)句時(shí),也是首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行THEN后的語(yǔ)句,如果條件不符合,則直接結(jié)束該條件語(yǔ)句,轉(zhuǎn)而執(zhí)行其他語(yǔ)句。其對(duì)應(yīng)的程序框圖為:(如上右圖)
條件語(yǔ)句的作用:在程序執(zhí)行過程中,根據(jù)判斷是否滿足約定的條件而決定是否需要轉(zhuǎn)換到何處去。需要計(jì)算機(jī)按條件進(jìn)行分析、比較、判斷,并按判斷后的不同情況進(jìn)行不同的處理。
【例題精析】
〖例1〗:編寫程序,輸入一元二次方程的系數(shù),輸出它的實(shí)數(shù)根。
分析:先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對(duì)應(yīng)的程序語(yǔ)句表達(dá)出來。
算法分析:我們知道,若判別式,原方程有兩個(gè)不相等的實(shí)數(shù)根、;若,原方程有兩個(gè)相等的實(shí)數(shù)根;若,原方程沒有實(shí)數(shù)根。也就是說,在求解方程之前,需要首先判斷判別式的符號(hào)。因此,這個(gè)過程可以用算法中的條件結(jié)構(gòu)來實(shí)現(xiàn)。
又因?yàn)榉匠痰膬蓚€(gè)根有相同的部分,為了避免重復(fù)計(jì)算,可以在計(jì)算和之前,先計(jì)算,。程序框圖:(參照課本)
程序:(如右圖所示)
注:SQR()和ABS()是兩個(gè)函數(shù),分別用來求某個(gè)數(shù)的平方根和絕對(duì)值。
即,
〖例2〗:編寫程序,使得任意輸入的3個(gè)整數(shù)按從大到小的順序輸出。
算法分析:用a,b,c表示輸入的3個(gè)整數(shù);為了節(jié)約變量,把它們重新排列后,仍用a,b,c表示,并使a≥b≥c.具體操作步驟如下。
第一步:輸入3個(gè)整數(shù)a,b,c.
第二步:將a與b比較,并把小者賦給b,大者賦給a.
第三步:將a與c比較.并把小者賦給c,大者賦給a,此時(shí)a已是三者中最大的。
第四步:將b與c比較,并把小者賦給c,大者賦給b,此時(shí)a,b,c已按從大到小的順序排列好。
第五步:按順序輸出a,b,c.
程序框圖:(參照課本)
程序:(如右框圖所示)
〖補(bǔ)例〗:鐵路部門托運(yùn)行李的收費(fèi)方法如下:
y是收費(fèi)額(單位:元),x是行李重量(單位:kg),當(dāng)0<x≤20時(shí),按0.35元/kg收費(fèi),當(dāng)x>20kg時(shí),20kg的部分按0.35元/kg,超出20kg的部分,則按0.65元/kg收費(fèi),請(qǐng)根據(jù)上述收費(fèi)方法編寫程序。
分析:首先由題意得:該函數(shù)是個(gè)分段函數(shù)。需要對(duì)行李重量作出判斷,因此,這個(gè)過程可以用算法中的條件結(jié)構(gòu)來實(shí)現(xiàn)。
程序:INPUT“請(qǐng)輸入旅客行李的重量(kg)x=”;x
IFx0ANDx=20THEN
y=0.35*x
ELSE
y=0.35*20+0.65*(x-20)
ENDIF
PRINT“該旅客行李托運(yùn)費(fèi)為:”;y
END
【課堂精練】
1.練習(xí)2.(題略)
分析:如果有兩個(gè)或是兩個(gè)以上的并列條件時(shí),用“AND”把它們連接起來。
2.練習(xí)1.(題略)
參考答案:INPUT“請(qǐng)輸入三個(gè)正數(shù)a,b,c=”;a,b,c
IFa+bcANDa+cbANDb+caTHEN
PRINT“以下列三個(gè)數(shù):”;a,b,c,“可以構(gòu)成三角形?!?br>
ELSE
PRINT“以下列三個(gè)數(shù):”;a,b,c,“不可以構(gòu)成三角形!”
ENDIF
END
(二)循環(huán)語(yǔ)句
算法中的循環(huán)結(jié)構(gòu)是由循環(huán)語(yǔ)句來實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語(yǔ)句結(jié)構(gòu)。即WHILE語(yǔ)句和UNTIL語(yǔ)句。
(1)WHILE語(yǔ)句的一般格式是:
其中循環(huán)體是由計(jì)算機(jī)反復(fù)執(zhí)行的一組語(yǔ)句構(gòu)成的。WHLIE后面的“條件”是用于控制計(jì)算機(jī)執(zhí)行循環(huán)體或跳出循環(huán)體的。
當(dāng)計(jì)算機(jī)遇到WHILE語(yǔ)句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語(yǔ)句后,接著執(zhí)行WEND之后的語(yǔ)句。因此,當(dāng)型循環(huán)有時(shí)也稱為“前測(cè)試型”循環(huán)。其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上右圖)
(2)UNTIL語(yǔ)句的一般格式是:
其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上右圖)
〖思考〗:直到型循環(huán)又稱為“后測(cè)試型”循環(huán),參照其直到型循環(huán)結(jié)構(gòu)對(duì)應(yīng)的程序框圖,說說計(jì)算機(jī)是按怎樣的順序執(zhí)行UNTIL語(yǔ)句的?(讓學(xué)生模仿執(zhí)行WHILE語(yǔ)句的表述)
從UNTIL型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語(yǔ)句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件滿足時(shí),不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語(yǔ)句后執(zhí)行其他語(yǔ)句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語(yǔ)句。
〖提問〗:通過對(duì)照,大家覺得WHILE型語(yǔ)句與UNTIL型語(yǔ)句之間有什么區(qū)別呢?(讓學(xué)生表達(dá)自己的感受)
區(qū)別:在WHILE語(yǔ)句中,是當(dāng)條件滿足時(shí)執(zhí)行循環(huán)體,而在UNTIL語(yǔ)句中,是當(dāng)條件不滿足時(shí)執(zhí)行循環(huán)體。
【例題精析】
〖例3〗:編寫程序,計(jì)算自然數(shù)1+2+3+……+99+100的和。
分析:這是一個(gè)累加問題。我們可以用WHILE型語(yǔ)句,也可以用UNTIL型語(yǔ)句。由此看來,解決問題的方法不是惟一的,當(dāng)然程序的設(shè)計(jì)也是有多種的,只是程序簡(jiǎn)單與復(fù)雜的問題。
程序:WHILE型:UNTIL型:
〖例4〗:根據(jù)1.1.2中的圖1.1-2,將程序框圖轉(zhuǎn)化為程序語(yǔ)句。
分析:仔細(xì)觀察,該程序框圖中既有條件結(jié)構(gòu),又有循環(huán)結(jié)構(gòu)。
程序:
〖思考〗:上述判定質(zhì)數(shù)的算法是否還能有所改進(jìn)?(讓學(xué)生課后思考。)
〖補(bǔ)例〗:某紡織廠1997年的生產(chǎn)總值為300萬元,如果年生產(chǎn)增產(chǎn)率為5﹪,計(jì)算最早在哪一年生產(chǎn)總值超過400萬元。
分析:從1997年底開始,經(jīng)過x年后生產(chǎn)總值為300×(1+5﹪)x,可將1997年生產(chǎn)總值賦給變量a,然后對(duì)其進(jìn)行累乘,用n作為計(jì)數(shù)變量進(jìn)行循環(huán),直到a的值超過400萬元為止。
解:
程序框圖為:程序:
【課堂精練】
1.練習(xí)2.3(題略)
參考答案:
2.解:程序:X=1
WHILEX<=20
Y=X^2-3*X+5
X=X+1
PRINT“Y=”;Y
WEND
END
3.解:程序:INPUT“請(qǐng)輸入正整數(shù)n=”;n
a=1
i=1
WHILEi=n
a=a*i
i=i+1
WEND
PRINT“n!=”;a
END
【課堂小結(jié)】
本節(jié)課主要學(xué)習(xí)了條件語(yǔ)句和循環(huán)語(yǔ)句的結(jié)構(gòu)、特點(diǎn)、作用以及用法,并懂得利用解決一些簡(jiǎn)單問題。條件語(yǔ)句使程序執(zhí)行產(chǎn)生的分支,根據(jù)不同的條件執(zhí)行不同的路線,使復(fù)雜問題簡(jiǎn)單化。有些復(fù)雜問題可用兩層甚至多層循環(huán)解決。注意內(nèi)外層的銜接,可以從循環(huán)體內(nèi)轉(zhuǎn)到循環(huán)體外,但不允許從循環(huán)體外轉(zhuǎn)入循環(huán)體內(nèi)。
條件語(yǔ)句一般用在需要對(duì)條件進(jìn)行判斷的算法設(shè)計(jì)中,如判斷一個(gè)數(shù)的正負(fù),確定兩個(gè)數(shù)的大小等問題,還有求分段函數(shù)的函數(shù)值等,往往要用條件語(yǔ)句,有時(shí)甚至要用到條件語(yǔ)句的嵌套。
循環(huán)語(yǔ)句主要用來實(shí)現(xiàn)算法中的循環(huán)結(jié)構(gòu),在處理一些需要反復(fù)執(zhí)行的運(yùn)算任務(wù)。如累加求和,累乘求積等問題中常用到。
【評(píng)價(jià)設(shè)計(jì)】
1.P23習(xí)題1.2A組3、4
P24習(xí)題1.2B組2.
2.試設(shè)計(jì)一個(gè)生活中某個(gè)簡(jiǎn)單問題或是常見數(shù)學(xué)問題,并利用所學(xué)基本算法語(yǔ)句等知識(shí)編程。(要求所設(shè)計(jì)問題利用條件語(yǔ)句或循環(huán)語(yǔ)句)
1.3算法案例
第一、二課時(shí)輾轉(zhuǎn)相除法與更相減損術(shù)
(1)教學(xué)目標(biāo)
(a)知識(shí)與技能
1.理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析。
2.基本能根據(jù)算法語(yǔ)句與程序框圖的知識(shí)設(shè)計(jì)完整的程序框圖并寫出算法程序。
(b)過程與方法
在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過程中對(duì)比我們常見的約分求公因式的方法,比較它們?cè)谒惴ㄉ系膮^(qū)別,并從程序的學(xué)習(xí)中體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),領(lǐng)會(huì)數(shù)學(xué)算法計(jì)算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計(jì)算機(jī)語(yǔ)言的一般步驟。
(c)情態(tài)與價(jià)值
1.通過閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
2.在學(xué)習(xí)古代數(shù)學(xué)家解決數(shù)學(xué)問題的方法的過程中培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問題的過程中培養(yǎng)理性的精神和動(dòng)手實(shí)踐的能力。
(2)教學(xué)重難點(diǎn)
重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法。
難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語(yǔ)言。
(3)學(xué)法與教學(xué)用具
學(xué)法:在理解最大公約數(shù)的基礎(chǔ)上去發(fā)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)中的數(shù)學(xué)規(guī)律,并能模仿已經(jīng)學(xué)過的程序框圖與算法語(yǔ)句設(shè)計(jì)出輾轉(zhuǎn)相除法與更相減損術(shù)的程序框圖與算法程序。
教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
(4)教學(xué)設(shè)想
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:在初中,我們已經(jīng)學(xué)過求最大公約數(shù)的知識(shí),你能求出18與30的公約數(shù)嗎?
2.接著教師進(jìn)一步提出問題,我們都是利用找公約數(shù)的方法來求最大公約數(shù),如果公約數(shù)比較大而且根據(jù)我們的觀察又不能得到一些公約數(shù),我們又應(yīng)該怎樣求它們的最大公約數(shù)?比如求8251與6105的最大公約數(shù)?這就是我們這一堂課所要探討的內(nèi)容。
(二)研探新知
1.輾轉(zhuǎn)相除法
例1求兩個(gè)正數(shù)8251和6105的最大公約數(shù)。
(分析:8251與6105兩數(shù)都比較大,而且沒有明顯的公約數(shù),如能把它們都變小一點(diǎn),根據(jù)已有的知識(shí)即可求出最大公約數(shù))
解:8251=6105×1+2146
顯然8251的最大公約數(shù)也必是2146的約數(shù),同樣6105與2146的公約數(shù)也必是8251的約數(shù),所以8251與6105的最大公約數(shù)也是6105與2146的最大公約數(shù)。
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
則37為8251與6105的最大公約數(shù)。
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法。也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的。利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商q0和一個(gè)余數(shù)r0;
第二步:若r0=0,則n為m,n的最大公約數(shù);若r0≠0,則用除數(shù)n除以余數(shù)r0得到一個(gè)商q1和一個(gè)余數(shù)r1;
第三步:若r1=0,則r1為m,n的最大公約數(shù);若r1≠0,則用除數(shù)r0除以余數(shù)r1得到一個(gè)商q2和一個(gè)余數(shù)r2;
……
依次計(jì)算直至rn=0,此時(shí)所得到的rn-1即為所求的最大公約數(shù)。
練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53)
2.更相減損術(shù)
我國(guó)早期也有解決求最大公約數(shù)問題的算法,就是更相減損術(shù)。
更相減損術(shù)求最大公約數(shù)的步驟如下:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯出來為:
第一步:任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。
第二步:以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。
例2用更相減損術(shù)求98與63的最大公約數(shù).
解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,即:98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98與63的最大公約數(shù)是7。
練習(xí):用更相減損術(shù)求兩個(gè)正數(shù)84與72的最大公約數(shù)。(答案:12)
3.比較輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別
(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
4.輾轉(zhuǎn)相除法與更相減損術(shù)計(jì)算的程序框圖及程序
利用輾轉(zhuǎn)相除法與更相減損術(shù)的計(jì)算算法,我們可以設(shè)計(jì)出程序框圖以及BSAIC程序來在計(jì)算機(jī)上實(shí)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù),下面由同學(xué)們?cè)O(shè)計(jì)相應(yīng)框圖并相互之間檢查框圖與程序的正確性,并在計(jì)算機(jī)上驗(yàn)證自己的結(jié)果。
(1)輾轉(zhuǎn)相除法的程序框圖及程序
程序框圖:
程序:
INPUT“m=”;m
INPUT“n=”;n
IFmnTHENx=m
m=n
n=x
ENDIF
r=mMODn
WHILEr0
r=mMODn
m=n
n=r
WEND
PRINTm
END
5.課堂練習(xí)
一.用輾轉(zhuǎn)相除法求下列各組數(shù)的最大公約數(shù),并在自己編寫的BASIC程序中驗(yàn)證。
(1)225;135(2)98;196(3)72;168(4)153;119
二.思考:用求質(zhì)因數(shù)的方法可否求上述4組數(shù)的最大公約數(shù)?可否利用求質(zhì)因數(shù)的算法設(shè)計(jì)出程序框圖及程序?若能,在電腦上測(cè)試自己的程序;若不能說明無法實(shí)現(xiàn)的理由。
三。思考:利用輾轉(zhuǎn)相除法是否可以求兩數(shù)的最大公倍數(shù)?試設(shè)計(jì)程序框圖并轉(zhuǎn)換成程序在BASIC中實(shí)現(xiàn)。
6.小結(jié):
輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的計(jì)算方法及完整算法程序的編寫。
(5)評(píng)價(jià)設(shè)計(jì)
作業(yè):P38A(1)B(2)
補(bǔ)充:設(shè)計(jì)更相減損術(shù)求最大公約數(shù)的程序框圖
第三、四課時(shí)秦九韶算法與排序
(1)教學(xué)目標(biāo)
(a)知識(shí)與技能
1.了解秦九韶算法的計(jì)算過程,并理解利用秦九韶算法可以減少計(jì)算次數(shù)提高計(jì)算效率的實(shí)質(zhì)。
2.掌握數(shù)據(jù)排序的原理能使用直接排序法與冒泡排序法給一組數(shù)據(jù)排序,進(jìn)而能設(shè)計(jì)冒泡排序法的程序框圖及程序,理解數(shù)學(xué)算法與計(jì)算機(jī)算法的區(qū)別,理解計(jì)算機(jī)對(duì)數(shù)學(xué)的輔助作用。
(b)過程與方法
模仿秦九韶計(jì)算方法,體會(huì)古人計(jì)算構(gòu)思的巧妙。能根據(jù)排序法中的直接插入排序法與冒泡排序法的步驟,了解數(shù)學(xué)計(jì)算轉(zhuǎn)換為計(jì)算機(jī)計(jì)算的途徑,從而探究計(jì)算機(jī)算法與數(shù)學(xué)算法的區(qū)別,體會(huì)計(jì)算機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)的輔助作用。
(c)情態(tài)與價(jià)值
通過對(duì)秦九韶算法的學(xué)習(xí),了解中國(guó)古代數(shù)學(xué)家對(duì)數(shù)學(xué)的貢獻(xiàn),充分認(rèn)識(shí)到我國(guó)文化歷史的悠久。通過對(duì)排序法的學(xué)習(xí),領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。
(2)教學(xué)重難點(diǎn)
重點(diǎn):1.秦九韶算法的特點(diǎn)
2.兩種排序法的排序步驟及計(jì)算機(jī)程序設(shè)計(jì)
難點(diǎn):1.秦九韶算法的先進(jìn)性理解
2.排序法的計(jì)算機(jī)程序設(shè)計(jì)
(3)學(xué)法與教學(xué)用具
學(xué)法:1.探究秦九韶算法對(duì)比一般計(jì)算方法中計(jì)算次數(shù)的改變,體會(huì)科學(xué)的計(jì)算。
2.模仿排序法中數(shù)字排序的步驟,理解計(jì)算機(jī)計(jì)算的一般步驟,領(lǐng)會(huì)數(shù)學(xué)計(jì)算在計(jì)算機(jī)上實(shí)施的要求。
教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
(4)教學(xué)設(shè)想
(一)創(chuàng)設(shè)情景,揭示課題
我們已經(jīng)學(xué)過了多項(xiàng)式的計(jì)算,下面我們計(jì)算一下多項(xiàng)式
當(dāng)時(shí)的值,并統(tǒng)計(jì)所做的計(jì)算的種類及計(jì)算次數(shù)。
根據(jù)我們的計(jì)算統(tǒng)計(jì)可以得出我們共需要10次乘法運(yùn)算,5次加法運(yùn)算。
我們把多項(xiàng)式變形為:再統(tǒng)計(jì)一下計(jì)算當(dāng)時(shí)的值時(shí)需要的計(jì)算次數(shù),可以得出僅需4次乘法和5次加法運(yùn)算即可得出結(jié)果。顯然少了6次乘法運(yùn)算。這種算法就叫秦九韶算法。
(二)研探新知
1.秦九韶計(jì)算多項(xiàng)式的方法
例1已知一個(gè)5次多項(xiàng)式為
用秦九韶算法求這個(gè)多項(xiàng)式當(dāng)時(shí)的值。
解:略
思考:(1)例1計(jì)算時(shí)需要多少次乘法計(jì)算?多少次加法計(jì)算?
(2)在利用秦九韶算法計(jì)算n次多項(xiàng)式當(dāng)時(shí)需要多少次乘法計(jì)算和多少次加法計(jì)算?
練習(xí):利用秦九韶算法計(jì)算
當(dāng)時(shí)的值,并統(tǒng)計(jì)需要多少次乘法計(jì)算和多少次加法計(jì)算?
例2設(shè)計(jì)利用秦九韶算法計(jì)算5次多項(xiàng)式
當(dāng)時(shí)的值的程序框圖。
解:程序框圖如下:
練習(xí):利用程序框圖試編寫B(tài)ASIC程序并在計(jì)算機(jī)上測(cè)試自己的程序。
2.排序
在信息技術(shù)課中我們學(xué)習(xí)過電子表格,電子表格對(duì)分?jǐn)?shù)的排序非常簡(jiǎn)單,那么電子計(jì)算機(jī)是怎么對(duì)數(shù)據(jù)進(jìn)行排序的呢?
閱讀課本P30—P31面的內(nèi)容,回答下面的問題:
(1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?
(2)冒泡法排序中對(duì)5個(gè)數(shù)字進(jìn)行排序最多需要多少趟?
(3)在冒泡法排序?qū)?個(gè)數(shù)字進(jìn)行排序的每一趟中需要比較大小幾次?
游戲:5位同學(xué)每人拿一個(gè)數(shù)字牌在講臺(tái)上演示冒泡排序法對(duì)5個(gè)數(shù)據(jù)4,11,7,9,6排序的過程,讓學(xué)生通過觀察敘述冒泡排序法的主要步驟.并結(jié)合步驟解決例3的問題.
例3用冒泡排序法對(duì)數(shù)據(jù)7,5,3,9,1從小到大進(jìn)行排序
解:P32
練習(xí):寫出用冒泡排序法對(duì)5個(gè)數(shù)據(jù)4,11,7,9,6排序的過程中每一趟排序的結(jié)果.
例4設(shè)計(jì)冒泡排序法對(duì)5個(gè)數(shù)據(jù)進(jìn)行排序的程序框圖.
解:程序框圖如下:
思考:直接排序法的程序框圖如何設(shè)計(jì)?可否把上述程序框圖轉(zhuǎn)化為程序?
練習(xí):用直接排序法對(duì)例3中的數(shù)據(jù)從小到大排序
3.小結(jié):
(1)秦九韶算法計(jì)算多項(xiàng)式的值及程序設(shè)計(jì)
(2)數(shù)字排序法中的常見的兩種排序法直接插入排序法與冒泡排序法
(3)冒泡法排序的計(jì)算機(jī)程序框圖設(shè)計(jì)
(5)評(píng)價(jià)設(shè)計(jì)
作業(yè):P38A(2)(3)
補(bǔ)充:設(shè)計(jì)程序框圖對(duì)上述兩組數(shù)進(jìn)行排序
第五課時(shí)進(jìn)位制
(1)教學(xué)目標(biāo)
(a)知識(shí)與技能
了解各種進(jìn)位制與十進(jìn)制之間轉(zhuǎn)換的規(guī)律,會(huì)利用各種進(jìn)位制與十進(jìn)制之間的聯(lián)系進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)換。
(b)過程與方法
學(xué)習(xí)各種進(jìn)位制轉(zhuǎn)換成十進(jìn)制的計(jì)算方法,研究十進(jìn)制轉(zhuǎn)換為各種進(jìn)位制的除k去余法,并理解其中的數(shù)學(xué)規(guī)律。
(c)情態(tài)與價(jià)值
領(lǐng)悟十進(jìn)制,二進(jìn)制的特點(diǎn),了解計(jì)算機(jī)的電路與二進(jìn)制的聯(lián)系,進(jìn)一步認(rèn)識(shí)到計(jì)算機(jī)與數(shù)學(xué)的聯(lián)系。
(2)教學(xué)重難點(diǎn)
重點(diǎn):各進(jìn)位制表示數(shù)的方法及各進(jìn)位制之間的轉(zhuǎn)換
難點(diǎn):除k去余法的理解以及各進(jìn)位制之間轉(zhuǎn)換的程序框圖的設(shè)計(jì)
(3)學(xué)法與教學(xué)用具
學(xué)法:在學(xué)習(xí)各種進(jìn)位制特點(diǎn)的同時(shí)探討進(jìn)位制表示數(shù)與十進(jìn)制表示數(shù)的區(qū)別與聯(lián)系,熟悉各種進(jìn)位制表示數(shù)的方法,從而理解十進(jìn)制轉(zhuǎn)換為各種進(jìn)位制的除k去余法。
教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
(4)教學(xué)設(shè)想
(一)創(chuàng)設(shè)情景,揭示課題
我們常見的數(shù)字都是十進(jìn)制的,但是并不是生活中的每一種數(shù)字都是十進(jìn)制的.比如時(shí)間和角度的單位用六十進(jìn)位制,電子計(jì)算機(jī)用的是二進(jìn)制.那么什么是進(jìn)位制?不同的進(jìn)位制之間又又什么聯(lián)系呢?
(二)研探新知
進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。可使用數(shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制。現(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。
對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。
表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù).
電子計(jì)算機(jī)一般都使用二進(jìn)制,下面我們來進(jìn)行二進(jìn)制與十進(jìn)制之間的轉(zhuǎn)化
例1把二進(jìn)制數(shù)110011(2)化為十進(jìn)制數(shù).
解:110011=1*25+1*24+0*23+1*24+0*22+1*21+1*20
=32+16+2+1
=51
例2把89化為二進(jìn)制數(shù).
解:根據(jù)二進(jìn)制數(shù)滿二進(jìn)一的原則,可以用2連續(xù)去除89或所得商,然后去余數(shù).
具體的計(jì)算方法如下:
89=2*44+1
44=2*22+0
22=2*11+0
11=2*5+1
5=2*2+1
所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1
=1*26+0*25+1*24+1*23+0*22+0*21+1*20
=1011001(2)
這種算法叫做除2取余法,還可以用下面的除法算式表示:
把上式中的各步所得的余數(shù)從下到上排列即可得到89=1011001(2)
上述方法也可以推廣為把十進(jìn)制化為k進(jìn)制數(shù)的算法,這種算法成為除k取余法.
當(dāng)數(shù)字較小時(shí),也可直接利用各進(jìn)位制表示數(shù)的特點(diǎn),都是以冪的形式來表示各位數(shù)字,比如2*103表示千位數(shù)字是2,所以可以直接求出各位數(shù)字.即把89轉(zhuǎn)換為二進(jìn)制數(shù)時(shí),直接觀察得出89與64最接近故89=64*1+25
同理:25=16*1+9
9=8*!+1
即89=64*1+16*1+8*!+1=1*26+1*24+1*23+1*20
位數(shù)6543210
數(shù)字1011001
即89=1011001(2)
練習(xí):(1)把73轉(zhuǎn)換為二進(jìn)制數(shù)
(2)利用除k取余法把89轉(zhuǎn)換為5進(jìn)制數(shù)
把k進(jìn)制數(shù)a(共有n位)轉(zhuǎn)換為十進(jìn)制數(shù)b的過程可以利用計(jì)算機(jī)程序來實(shí)現(xiàn),語(yǔ)句為:
INPUTa,k,n
i=1
b=0
WHILEi=n
t=GETa[i]
b=b+t*k^(i-1)
i=i+1
WEND
PRINTb
END
練習(xí):(1)請(qǐng)根據(jù)上述程序畫出程序框圖.
參考程序框圖:
(2)設(shè)計(jì)一個(gè)算法,實(shí)現(xiàn)把k進(jìn)制數(shù)a(共有n位)轉(zhuǎn)換為十進(jìn)制數(shù)b的過程的程序中的GET函數(shù)的功能,輸入一個(gè)正5位數(shù),取出它的各位數(shù)字,并輸出.
小結(jié):
(1)進(jìn)位制的概念及表示方法
(2)十進(jìn)制與二進(jìn)制之間轉(zhuǎn)換的方法及計(jì)算機(jī)程序
(5)評(píng)價(jià)設(shè)計(jì)
作業(yè):P38A(4)
補(bǔ)充:設(shè)計(jì)程序框圖把一個(gè)八進(jìn)制數(shù)23456轉(zhuǎn)換成十進(jìn)制數(shù).
算法初步復(fù)習(xí)課
(1)教學(xué)目標(biāo)
(a)知識(shí)與技能
1.明確算法的含義,熟悉算法的三種基本結(jié)構(gòu):順序、條件和循環(huán),以及基本的算法語(yǔ)句。
2.能熟練運(yùn)用輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法、排序、進(jìn)位制等典型的算法知識(shí)解決同類問題。
(b)過程與方法
在復(fù)習(xí)舊知識(shí)的過程中把知識(shí)系統(tǒng)化,通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中進(jìn)一步理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。
(c)情態(tài)與價(jià)值
算法內(nèi)容反映了時(shí)代的特點(diǎn),同時(shí)也是中國(guó)數(shù)學(xué)課程內(nèi)容的新特色。中國(guó)古代數(shù)學(xué)以算法為主要特征,取得了舉世公認(rèn)的偉大成就?,F(xiàn)代信息技術(shù)的發(fā)展使算法重新煥發(fā)了前所未有的生機(jī)和活力,算法進(jìn)入中學(xué)數(shù)學(xué)課程,既反映了時(shí)代的要求,也是中國(guó)古代數(shù)學(xué)思想在一個(gè)新的層次上的復(fù)興,也就成為了中國(guó)數(shù)學(xué)課程的一個(gè)新的特色。
(2)教學(xué)重難點(diǎn)
重點(diǎn):算法的基本知識(shí)與算法對(duì)應(yīng)的程序框圖的設(shè)計(jì)
難點(diǎn):與算法對(duì)應(yīng)的程序框圖的設(shè)計(jì)及算法程序的編寫
(3)學(xué)法與教學(xué)用具
學(xué)法:利用實(shí)例讓學(xué)生體會(huì)基本的算法思想,提高邏輯思維能力,對(duì)比信息技術(shù)課程中的程序語(yǔ)言的學(xué)習(xí)和程序設(shè)計(jì),了解數(shù)學(xué)算法與信息技術(shù)上的區(qū)別。通過案例的運(yùn)用,引導(dǎo)學(xué)生體會(huì)算法的核心是一般意義上的解決問題策略的具體化。面臨一個(gè)問題時(shí),在分析、思考后獲得了解決它的基本思路(解題策略),將這種思路具體化、條理化,用適當(dāng)?shù)姆绞奖磉_(dá)出來(畫出程序框圖,轉(zhuǎn)化為程序語(yǔ)句)。
教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器
(4)教學(xué)設(shè)想
一.本章的知識(shí)結(jié)構(gòu)
二.知識(shí)梳理
(1)四種基本的程序框
(2)三種基本邏輯結(jié)構(gòu)
順序結(jié)構(gòu)條件結(jié)構(gòu)循環(huán)結(jié)構(gòu)
(3)基本算法語(yǔ)句
(一)輸入語(yǔ)句
單個(gè)變量
多個(gè)變量
(二)輸出語(yǔ)句
(三)賦值語(yǔ)句
(四)條件語(yǔ)句
IF-THEN-ELSE格式
當(dāng)計(jì)算機(jī)執(zhí)行上述語(yǔ)句時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行THEN后的語(yǔ)句1,否則執(zhí)行ELSE后的語(yǔ)句2。其對(duì)應(yīng)的程序框圖為:(如上右圖)
IF-THEN格式
計(jì)算機(jī)執(zhí)行這種形式的條件語(yǔ)句時(shí),也是首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行THEN后的語(yǔ)句,如果條件不符合,則直接結(jié)束該條件語(yǔ)句,轉(zhuǎn)而執(zhí)行其他語(yǔ)句。其對(duì)應(yīng)的程序框圖為:(如上右圖)
(五)循環(huán)語(yǔ)句
(1)WHILE語(yǔ)句
其中循環(huán)體是由計(jì)算機(jī)反復(fù)執(zhí)行的一組語(yǔ)句構(gòu)成的。WHLIE后面的“條件”是用于控制計(jì)算機(jī)執(zhí)行循環(huán)體或跳出循環(huán)體的。
當(dāng)計(jì)算機(jī)遇到WHILE語(yǔ)句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語(yǔ)句后,接著執(zhí)行WEND之后的語(yǔ)句。因此,當(dāng)型循環(huán)有時(shí)也稱為“前測(cè)試型”循環(huán)。其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上右圖)
(2)UNTIL語(yǔ)句
其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上右圖)
(4)算法案例
案例1輾轉(zhuǎn)相除法與更相減損術(shù)
案例2秦九韶算法
案例3排序法:直接插入排序法與冒泡排序法
案例4進(jìn)位制
三.典型例題
例1寫一個(gè)算法程序,計(jì)算1+2+3+…+n的值(要求可以輸入任意大于1的正自然數(shù))
解:INPUT“n=”;n
i=1
sum=0
WHILEi=n
sum=sum+i
i=i+1
WEND
PRINTsum
END
思考:在上述程序語(yǔ)句中我們使用了WHILE格式的循環(huán)語(yǔ)句,能不能使用UNTIL循環(huán)?
例2設(shè)計(jì)一個(gè)程序框圖對(duì)數(shù)字3,1,6,9,8進(jìn)行排序(利用冒泡排序法)
思考:上述程序框圖中哪些是順序結(jié)構(gòu)?哪些是條件結(jié)構(gòu)?哪些是循環(huán)結(jié)構(gòu)?
例3把十進(jìn)制數(shù)53轉(zhuǎn)化為二進(jìn)制數(shù).
解:53=1×25+1×24+0×23+1×22+0×21+1×20
=110101(2)
例4利用輾轉(zhuǎn)相除法求3869與6497的最大公約數(shù)與最小公倍數(shù)。
解:6497=3869×1+2628
3869=2628×1+1241
2628=1241*2+146
1241=146×8+73
146=73×2+0
所以3869與6497的最大公約數(shù)為73
最小公倍數(shù)為3869×6497/73=344341
思考:上述計(jì)算方法能否設(shè)計(jì)為程序框圖?
練習(xí):P40A(3)(4)
(5)評(píng)價(jià)設(shè)計(jì)
作業(yè):P40A(5)(6)
2.1.1簡(jiǎn)單隨機(jī)抽樣
教學(xué)目標(biāo):
1、知識(shí)與技能:
(1)正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2、過程與方法:
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題;
(2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價(jià)值觀:通過對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。
4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。
教學(xué)設(shè)想:
假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?
顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?
【探究新知】
一、簡(jiǎn)單隨機(jī)抽樣的概念
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機(jī)樣本。
【說明】簡(jiǎn)單隨機(jī)抽樣必須具備下列特點(diǎn):
(1)簡(jiǎn)單隨機(jī)抽樣要求被抽取的樣本的總體個(gè)數(shù)N是有限的。
(2)簡(jiǎn)單隨機(jī)樣本數(shù)n小于等于樣本總體的個(gè)數(shù)N。
(3)簡(jiǎn)單隨機(jī)樣本是從總體中逐個(gè)抽取的。
(4)簡(jiǎn)單隨機(jī)抽樣是一種不放回的抽樣。
(5)簡(jiǎn)單隨機(jī)抽樣的每個(gè)個(gè)體入樣的可能性均為n/N。
思考?
下列抽樣的方式是否屬于簡(jiǎn)單隨機(jī)抽樣?為什么?
(1)從無限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。
(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。
二、抽簽法和隨機(jī)數(shù)法
1、抽簽法的定義。
一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。
【說明】抽簽法的一般步驟:
(1)將總體的個(gè)體編號(hào)。
(2)連續(xù)抽簽獲取樣本號(hào)碼。
思考?
你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?
2、隨機(jī)數(shù)法的定義:
利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。
怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。
第一步,先將800袋牛奶編號(hào),可以編為000,001,…,799。
第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。
162277943949544354821737932378
844217533157245506887704744767
630163785916955567199810507175
332112342978645607825242074438
576086324409472796544917460962
87352096438426349164
21763350258392120676
12867358074439523879
15510013429966027954
90528477270802734328
第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說明號(hào)碼785在總體內(nèi),將它取出;繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,…,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。
【說明】隨機(jī)數(shù)表法的步驟:
(1)將總體的個(gè)體編號(hào)。
(2)在隨機(jī)數(shù)表中選擇開始數(shù)字。
(3)讀數(shù)獲取樣本號(hào)碼。
【例題精析】
例1:人們打橋牌時(shí),將洗好的撲克牌隨機(jī)確定一張為起始牌,這時(shí)按次序搬牌時(shí),對(duì)任何一家來說,都是從52張牌中抽取13張牌,問這種抽樣方法是否是簡(jiǎn)單隨機(jī)抽樣?
[分析]簡(jiǎn)單隨機(jī)抽樣的實(shí)質(zhì)是逐個(gè)地從總體中隨機(jī)抽取樣本,而這里只是隨機(jī)確定了起始張,其他各張牌雖然是逐張起牌,但是各張?jiān)谡l(shuí)手里已被確定,所以不是簡(jiǎn)單隨機(jī)抽樣。
例2:某車間工人加工一種軸100件,為了了解這種軸的直徑,要從中抽取10件軸在同一條件下測(cè)量,如何采用簡(jiǎn)單隨機(jī)抽樣的方法抽取樣本?
[分析]簡(jiǎn)單隨機(jī)抽樣一般采用兩種方法:抽簽法和隨機(jī)數(shù)表法。
解法1:(抽簽法)將100件軸編號(hào)為1,2,…,100,并做好大小、形狀相同的號(hào)簽,分別寫上這100個(gè)數(shù),將這些號(hào)簽放在一起,進(jìn)行均勻攪拌,接著連續(xù)抽取10個(gè)號(hào)簽,然后測(cè)量這個(gè)10個(gè)號(hào)簽對(duì)應(yīng)的軸的直徑。
解法2:(隨機(jī)數(shù)表法)將100件軸編號(hào)為00,01,…99,在隨機(jī)數(shù)表中選定一個(gè)起始位置,如取第21行第1個(gè)數(shù)開始,選取10個(gè)為68,34,30,13,70,55,74,77,40,44,這10件即為所要抽取的樣本。
【課堂練習(xí)】P
【課堂小結(jié)】
1、簡(jiǎn)單隨機(jī)抽樣是一種最簡(jiǎn)單、最基本的抽樣方法,簡(jiǎn)單隨機(jī)抽樣有兩種選取個(gè)體的方法:放回和不放回,我們?cè)诔闃诱{(diào)查中用的是不放回抽樣,常用的簡(jiǎn)單隨機(jī)抽樣方法有抽簽法和隨機(jī)數(shù)法。
2、抽簽法的優(yōu)點(diǎn)是簡(jiǎn)單易行,缺點(diǎn)是當(dāng)總體的容量非常大時(shí),費(fèi)時(shí)、費(fèi)力,又不方便,如果標(biāo)號(hào)的簽攪拌得不均勻,會(huì)導(dǎo)致抽樣不公平,隨機(jī)數(shù)表法的優(yōu)點(diǎn)與抽簽法相同,缺點(diǎn)上當(dāng)總體容量較大時(shí),仍然不是很方便,但是比抽簽法公平,因此這兩種方法只適合總體容量較少的抽樣類型。
3、簡(jiǎn)單隨機(jī)抽樣每個(gè)個(gè)體入樣的可能性都相等,均為n/N,但是這里一定要將每個(gè)個(gè)體入樣的可能性、第n次每個(gè)個(gè)體入樣的可能性、特定的個(gè)體在第n次被抽到的可能性這三種情況區(qū)分開業(yè),避免在解題中出現(xiàn)錯(cuò)誤。
【評(píng)價(jià)設(shè)計(jì)】
1、為了了解全校240名學(xué)生的身高情況,從中抽取40名學(xué)生進(jìn)行測(cè)量,下列說法正確的是
A.總體是240B、個(gè)體是每一個(gè)學(xué)生
C、樣本是40名學(xué)生D、樣本容量是40
2、為了正確所加工一批零件的長(zhǎng)度,抽測(cè)了其中200個(gè)零件的長(zhǎng)度,在這個(gè)問題中,200個(gè)零件的長(zhǎng)度是()
A、總體B、個(gè)體是每一個(gè)學(xué)生
C、總體的一個(gè)樣本D、樣本容量
3、一個(gè)總體中共有200個(gè)個(gè)體,用簡(jiǎn)單隨機(jī)抽樣的方法從中抽取一個(gè)容量為20的樣本,則某一特定個(gè)體被抽到的可能性是。
4、從3名男生、2名女生中隨機(jī)抽取2人,檢查數(shù)學(xué)成績(jī),則抽到的均為女生的可能性是。
2.1.2系統(tǒng)抽樣
教學(xué)目標(biāo):
1、知識(shí)與技能:
(1)正確理解系統(tǒng)抽樣的概念;
(2)掌握系統(tǒng)抽樣的一般步驟;
(3)正確理解系統(tǒng)抽樣與簡(jiǎn)單隨機(jī)抽樣的關(guān)系;
2、過程與方法:通過對(duì)實(shí)際問題的探究,歸納應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的方法,理解分類討論的數(shù)學(xué)方法,
3、情感態(tài)度與價(jià)值觀:通過數(shù)學(xué)活動(dòng),感受數(shù)學(xué)對(duì)實(shí)際生活的需要,體會(huì)現(xiàn)實(shí)世界和數(shù)學(xué)知識(shí)的聯(lián)系。
4、重點(diǎn)與難點(diǎn):正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計(jì)問題。
教學(xué)設(shè)想:
【創(chuàng)設(shè)情境】:某學(xué)校為了了解高一年級(jí)學(xué)生對(duì)教師教學(xué)的意見,打算從高一年級(jí)500名學(xué)生中抽取50名進(jìn)行調(diào)查,除了用簡(jiǎn)單隨機(jī)抽樣獲取樣本外,你能否設(shè)計(jì)其他抽取樣本的方法?
【探究新知】
一、系統(tǒng)抽樣的定義:
一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣的方法叫做系統(tǒng)抽樣。
【說明】由系統(tǒng)抽樣的定義可知系統(tǒng)抽樣有以下特證:
(1)當(dāng)總體容量N較大時(shí),采用系統(tǒng)抽樣。
(2)將總體分成均衡的若干部分指的是將總體分段,分段的間隔要求相等,因此,系統(tǒng)抽樣又稱等距抽樣,這時(shí)間隔一般為k=[].
(3)預(yù)先制定的規(guī)則指的是:在第1段內(nèi)采用簡(jiǎn)單隨機(jī)抽樣確定一個(gè)起始編號(hào),在此編號(hào)的基礎(chǔ)上加上分段間隔的整倍數(shù)即為抽樣編號(hào)。
思考?
(1)你能舉幾個(gè)系統(tǒng)抽樣的例子嗎?
(2)下列抽樣中不是系統(tǒng)抽樣的是()
A、從標(biāo)有1~15號(hào)的15號(hào)的15個(gè)小球中任選3個(gè)作為樣本,按從小號(hào)到
大號(hào)排序,隨機(jī)確定起點(diǎn)i,以后為i+5,i+10(超過15則從1再數(shù)起)號(hào)入樣
B工廠生產(chǎn)的產(chǎn)品,用傳關(guān)帶將產(chǎn)品送入包裝車間前,檢驗(yàn)人員從傳送帶上每隔五分鐘抽一件產(chǎn)品檢驗(yàn)
C、搞某一市場(chǎng)調(diào)查,規(guī)定在商場(chǎng)門口隨機(jī)抽一個(gè)人進(jìn)行詢問,直到調(diào)查到事先規(guī)定的調(diào)查人數(shù)為止
D、電影院調(diào)查觀眾的某一指標(biāo),通知每排(每排人數(shù)相等)座位號(hào)為14的觀眾留下來座談
點(diǎn)撥:(2)c不是系統(tǒng)抽樣,因?yàn)槭孪炔恢揽傮w,抽樣方法不能保證每個(gè)個(gè)體按事先規(guī)定的概率入樣。
二、系統(tǒng)抽樣的一般步驟。
(1)采用隨機(jī)抽樣的方法將總體中的N個(gè)個(gè)編號(hào)。
(2)將整體按編號(hào)進(jìn)行分段,確定分段間隔k(k∈N,L≤k).
(3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定起始個(gè)體的編號(hào)L(L∈N,L≤k)。
(4)按照一定的規(guī)則抽取樣本,通常是將起始編號(hào)L加上間隔k得到第2個(gè)個(gè)體編號(hào)L+K,再加上K得到第3個(gè)個(gè)體編號(hào)L+2K,這樣繼續(xù)下去,直到獲取整個(gè)樣本。
【說明】從系統(tǒng)抽樣的步驟可以看出,系統(tǒng)抽樣是把一個(gè)問題劃分成若干部分分塊解決,從而把復(fù)雜問題簡(jiǎn)單化,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想。
【例題精析】
例1、某校高中三年級(jí)的295名學(xué)生已經(jīng)編號(hào)為1,2,……,295,為了了解學(xué)生的學(xué)習(xí)情況,要按1:5的比例抽取一個(gè)樣本,用系統(tǒng)抽樣的方法進(jìn)行抽取,并寫出過程。
[分析]按1:5分段,每段5人,共分59段,每段抽取一人,關(guān)鍵是確定第1段的編號(hào)。
解:按照1:5的比例,應(yīng)該抽取的樣本容量為295÷5=59,我們把259名同學(xué)分成59組,每組5人,第一組是編號(hào)為1~5的5名學(xué)生,第2組是編號(hào)為6~10的5名學(xué)生,依次下去,59組是編號(hào)為291~295的5名學(xué)生。采用簡(jiǎn)單隨機(jī)抽樣的方法,從第一組5名學(xué)生中抽出一名學(xué)生,不妨設(shè)編號(hào)為k(1≤k≤5),那么抽取的學(xué)生編號(hào)為k+5L(L=0,1,2,……,58),得到59個(gè)個(gè)體作為樣本,如當(dāng)k=3時(shí)的樣本編號(hào)為3,8,13,……,288,293。
例2、從憶編號(hào)為1~50的50枚最新研制的某種型號(hào)的導(dǎo)彈中隨機(jī)抽取5枚來進(jìn)行發(fā)射實(shí)驗(yàn),若采用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法,則所選取5枚導(dǎo)彈的編號(hào)可能是
A.5,10,15,20,25B、3,13,23,33,43
C.1,2,3,4,5D、2,4,6,16,32
[分析]用系統(tǒng)抽樣的方法抽取至的導(dǎo)彈編號(hào)應(yīng)該k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用簡(jiǎn)單隨機(jī)抽樣方法得到的數(shù),因此只有選項(xiàng)B滿足要求,故選B。
【課堂練習(xí)】P49練習(xí)1.2.3
【課堂小結(jié)】
1、在抽樣過程中,當(dāng)總體中個(gè)體較多時(shí),可采用系統(tǒng)抽樣的方法進(jìn)行抽樣,系統(tǒng)抽樣的步驟為:
(1)采用隨機(jī)的方法將總體中個(gè)體編號(hào);
(2)將整體編號(hào)進(jìn)行分段,確定分段間隔k(k∈N);
(3)在第一段內(nèi)采用簡(jiǎn)單隨機(jī)抽樣的方法確定起始個(gè)體編號(hào)L;
(4)按照事先預(yù)定的規(guī)則抽取樣本。
2、在確定分段間隔k時(shí)應(yīng)注意:分段間隔k為整數(shù),當(dāng)不是整數(shù)時(shí),應(yīng)采用等可能剔除的方剔除部分個(gè)體,以獲得整數(shù)間隔k。
【評(píng)價(jià)設(shè)計(jì)】
1、從2005個(gè)編號(hào)中抽取20個(gè)號(hào)碼入樣,采用系統(tǒng)抽樣的方法,則抽樣的間隔為()
A.99B、99,5
C.100D、100,5
2、從學(xué)號(hào)為0~50的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測(cè)試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是()
A.1,2,3,4,5B、5,16,27,38,49
C.2,4,6,8,10D、4,13,22,31,40
3、采用系統(tǒng)抽樣從個(gè)體數(shù)為83的總體中抽取一個(gè)樣本容量為10的樣本,那么每個(gè)個(gè)體人樣的可能性為()
A.8B.8,3
C.8.5D.9
4、某小禮堂有25排座位,每排20個(gè)座位,一次心理學(xué)講座,禮堂中坐滿了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的所有25名學(xué)生進(jìn)行測(cè)試,這里運(yùn)用的是抽樣方法。
5、某單位的在崗工作為624人,為了調(diào)查工作上班時(shí),從家到單位的路上平均所用的時(shí)間,決定抽取10%的工作調(diào)查這一情況,如何采用系統(tǒng)抽樣的方法完成這一抽樣?
2.1.3分層抽樣
教學(xué)目標(biāo):
1、知識(shí)與技能:
(1)正確理解分層抽樣的概念;
(2)掌握分層抽樣的一般步驟;
(3)區(qū)分簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣,并選擇適當(dāng)正確的方法進(jìn)行抽樣。
2、過程與方法:通過對(duì)現(xiàn)實(shí)生活中實(shí)際問題進(jìn)行分層抽樣,感知應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的方法。
3、情感態(tài)度與價(jià)值觀:通過對(duì)統(tǒng)計(jì)學(xué)知識(shí)的研究,感知數(shù)學(xué)知識(shí)中“估計(jì)
與“精確”性的矛盾統(tǒng)一,培養(yǎng)學(xué)生的辯證唯物主義的世界觀與價(jià)值觀。
4、重點(diǎn)與難點(diǎn):正確理解分層抽樣的定義,靈活應(yīng)用分層抽樣抽取樣本,并恰當(dāng)?shù)倪x擇三種抽樣方法解決現(xiàn)實(shí)生活中的抽樣問題。
教學(xué)設(shè)想:
【創(chuàng)設(shè)情景】
假設(shè)某地區(qū)有高中生2400人,初中生10900人,小學(xué)生11000人,此地
教育部門為了了解本地區(qū)中小學(xué)的近視情況及其形成原因,要從本地區(qū)的
小學(xué)生中抽取1%的學(xué)生進(jìn)行調(diào)查,你認(rèn)為應(yīng)當(dāng)怎樣抽取樣本?
【探究新知】
一、分層抽樣的定義。
一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣的方法叫分層抽樣。
【說明】分層抽樣又稱類型抽樣,應(yīng)用分層抽樣應(yīng)遵循以下要求:
(1)分層:將相似的個(gè)體歸人一類,即為一層,分層要求每層的各個(gè)個(gè)體互不交叉,即遵循不重復(fù)、不遺漏的原則。
(2)分層抽樣為保證每個(gè)個(gè)體等可能入樣,需遵循在各層中進(jìn)行簡(jiǎn)單隨機(jī)抽樣,每層樣本數(shù)量與每層個(gè)體數(shù)量的比與這層個(gè)體數(shù)量與總體容量的比相等。
二、分層抽樣的步驟:
(1)分層:按某種特征將總體分成若干部分。
(2)按比例確定每層抽取個(gè)體的個(gè)數(shù)。
(3)各層分別按簡(jiǎn)單隨機(jī)抽樣的方法抽取。
(4)綜合每層抽樣,組成樣本。
【說明】
(1)分層需遵循不重復(fù)、不遺漏的原則。
(2)抽取比例由每層個(gè)體占總體的比例確定。
(3)各層抽樣按簡(jiǎn)單隨機(jī)抽樣進(jìn)行。
探究交流
(1)分層抽樣又稱類型抽樣,即將相似的個(gè)體歸入一類(層),然后每層抽取若干個(gè)體構(gòu)成樣本,所以分層抽樣為保證每個(gè)個(gè)體等可能入樣,必須進(jìn)行()
A、每層等可能抽樣
B、每層不等可能抽樣
C、所有層按同一抽樣比等可能抽樣
(2)如果采用分層抽樣,從個(gè)體數(shù)為N的總體中抽取一個(gè)容量為n
樣本,那么每個(gè)個(gè)體被抽到的可能性為()
A.B.C.D.
點(diǎn)撥:
(1)保證每個(gè)個(gè)體等可能入樣是簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽
共同的特征,為了保證這一點(diǎn),分層時(shí)用同一抽樣比是必不可少的,故此選C。
(2)根據(jù)每個(gè)個(gè)體都等可能入樣,所以其可能性本容量與總體容量
比,故此題選C。
知識(shí)點(diǎn)2簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣的比較
類別共同點(diǎn)各自特點(diǎn)聯(lián)系適用
范圍
簡(jiǎn)單
隨機(jī)
抽樣
(1)抽樣過程中每個(gè)個(gè)體被抽到的可能性相等
(2)每次抽出個(gè)體后不再將它放回,即不放回抽樣從總體中逐個(gè)抽取總體個(gè)數(shù)較少
將總體均分成幾部分,按預(yù)先制定的規(guī)則在各部分抽取在起始部分
樣時(shí)采用簡(jiǎn)
隨機(jī)抽樣總體個(gè)數(shù)較多
系統(tǒng)
抽樣
將總體分成幾層,
分層進(jìn)行抽取分層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣總體由差異明顯的幾部分組成
分層
抽樣
【例選精析】
例1、某高中共有900人,其中高一年級(jí)300人,高二年級(jí)200人,高三年級(jí)400人,現(xiàn)采用分層抽樣抽取容量為45的樣本,那么高一、高二、高三各年級(jí)抽取的人數(shù)分別為
A.15,5,25B.15,15,15
C.10,5,30D15,10,20
[分析]因?yàn)?00:200:400=3:2:4,于是將45分成3:2:4的三部分。設(shè)三部分各抽取的個(gè)體數(shù)分別為3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年級(jí)抽取的人數(shù)分別為15,10,20,故選D。
例2:一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),人口3萬人,其中人口比例為3:2:5:2:3,從3萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率,已知這種疾病與不同的地理位置及水土有關(guān),問應(yīng)采取什么樣的方法?并寫出具體過程。
[分析]采用分層抽樣的方法。
解:因?yàn)榧膊∨c地理位置和水土均有關(guān)系,所以不同鄉(xiāng)鎮(zhèn)的發(fā)病情況差異明顯,因而采用分層抽樣的方法,具體過程如下:
(1)將3萬人分為5層,其中一個(gè)鄉(xiāng)鎮(zhèn)為一層。
(2)按照樣本容量的比例隨機(jī)抽取各鄉(xiāng)鎮(zhèn)應(yīng)抽取的樣本。
300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各鄉(xiāng)鎮(zhèn)抽取人數(shù)分別為60人、40人、100人、40人、60人。
(3)將300人組到一起,即得到一個(gè)樣本。
【課堂練習(xí)】P52練習(xí)1.2.3
【課堂小結(jié)】
1、分層抽樣是當(dāng)總體由差異明顯的幾部分組成時(shí)采用的抽樣方法,進(jìn)行分層抽樣時(shí)應(yīng)注意以下幾點(diǎn):
(1)、分層抽樣中分多少層、如何分層要視具體情況而定,總的原則是,層內(nèi)樣本的差異要小,面層之間的樣本差異要大,且互不重疊。
(2)為了保證每個(gè)個(gè)體等可能入樣,所有層應(yīng)采用同一抽樣比等可能抽樣。
(3)在每層抽樣時(shí),應(yīng)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法進(jìn)行抽樣。
2、分層抽樣的優(yōu)點(diǎn)是:使樣本具有較強(qiáng)的代表性,并且抽樣過程中可綜合選用各種抽樣方法,因此分層抽樣是一種實(shí)用、操作性強(qiáng)、應(yīng)用比較廣泛的抽樣方法。
【評(píng)論設(shè)計(jì)】
1、某單位有老年人28人,中年人54人,青年人81人,為了調(diào)查他們的身體情況,需從他們中抽取一個(gè)容量為36的樣本,則適合的抽取方法是()
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.先從老人中剔除1人,然后再分層抽樣
2、某校有500名學(xué)生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,為了研究血型與色弱的關(guān)系,要從中抽取一個(gè)20人的樣本,按分層抽樣,O型血應(yīng)抽取的人數(shù)為人,A型血應(yīng)抽取的人數(shù)為人,B型血應(yīng)抽取的人數(shù)為人,AB型血應(yīng)抽取的人數(shù)為人。
3、某中學(xué)高一年級(jí)有學(xué)生600人,高二年級(jí)有學(xué)生450人,高三年級(jí)有學(xué)生750人,每個(gè)學(xué)生被抽到的可能性均為0.2,若該校取一個(gè)容量為n的樣本,則n=。
4、對(duì)某單位1000名職工進(jìn)行某項(xiàng)專門調(diào)查,調(diào)查的項(xiàng)目與職工任職年限有關(guān),人事部門提供了如下資料:
任職年限5年以下5年至10年10年以上
人數(shù)300500200
試?yán)蒙鲜鲑Y料設(shè)計(jì)一個(gè)抽樣比為1/10的抽樣方法。
2.2.1用樣本的頻率分布估計(jì)總體分布(2課時(shí))
教學(xué)目標(biāo):
知識(shí)與技能
(1)通過實(shí)例體會(huì)分布的意義和作用。
(2)在表示樣本數(shù)據(jù)的過程中,學(xué)會(huì)列頻率分布表,畫頻率分布直方圖、頻率折線圖和莖葉圖。
(3)通過實(shí)例體會(huì)頻率分布直方圖、頻率折線圖、莖葉圖的各自特征,從而恰當(dāng)?shù)剡x擇上述方法分析樣本的分布,準(zhǔn)確地做出總體估計(jì)。
過程與方法
通過對(duì)現(xiàn)實(shí)生活的探究,感知應(yīng)用數(shù)學(xué)知識(shí)解決問題的方法,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。
情感態(tài)度與價(jià)值觀
通過對(duì)樣本分析和總體估計(jì)的過程,感受數(shù)學(xué)對(duì)實(shí)際生活的需要,認(rèn)識(shí)到數(shù)學(xué)知識(shí)源于生活并指導(dǎo)生活的事實(shí),體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。
重點(diǎn)與難點(diǎn)
重點(diǎn):會(huì)列頻率分布表,畫頻率分布直方圖、頻率折線圖和莖葉圖。
難點(diǎn):能通過樣本的頻率分布估計(jì)總體的分布。
教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
在NBA的2004賽季中,甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的原始記錄如下﹕
甲運(yùn)動(dòng)員得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50
乙運(yùn)動(dòng)員得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33
請(qǐng)問從上面的數(shù)據(jù)中你能否看出甲,乙兩名運(yùn)動(dòng)員哪一位發(fā)揮比較穩(wěn)定?
如何根據(jù)這些數(shù)據(jù)作出正確的判斷呢?這就是我們這堂課要研究、學(xué)習(xí)的主要內(nèi)容——用樣本的頻率分布估計(jì)總體分布(板出課題)。
【探究新知】
〖探究〗:P55
我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出,某市政府為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)居民月用水量標(biāo)準(zhǔn)a,用水量不超過a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)。如果希望大部分居民的日常生活不受影響,那么標(biāo)準(zhǔn)a定為多少比較合理呢?你認(rèn)為,為了了較為合理地確定出這個(gè)標(biāo)準(zhǔn),需要做哪些工作?(讓學(xué)生展開討論)
為了制定一個(gè)較為合理的標(biāo)準(zhǔn)a,必須先了解全市居民日常用水量的分布情況,比如月均用水量在哪個(gè)范圍的居民最多,他們占全市居民的百分比情況等。因此采用抽樣調(diào)查的方式,通過分析樣本數(shù)據(jù)來估計(jì)全市居民用水量的分布情況。(如課本P56)
分析數(shù)據(jù)的一種基本方法是用圖將它們畫出來,或者用緊湊的表格改變數(shù)據(jù)的排列方式,作圖可以達(dá)到兩個(gè)目的,一是從數(shù)據(jù)中提取信息,二是利用圖形傳遞信息。表格則是通過改變數(shù)據(jù)的構(gòu)成形式,為我們提供解釋數(shù)據(jù)的新方式。
下面我們學(xué)習(xí)的頻率分布表和頻率分布圖,則是從各個(gè)小組數(shù)據(jù)在樣本容量中所占比例大小的角度,來表示數(shù)據(jù)分布的規(guī)律??梢宰屛覀兏宄目吹秸麄€(gè)樣本數(shù)據(jù)的頻率分布情況。
〈一〉頻率分布的概念:
頻率分布是指一個(gè)樣本數(shù)據(jù)在各個(gè)小范圍內(nèi)所占比例的大小。一般用頻率分布直方圖反映樣本的頻率分布。其一般步驟為:
(1)計(jì)算一組數(shù)據(jù)中最大值與最小值的差,即求極差
(2)決定組距與組數(shù)
(3)將數(shù)據(jù)分組
(4)列頻率分布表
(5)畫頻率分布直方圖
以課本P56制定居民用水標(biāo)準(zhǔn)問題為例,經(jīng)過以上幾個(gè)步驟畫出頻率分布直方圖。(讓學(xué)生自己動(dòng)手作圖)
頻率分布直方圖的特征:
(1)從頻率分布直方圖可以清楚的看出數(shù)據(jù)分布的總體趨勢(shì)。
(2)從頻率分布直方圖得不出原始的數(shù)據(jù)內(nèi)容,把數(shù)據(jù)表示成直方圖后,原有的具體數(shù)據(jù)信息就被抹掉了。
〖探究〗:同樣一組數(shù)據(jù),如果組距不同,橫軸、縱軸的單位不同,得到的圖和形狀也會(huì)不同。不同的形狀給人以不同的印象,這種印象有時(shí)會(huì)影響我們對(duì)總體的判斷,分別以0.1和1為組距重新作圖,然后談?wù)勀銓?duì)圖的印象?(把學(xué)生分成兩大組進(jìn)行,分別作出兩種組距的圖,然后組織同學(xué)們對(duì)所作圖不同的看法進(jìn)行交流……)
接下來請(qǐng)同學(xué)們思考下面這個(gè)問題:
〖思考〗:如果當(dāng)?shù)卣M?5%以上的居民每月的用水量不超出標(biāo)準(zhǔn),根據(jù)頻率分布表2-2和頻率分布直方圖2.2-1,(見課本P57)你能對(duì)制定月用水量標(biāo)準(zhǔn)提出建議嗎?(讓學(xué)生仔細(xì)觀察表和圖)
〈二〉頻率分布折線圖、總體密度曲線
1.頻率分布折線圖的定義:
連接頻率分布直方圖中各小長(zhǎng)方形上端的中點(diǎn),就得到頻率分布折線圖。
2.總體密度曲線的定義:
在樣本頻率分布直方圖中,相應(yīng)的頻率折線圖會(huì)越來越接近于一條光滑曲線,統(tǒng)計(jì)中稱這條光滑曲線為總體密度曲線。它能夠精確地反映了總體在各個(gè)范圍內(nèi)取值的百分比,它能給我們提供更加精細(xì)的信息。(見課本P60)
〖思考〗:
1.對(duì)于任何一個(gè)總體,它的密度曲線是不是一定存在?為什么?
2.對(duì)于任何一個(gè)總體,它的密度曲線是否可以被非常準(zhǔn)確地畫出來?為什么?
實(shí)際上,盡管有些總體密度曲線是餓、客觀存在的,但一般很難想函數(shù)圖象那樣準(zhǔn)確地畫出來,我們只能用樣本的頻率分布對(duì)它進(jìn)行估計(jì),一般來說,樣本容量越大,這種估計(jì)就越精確.
〈三〉莖葉圖
1.莖葉圖的概念:
當(dāng)數(shù)據(jù)是兩位有效數(shù)字時(shí),用中間的數(shù)字表示十位數(shù),即第一個(gè)有效數(shù)字,兩邊的數(shù)字表示個(gè)位數(shù),即第二個(gè)有效數(shù)字,它的中間部分像植物的莖,兩邊部分像植物莖上長(zhǎng)出來的葉子,因此通常把這樣的圖叫做莖葉圖。(見課本P61例子)
2.莖葉圖的特征:
(1)用莖葉圖表示數(shù)據(jù)有兩個(gè)優(yōu)點(diǎn):一是從統(tǒng)計(jì)圖上沒有原始數(shù)據(jù)信息的損失,所有數(shù)據(jù)信息都可以從莖葉圖中得到;二是莖葉圖中的數(shù)據(jù)可以隨時(shí)記錄,隨時(shí)添加,方便記錄與表示。
(2)莖葉圖只便于表示兩位有效數(shù)字的數(shù)據(jù),而且莖葉圖只方便記錄兩組的數(shù)據(jù),兩個(gè)以上的數(shù)據(jù)雖然能夠記錄,但是沒有表示兩個(gè)記錄那么直觀,清晰。
【例題精析】
〖例1〗:下表給出了某校500名12歲男孩中用隨機(jī)抽樣得出的120人的身高
(單位cm)
(1)列出樣本頻率分布表﹔
(2)一畫出頻率分布直方圖;
(3)估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比.。
分析:根據(jù)樣本頻率分布表、頻率分布直方圖的一般步驟解題。
解:(1)樣本頻率分布表如下:
(2)其頻率分布直方圖如下:
(3)由樣本頻率分布表可知身高小于134cm的男孩出現(xiàn)的頻率為0.04+0.07+0.08=0.19,所以我們估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的19%.
〖例2〗:為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)次測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(3)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?請(qǐng)說明理由。
分析:在頻率分布直方圖中,各小長(zhǎng)方形的面積等于相應(yīng)各組的頻率,小長(zhǎng)方形的高與頻數(shù)成正比,各組頻數(shù)之和等于樣本容量,頻率之和等于1。
解:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,
因此第二小組的頻率為:
又因?yàn)轭l率=
所以
(2)由圖可估計(jì)該學(xué)校高一學(xué)生的達(dá)標(biāo)率約為
(3)由已知可得各小組的頻數(shù)依次為6,12,51,45,27,9,所以前三組的頻數(shù)之和為69,前四組的頻數(shù)之和為114,所以跳繩次數(shù)的中位數(shù)落在第四小組內(nèi)。
【課堂精練】
P61練習(xí)1.2.3
【課堂小結(jié)】
1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計(jì)總體的分布。
2.總體的分布分兩種情況:當(dāng)總體中的個(gè)體取值很少時(shí),用莖葉圖估計(jì)總體的分布;當(dāng)總體中的個(gè)體取值較多時(shí),將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。
【評(píng)價(jià)設(shè)計(jì)】
1.P72習(xí)題2.2A組1、2
2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征(2課時(shí))
教學(xué)目標(biāo):
知識(shí)與技能
(1)正確理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)的標(biāo)準(zhǔn)差。
(2)能根據(jù)實(shí)際問題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并做出合理的解釋。
(3)會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征。
(4)形成對(duì)數(shù)據(jù)處理過程進(jìn)行初步評(píng)價(jià)的意識(shí)。
過程與方法
在解決統(tǒng)計(jì)問題的過程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。
情感態(tài)度與價(jià)值觀
會(huì)用隨機(jī)抽樣的方法和樣本估計(jì)總體的思想解決一些簡(jiǎn)單的實(shí)際問題,認(rèn)識(shí)統(tǒng)計(jì)的作用,能夠辨證地理解數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。
重點(diǎn)與難點(diǎn)
重點(diǎn):用樣本平均數(shù)和標(biāo)準(zhǔn)差估計(jì)總體的平均數(shù)與標(biāo)準(zhǔn)差。
難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問題。
教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕
甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4;
乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7.
觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?為了從整體上更好地把握總體的規(guī)律,我們要通過樣本的數(shù)據(jù)對(duì)總體的數(shù)字特征進(jìn)行研究?!脴颖镜臄?shù)字特征估計(jì)總體的數(shù)字特征(板出課題)。
【探究新知】
一、眾數(shù)、中位數(shù)、平均數(shù)
〖探究〗:P62
(1)怎樣將各個(gè)樣本數(shù)據(jù)匯總為一個(gè)數(shù)值,并使它成為樣本數(shù)據(jù)的“中心點(diǎn)”?
(2)能否用一個(gè)數(shù)值來描寫樣本數(shù)據(jù)的離散程度?(讓學(xué)生回憶初中所學(xué)的一些統(tǒng)計(jì)知識(shí),思考后展開討論)
初中我們?cè)?jīng)學(xué)過眾數(shù),中位數(shù),平均數(shù)等各種數(shù)字特征,應(yīng)當(dāng)說,這些數(shù)字都能夠?yàn)槲覀兲峁╆P(guān)于樣本數(shù)據(jù)的特征信息。例如前面一節(jié)在調(diào)查100位居民的月均用水量的問題中,從這些樣本數(shù)據(jù)的頻率分布直方圖可以看出,月均用水量的眾數(shù)是2.25t(最高的矩形的中點(diǎn))(圖略見課本第62頁(yè))它告訴我們,該市的月均用水量為2.25t的居民數(shù)比月均用水量為其他值的居民數(shù)多,但它并沒有告訴我們到底多多少。
〖提問〗:請(qǐng)大家翻回到課本第56頁(yè)看看原來抽樣的數(shù)據(jù),有沒有2.25這個(gè)數(shù)值呢?根據(jù)眾數(shù)的定義,2.25怎么會(huì)是眾數(shù)呢?為什么?(請(qǐng)大家思考作答)
分析:這是因?yàn)闃颖緮?shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失的原因,而2.25是由樣本數(shù)據(jù)的頻率分布直方圖得來的,所以存在一些偏差。
〖提問〗:那么如何從頻率分布直方圖中估計(jì)中位數(shù)呢?
分析:在樣本數(shù)據(jù)中,有50%的個(gè)體小于或等于中位數(shù),也有50%的個(gè)體大于或等于中位數(shù)。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等。由此可以估計(jì)出中位數(shù)的值為2.02。(圖略見課本63頁(yè)圖2.2-6)
〖思考〗:2.02這個(gè)中位數(shù)的估計(jì)值,與樣本的中位數(shù)值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了)
(課本63頁(yè)圖2.2-6)顯示,大部分居民的月均用水量在中部(2.02t左右),但是也有少數(shù)居民的月均用水量特別高,顯然,對(duì)這部分居民的用水量作出限制是非常合理的。
〖思考〗:中位數(shù)不受少數(shù)幾個(gè)極端值的影響,這在某些情況下是一個(gè)優(yōu)點(diǎn),但是它對(duì)極端值的不敏感有時(shí)也會(huì)成為缺點(diǎn),你能舉例說明嗎?(讓學(xué)生討論,并舉例)
二、標(biāo)準(zhǔn)差、方差
1.標(biāo)準(zhǔn)差
平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,可是,有時(shí)平均數(shù)也會(huì)使我們作出對(duì)總體的片面判斷。某地區(qū)的統(tǒng)計(jì)顯示,該地區(qū)的中學(xué)生的平均身高為176㎝,給我們的印象是該地區(qū)的中學(xué)生生長(zhǎng)發(fā)育好,身高較高。但是,假如這個(gè)平均數(shù)是從五十萬名中學(xué)生抽出的五十名身高較高的學(xué)生計(jì)算出來的話,那么,這個(gè)平均數(shù)就不能代表該地區(qū)所有中學(xué)生的身體素質(zhì)。因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實(shí)際狀態(tài)。
例如,在一次射擊選拔比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕
甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4;
乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7.
觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?如果你是教練,選哪位選手去參加正式比賽?
我們知道,。
兩個(gè)人射擊的平均成績(jī)是一樣的。那么,是否兩個(gè)人就沒有水平差距呢?(觀察P66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績(jī)比較分散,乙的成績(jī)相對(duì)集中,因此我們從另外的角度來考察這兩組數(shù)據(jù)。
考察樣本數(shù)據(jù)的分散程度的大小,最常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差。標(biāo)準(zhǔn)差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示。
樣本數(shù)據(jù)的標(biāo)準(zhǔn)差的算法:
(1)、算出樣本數(shù)據(jù)的平均數(shù)。
(2)、算出每個(gè)樣本數(shù)據(jù)與樣本數(shù)據(jù)平均數(shù)的差:
(3)、算出(2)中的平方。
(4)、算出(3)中n個(gè)平方數(shù)的平均數(shù),即為樣本方差。
(5)、算出(4)中平均數(shù)的算術(shù)平方根,,即為樣本標(biāo)準(zhǔn)差。
其計(jì)算公式為:
顯然,標(biāo)準(zhǔn)差較大,數(shù)據(jù)的離散程度較大;標(biāo)準(zhǔn)差較小,數(shù)據(jù)的離散程度較小。
〖提問〗:標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為0的樣本數(shù)據(jù)有什么特點(diǎn)?
從標(biāo)準(zhǔn)差的定義和計(jì)算公式都可以得出:。當(dāng)時(shí),意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù)。
(在課堂上,如果條件允許的話,可以給學(xué)生簡(jiǎn)單的介紹一下利用計(jì)算機(jī)來計(jì)算標(biāo)準(zhǔn)差的方法。)
2.方差
從數(shù)學(xué)的角度考慮,人們有時(shí)用標(biāo)準(zhǔn)差的平方(即方差)來代替標(biāo)準(zhǔn)差,作為測(cè)量樣本數(shù)據(jù)分散程度的工具:
在刻畫樣本數(shù)據(jù)的分散程度上,方差和標(biāo)準(zhǔn)差是一樣的,但在解決實(shí)際問題時(shí),一般多采用標(biāo)準(zhǔn)差。
【例題精析】
〖例1〗:畫出下列四組樣本數(shù)據(jù)的直方圖,說明他們的異同點(diǎn)。
(1)5,5,5,5,5,5,5,5,5
(2)4,4,4,5,5,5,6,6,6
(3)3,3,4,4,5,6,6,7,7
(4)2,2,2,2,5,8,8,8,8
分析:先畫出數(shù)據(jù)的直方圖,根據(jù)樣本數(shù)據(jù)算出樣本數(shù)據(jù)的平均數(shù),利用標(biāo)準(zhǔn)差的計(jì)算公式即可算出每一組數(shù)據(jù)的標(biāo)準(zhǔn)差。
解:(圖略,可查閱課本P68)
四組數(shù)據(jù)的平均數(shù)都是5.0,標(biāo)準(zhǔn)差分別為:0.00,0.82,1.49,2.83。
他們有相同的平均數(shù),但他們有不同的標(biāo)準(zhǔn)差,說明數(shù)據(jù)的分散程度是不一樣的。
〖例2〗:(見課本P69)
分析:比較兩個(gè)人的生產(chǎn)質(zhì)量,只要比較他們所生產(chǎn)的零件內(nèi)徑尺寸所組成的兩個(gè)總體的平均數(shù)與標(biāo)準(zhǔn)差的大小即可,根據(jù)用樣本估計(jì)總體的思想,我們可以通過抽樣分別獲得相應(yīng)的樣本數(shù)據(jù),然后比較這兩個(gè)樣本數(shù)據(jù)的平均數(shù)、標(biāo)準(zhǔn)差,以此作為兩個(gè)總體之間的差異的估計(jì)值。
【課堂精練】
P71練習(xí)1.2.34
【課堂小結(jié)】
3.用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征分兩類:
a)用樣本平均數(shù)估計(jì)總體平均數(shù)。
b)用樣本標(biāo)準(zhǔn)差估計(jì)總體標(biāo)準(zhǔn)差。樣本容量越大,估計(jì)就越精確。
4.平均數(shù)對(duì)數(shù)據(jù)有“取齊”的作用,代表一組數(shù)據(jù)的平均水平。
5.標(biāo)準(zhǔn)差描述一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小,反映了一組數(shù)據(jù)變化的幅度。
【評(píng)價(jià)設(shè)計(jì)】
1.P72習(xí)題2.2A組3、4、10
3.1隨機(jī)事件的概率
3.1.1—3.1.2隨機(jī)事件的概率及概率的意義(第一、二課時(shí))
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)了解隨機(jī)事件、必然事件、不可能事件的概念;(2)正確理解事件A出現(xiàn)的頻率的意義;(3)正確理解概率的概念和意義,明確事件A發(fā)生的頻率fn(A)與事件A發(fā)生的概率P(A)的區(qū)別與聯(lián)系;(3)利用概率知識(shí)正確理解現(xiàn)實(shí)生活中的實(shí)際問題.
2、過程與方法:(1)發(fā)現(xiàn)法教學(xué),通過在拋硬幣、拋骰子的試驗(yàn)中獲取數(shù)據(jù),歸納總結(jié)試驗(yàn)結(jié)果,發(fā)現(xiàn)規(guī)律,真正做到在探索中學(xué)習(xí),在探索中提高;(2)通過對(duì)現(xiàn)實(shí)生活中的“擲幣”,“游戲的公平性”,、“彩票中獎(jiǎng)”等問題的探究,感知應(yīng)用數(shù)學(xué)知識(shí)解決數(shù)學(xué)問題的方法,理解邏輯推理的數(shù)學(xué)方法.
3、情感態(tài)度與價(jià)值觀:(1)通過學(xué)生自己動(dòng)手、動(dòng)腦和親身試驗(yàn)來理解知識(shí),體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系;(2)培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn),增強(qiáng)學(xué)生的科學(xué)意識(shí).
二、重點(diǎn)與難點(diǎn):(1)教學(xué)重點(diǎn):事件的分類;概率的定義以及和頻率的區(qū)別與聯(lián)系;(2)教學(xué)難點(diǎn):用概率的知識(shí)解釋現(xiàn)實(shí)生活中的具體問題.
三、學(xué)法與教學(xué)用具:1、引導(dǎo)學(xué)生對(duì)身邊的事件加以注意、分析,結(jié)果可定性地分為三類事件:必然事件,不可能事件,隨機(jī)事件;指導(dǎo)學(xué)生做簡(jiǎn)單易行的實(shí)驗(yàn),讓學(xué)生無意識(shí)地發(fā)現(xiàn)隨機(jī)事件的某一結(jié)果發(fā)生的規(guī)律性;2、教學(xué)用具:硬幣數(shù)枚,投燈片,計(jì)算機(jī)及多媒體教學(xué).
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:日常生活中,有些問題是很難給予準(zhǔn)確無誤的回答的。例如,你明天什么時(shí)間起床?7:20在某公共汽車站候車的人有多少?你購(gòu)買本期福利彩票是否能中獎(jiǎng)?等等。
2、基本概念:
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率
(7)似然法與極大似然法:見課本P111
3、例題分析:
例1判斷下列事件哪些是必然事件,哪些是不可能事件,哪些是隨機(jī)事件?
(1)“拋一石塊,下落”.
(2)“在標(biāo)準(zhǔn)大氣壓下且溫度低于0℃時(shí),冰融化”;
(3)“某人射擊一次,中靶”;
(4)“如果a>b,那么a-b>0”;
(5)“擲一枚硬幣,出現(xiàn)正面”;
(6)“導(dǎo)體通電后,發(fā)熱”;
(7)“從分別標(biāo)有號(hào)數(shù)1,2,3,4,5的5張標(biāo)簽中任取一張,得到4號(hào)簽”;
(8)“某電話機(jī)在1分鐘內(nèi)收到2次呼叫”;
(9)“沒有水份,種子能發(fā)芽”;
(10)“在常溫下,焊錫熔化”.
答:根據(jù)定義,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是隨機(jī)事件.
例2某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:
射擊次數(shù)n102050100200500
擊中靶心次數(shù)m8194492178455
擊中靶心的頻率
(1)填寫表中擊中靶心的頻率;
(2)這個(gè)射手射擊一次,擊中靶心的概率約是什么?
分析:事件A出現(xiàn)的頻數(shù)nA與試驗(yàn)次數(shù)n的比值即為事件A的頻率,當(dāng)事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上時(shí),這個(gè)常數(shù)即為事件A的概率。
解:(1)表中依次填入的數(shù)據(jù)為:0.80,0.95,0.88,0.92,0.89,0.91.
(2)由于頻率穩(wěn)定在常數(shù)0.89,所以這個(gè)射手擊一次,擊中靶心的概率約是0.89。
小結(jié):概率實(shí)際上是頻率的科學(xué)抽象,求某事件的概率可以通過求該事件的頻率而得之。
練習(xí):一個(gè)地區(qū)從某年起幾年之內(nèi)的新生兒數(shù)及其中男嬰數(shù)如下:
時(shí)間范圍1年內(nèi)2年內(nèi)3年內(nèi)4年內(nèi)
新生嬰兒數(shù)554496071352017190
男嬰數(shù)2883497069948892
男嬰出生的頻率
(1)填寫表中男嬰出生的頻率(結(jié)果保留到小數(shù)點(diǎn)后第3位);
(2)這一地區(qū)男嬰出生的概率約是多少?
答案:(1)表中依次填入的數(shù)據(jù)為:0.520,0.517,0.517,0.517.
(2)由表中的已知數(shù)據(jù)及公式fn(A)=即可求出相應(yīng)的頻率,而各個(gè)頻率均穩(wěn)定在常數(shù)0.518上,所以這一地區(qū)男嬰出生的概率約是0.518.
例3某人進(jìn)行打靶練習(xí),共射擊10次,其中有2次中10環(huán),有3次環(huán)中9環(huán),有4次中8環(huán),有1次未中靶,試計(jì)算此人中靶的概率,假設(shè)此人射擊1次,試問中靶的概率約為多大?中10環(huán)的概率約為多大?
分析:中靶的頻數(shù)為9,試驗(yàn)次數(shù)為10,所以靶的頻率為=0.9,所以中靶的概率約為0.9.
解:此人中靶的概率約為0.9;此人射擊1次,中靶的概率為0.9;中10環(huán)的概率約為0.2.
例4如果某種彩票中獎(jiǎng)的概率為,那么買1000張彩票一定能中獎(jiǎng)嗎?請(qǐng)用概率的意義解釋。
分析:買1000張彩票,相當(dāng)于1000次試驗(yàn),因?yàn)槊看卧囼?yàn)的結(jié)果都是隨機(jī)的,所以做1000次試驗(yàn)的結(jié)果也是隨機(jī)的,也就是說,買1000張彩票有可能沒有一張中獎(jiǎng)。
解:不一定能中獎(jiǎng),因?yàn)椋I1000張彩票相當(dāng)于做1000次試驗(yàn),因?yàn)槊看卧囼?yàn)的結(jié)果都是隨機(jī)的,即每張彩票可能中獎(jiǎng)也可能不中獎(jiǎng),因此,1000張彩票中可能沒有一張中獎(jiǎng),也可能有一張、兩張乃至多張中獎(jiǎng)。
例5在一場(chǎng)乒乓球比賽前,裁判員利用抽簽器來決定由誰(shuí)先發(fā)球,請(qǐng)用概率的知識(shí)解釋其公平性。
分析:這個(gè)規(guī)則是公平的,因?yàn)槊總€(gè)運(yùn)動(dòng)員先發(fā)球的概率為0.5,即每個(gè)運(yùn)動(dòng)員取得先發(fā)球權(quán)的概率是0.5。
解:這個(gè)規(guī)則是公平的,因?yàn)槌楹炆蠏伜?,紅圈朝上與綠圈朝上的概率均是0.5,因此任何一名運(yùn)動(dòng)員猜中的概率都是0.5,也就是每個(gè)運(yùn)動(dòng)員取得先發(fā)球權(quán)的概率都是0.5。
小結(jié):事實(shí)上,只能使兩個(gè)運(yùn)動(dòng)員取得先發(fā)球權(quán)的概率都是0.5的規(guī)則都是公平的。
4、課堂小結(jié):概率是一門研究現(xiàn)實(shí)世界中廣泛存在的隨機(jī)現(xiàn)象的科學(xué),正確理解概率的意義是認(rèn)識(shí)、理解現(xiàn)實(shí)生活中有關(guān)概率的實(shí)例的關(guān)鍵,學(xué)習(xí)過程中應(yīng)有意識(shí)形成概率意識(shí),并用這種意識(shí)來理解現(xiàn)實(shí)世界,主動(dòng)參與對(duì)事件發(fā)生的概率的感受和探索。
5、自我評(píng)價(jià)與課堂練習(xí):
1.將一枚硬幣向上拋擲10次,其中正面向上恰有5次是()
A.必然事件B.隨機(jī)事件
C.不可能事件D.無法確定
2.下列說法正確的是()
A.任一事件的概率總在(0.1)內(nèi)
B.不可能事件的概率不一定為0
C.必然事件的概率一定為1D.以上均不對(duì)
3.下表是某種油菜子在相同條件下的發(fā)芽試驗(yàn)結(jié)果表,請(qǐng)完成表格并回答題。
每批粒數(shù)251070130700150020003000
發(fā)芽的粒數(shù)2496011628263913392715
發(fā)芽的頻率
(1)完成上面表格:
(2)該油菜子發(fā)芽的概率約是多少?
4.某籃球運(yùn)動(dòng)員,在同一條件下進(jìn)行投籃練習(xí),結(jié)果如下表如示。
投籃次數(shù)
進(jìn)球次數(shù)m
進(jìn)球頻率
(1)計(jì)算表中進(jìn)球的頻率;
(2)這位運(yùn)動(dòng)員投籃一次,進(jìn)球的概率約為多少?
5.生活中,我們經(jīng)常聽到這樣的議論:“天氣預(yù)報(bào)說昨天降水概率為90%,結(jié)果根本一點(diǎn)雨都沒下,天氣預(yù)報(bào)也太不準(zhǔn)確了?!睂W(xué)了概率后,你能給出解釋嗎?
6、評(píng)價(jià)標(biāo)準(zhǔn):
1.B[提示:正面向上恰有5次的事件可能發(fā)生,也可能不發(fā)生,即該事件為隨機(jī)事件。]
2.C[提示:任一事件的概率總在[0,1]內(nèi),不可能事件的概率為0,必然事件的概率為1.]
3.解:(1)填入表中的數(shù)據(jù)依次為1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)該油菜子發(fā)芽的概率約為0.897。
4.解:(1)填入表中的數(shù)據(jù)依次為0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述頻率接近0.80,因此,進(jìn)球的概率約為0.80。
5.解:天氣預(yù)報(bào)的“降水”是一個(gè)隨機(jī)事件,概率為90%指明了“降水”這個(gè)隨機(jī)事件發(fā)生的概率,我們知道:在一次試驗(yàn)中,概率為90%的事件也可能不出現(xiàn),因此,“昨天沒有下雨”并不說明“昨天的降水概率為90%”的天氣預(yù)報(bào)是錯(cuò)誤的。
7、作業(yè):根據(jù)情況安排
3.1.3概率的基本性質(zhì)(第三課時(shí))
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)正確理解事件的包含、并事件、交事件、相等事件,以及互斥事件、對(duì)立事件的概念;
(2)概率的幾個(gè)基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
(3)正確理解和事件與積事件,以及互斥事件與對(duì)立事件的區(qū)別與聯(lián)系.
2、過程與方法:通過事件的關(guān)系、運(yùn)算與集合的關(guān)系、運(yùn)算進(jìn)行類比學(xué)習(xí),培養(yǎng)學(xué)生的類化與歸納的數(shù)學(xué)思想。
3、情感態(tài)度與價(jià)值觀:通過數(shù)學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣。
二、重點(diǎn)與難點(diǎn):概率的加法公式及其應(yīng)用,事件的關(guān)系與運(yùn)算。
三、學(xué)法與教學(xué)用具:1、討論法,師生共同討論,從而使加深學(xué)生對(duì)概率基本性質(zhì)的理解和認(rèn)識(shí);2、教學(xué)用具:投燈片
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:(1)集合有相等、包含關(guān)系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在擲骰子試驗(yàn)中,可以定義許多事件如:C1={出現(xiàn)1點(diǎn)},C2={出現(xiàn)2點(diǎn)},C3={出現(xiàn)1點(diǎn)或2點(diǎn)},C4={出現(xiàn)的點(diǎn)數(shù)為偶數(shù)}……
師生共同討論:觀察上例,類比集合與集合的關(guān)系、運(yùn)算,你能發(fā)現(xiàn)事件的關(guān)系與運(yùn)算嗎?
2、基本概念:(1)事件的包含、并事件、交事件、相等事件見課本P115;
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;
(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B).
3、例題分析:
例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對(duì)立事件?
事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);
事件C:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán).
分析:要判斷所給事件是對(duì)立還是互斥,首先將兩個(gè)概念的聯(lián)系與區(qū)別弄清楚,互斥事件是指不可能同時(shí)發(fā)生的兩事件,而對(duì)立事件是建立在互斥事件的基礎(chǔ)上,兩個(gè)事件中一個(gè)不發(fā)生,另一個(gè)必發(fā)生。
解:A與C互斥(不可能同時(shí)發(fā)生),B與C互斥,C與D互斥,C與D是對(duì)立事件(至少一個(gè)發(fā)生).
例2拋擲一骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為“出現(xiàn)奇數(shù)點(diǎn)”,B為“出現(xiàn)偶數(shù)點(diǎn)”,已知P(A)=,P(B)=,求出“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”.
分析:拋擲骰子,事件“出現(xiàn)奇數(shù)點(diǎn)”和“出現(xiàn)偶數(shù)點(diǎn)”是彼此互斥的,可用運(yùn)用概率的加法公式求解.
解:記“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”為事件C,則C=A∪B,因?yàn)锳、B是互斥事件,所以P(C)=P(A)+P(B)=+=1
答:出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)的概率為1
例3如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件C是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解,事件C與事件D是對(duì)立事件,因此P(D)=1—P(C).
解:(1)P(C)=P(A)+P(B)=(2)P(D)=1—P(C)=
例4袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?
分析:利用方程的思想及互斥事件、對(duì)立事件的概率公式求解.
解:從袋中任取一球,記事件“摸到紅球”、“摸到黑球”、“摸到黃球”、“摸到綠球”為A、B、C、D,則有P(B∪C)=P(B)+P(C)=;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=
答:得到黑球、得到黃球、得到綠球的概率分別是、、.
4、課堂小結(jié):概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);3)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。
5、自我評(píng)價(jià)與課堂練習(xí):
1.從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)與次品件數(shù),判斷下列每件事件是不是互斥事件,如果是,再判斷它們是不是對(duì)立事件。
(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.拋擲一粒骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為出現(xiàn)奇數(shù),事件B為出現(xiàn)2點(diǎn),已知P(A)=,P(B)=,求出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)的概率之和。
3.某射手在一次射擊訓(xùn)練中,射中10環(huán)、8環(huán)、7環(huán)的概率分別為0.21,0.23,0.25,0.28,計(jì)算該射手在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)少于7環(huán)的概率。
4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知從中取出2粒都是黑子的概率是,從中取出2粒都是白子的概率是,現(xiàn)從中任意取出2粒恰好是同一色的概率是多少?
6、評(píng)價(jià)標(biāo)準(zhǔn):
1.解:依據(jù)互斥事件的定義,即事件A與事件B在一定試驗(yàn)中不會(huì)同時(shí)發(fā)生知:(1)恰好有1件次品和恰好有2件次品不可能同時(shí)發(fā)生,因此它們是互斥事件,又因?yàn)樗鼈兊牟⒉皇潜厝皇录运鼈儾皇菍?duì)立事件,同理可以判斷:(2)中的2個(gè)事件不是互斥事件,也不是對(duì)立事件。(3)中的2個(gè)事件既是互斥事件也是對(duì)立事件。
2.解:“出現(xiàn)奇數(shù)點(diǎn)”的概率是事件A,“出現(xiàn)2點(diǎn)”的概率是事件B,“出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)”的概率之和為P(C)=P(A)+P(B)=+=
3.解:(1)該射手射中10環(huán)與射中9環(huán)的概率是射中10環(huán)的概率與射中9環(huán)的概率的和,即為0.21+0.23=0.44。(2)射中不少于7環(huán)的概率恰為射中10環(huán)、9環(huán)、8環(huán)、7環(huán)的概率的和,即為0.21+0.23+0.25+0.28=0.97,而射中少于7環(huán)的事件與射中不少于7環(huán)的事件為對(duì)立事件,所以射中少于7環(huán)的概率為1-0.97=0.03。
4.解:從盒子中任意取出2粒恰好是同一色的概率恰為取2粒白子的概率與2粒黑子的概率的和,即為+=
7、作業(yè):根據(jù)情況安排
3.2古典概型(第四、五課時(shí))
3.2.1—3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計(jì)算公式:P(A)=
(3)了解隨機(jī)數(shù)的概念;
(4)利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計(jì)出頻數(shù)與頻率。
2、過程與方法:(1)通過對(duì)現(xiàn)實(shí)生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣。
3、情感態(tài)度與價(jià)值觀:通過數(shù)學(xué)與探究活動(dòng),體會(huì)理論來源于實(shí)踐并應(yīng)用于實(shí)踐的辯證唯物主義觀點(diǎn).
二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
三、學(xué)法與教學(xué)用具:1、與學(xué)生共同探討,應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)問題;2、通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣.
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件。
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10。
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
2、基本概念:
(1)基本事件、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見課本P121~126;
(2)古典概型的概率計(jì)算公式:P(A)=.
3、例題分析:
課本例題略
例1擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。
分析:擲骰子有6個(gè)基本事件,具有有限性和等可能性,因此是古典概型。
解:這個(gè)試驗(yàn)的基本事件共有6個(gè),即(出現(xiàn)1點(diǎn))、(出現(xiàn)2點(diǎn))……、(出現(xiàn)6點(diǎn))
所以基本事件數(shù)n=6,
事件A=(擲得奇數(shù)點(diǎn))=(出現(xiàn)1點(diǎn),出現(xiàn)3點(diǎn),出現(xiàn)5點(diǎn)),
其包含的基本事件數(shù)m=3
所以,P(A)====0.5
小結(jié):利用古典概型的計(jì)算公式時(shí)應(yīng)注意兩點(diǎn):
(1)所有的基本事件必須是互斥的;
(2)m為事件A所包含的基本事件數(shù),求m值時(shí),要做到不重不漏。
例2從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。
解:每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個(gè),即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號(hào)內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4個(gè)基本事件組成,因而,P(A)==
例3現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3件,求3件都是正品的概率.
分析:(1)為返回抽樣;(2)為不返回抽樣.
解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗(yàn)結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)==0.512.
(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗(yàn)的所有結(jié)果為10×9×8=720種.設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336,所以P(B)=≈0.467.
解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗(yàn)的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個(gè)數(shù)為8×7×6÷6=56,因此P(B)=≈0.467.
小結(jié):關(guān)于不放回抽樣,計(jì)算基本事件個(gè)數(shù)時(shí),既可以看作是有順序的,也可以看作是無順序的,其結(jié)果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會(huì)導(dǎo)致錯(cuò)誤.
例4利用計(jì)算器產(chǎn)生10個(gè)1~100之間的取整數(shù)值的隨機(jī)數(shù)。
解:具體操作如下:
鍵入
反復(fù)操作10次即可得之
小結(jié):利用計(jì)算器產(chǎn)生隨機(jī)數(shù),可以做隨機(jī)模擬試驗(yàn),在日常生活中,有著廣泛的應(yīng)用。
例5某籃球愛好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
分析:其投籃的可能結(jié)果有有限個(gè),但是每個(gè)結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計(jì)算,我們用計(jì)算機(jī)或計(jì)算器做模擬試驗(yàn)可以模擬投籃命中的概率為40%。
解:我們通過設(shè)計(jì)模擬試驗(yàn)的方法來解決問題,利用計(jì)算機(jī)或計(jì)算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機(jī)數(shù)。
我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣可以體現(xiàn)投中的概率是40%。因?yàn)槭峭痘@三次,所以每三個(gè)隨機(jī)數(shù)作為一組。
例如:產(chǎn)生20組隨機(jī)數(shù):
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
這就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,如果恰有兩個(gè)數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個(gè)數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為=25%。
小結(jié):(1)利用計(jì)算機(jī)或計(jì)算器做隨機(jī)模擬試驗(yàn),可以解決非古典概型的概率的求解問題。
(2)對(duì)于上述試驗(yàn),如果親手做大量重復(fù)試驗(yàn)的話,花費(fèi)的時(shí)間太多,因此利用計(jì)算機(jī)或計(jì)算器做隨機(jī)模擬試驗(yàn)可以大大節(jié)省時(shí)間。
(3)隨機(jī)函數(shù)RANDBETWEEN(a,b)產(chǎn)生從整數(shù)a到整數(shù)b的取整數(shù)值的隨機(jī)數(shù)。
例6你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來。
解:(1)每次按SHIFTRNA#鍵都會(huì)產(chǎn)生一個(gè)0~1之間的隨機(jī)數(shù),而且出現(xiàn)0~1內(nèi)任何一個(gè)數(shù)的可能性是相同的。
(2)還可以使用計(jì)算機(jī)軟件來產(chǎn)生隨機(jī)數(shù),如Scilab中產(chǎn)生隨機(jī)數(shù)的方法。Scilab中用rand()函數(shù)來產(chǎn)生0~1之間的隨機(jī)數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個(gè)隨機(jī)數(shù),如果要產(chǎn)生a~b之間的隨機(jī)數(shù),可以使用變換rand()*(b-a)+a得到.
4、課堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):
(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
(3)隨機(jī)數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗(yàn),這樣可以代替我們自己做大量重復(fù)試驗(yàn),比如現(xiàn)在很多城市的重要考試采用產(chǎn)生隨機(jī)數(shù)的方法把考生分配到各個(gè)考場(chǎng)中。
5、自我評(píng)價(jià)與課堂練習(xí):
1.在40根纖維中,有12根的長(zhǎng)度超過30mm,從中任取一根,取到長(zhǎng)度超過30mm的纖維的概率是()
A.B.C.D.以上都不對(duì)
2.盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?br>
A.B.C.D.
3.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是。
4.拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。
5.利用計(jì)算器生產(chǎn)10個(gè)1到20之間的取整數(shù)值的隨機(jī)數(shù)。
6.用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。
6、評(píng)價(jià)標(biāo)準(zhǔn):
1.B[提示:在40根纖維中,有12根的長(zhǎng)度超過30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為,因此選B.]
2.C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)==.(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋€(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1-P(B)=1-=.]
3.[提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為.本題還可以利用“對(duì)立事件的概率和為1”來求解,對(duì)于求“至多”“至少”等事件的概率頭問題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),…,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為.
5.解:具體操作如下
鍵入
反復(fù)按鍵10次即可得到。
6.解:具體操作如下:
鍵入
7、作業(yè):根據(jù)情況安排
3.3幾何概型
3.3.1—3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)正確理解幾何概型的概念;
(2)掌握幾何概型的概率公式:
P(A)=;
(3)會(huì)根據(jù)古典概型與幾何概型的區(qū)別與聯(lián)系來判別某種概型是古典概型還是幾何概型;
(4)了解均勻隨機(jī)數(shù)的概念;
(5)掌握利用計(jì)算器(計(jì)算機(jī))產(chǎn)生均勻隨機(jī)數(shù)的方法;
(6)會(huì)利用均勻隨機(jī)數(shù)解決具體的有關(guān)概率的問題.
2、過程與方法:(1)發(fā)現(xiàn)法教學(xué),通過師生共同探究,體會(huì)數(shù)學(xué)知識(shí)的形成,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)來解決問題,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣。
3、情感態(tài)度與價(jià)值觀:本節(jié)課的主要特點(diǎn)是隨機(jī)試驗(yàn)多,學(xué)習(xí)時(shí)養(yǎng)成勤學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)習(xí)慣。
二、重點(diǎn)與難點(diǎn):
1、幾何概型的概念、公式及應(yīng)用;
2、利用計(jì)算器或計(jì)算機(jī)產(chǎn)生均勻隨機(jī)數(shù)并運(yùn)用到概率的實(shí)際應(yīng)用中.
三、學(xué)法與教學(xué)用具:1、通過對(duì)本節(jié)知識(shí)的探究與學(xué)習(xí),感知用圖形解決概率問題的方法,掌握數(shù)學(xué)思想與邏輯推理的數(shù)學(xué)方法;2、教學(xué)用具:投燈片,計(jì)算機(jī)及多媒體教學(xué).
四、教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:在概率論發(fā)展的早期,人們就已經(jīng)注意到只考慮那種僅有有限個(gè)等可能結(jié)果的隨機(jī)試驗(yàn)是不夠的,還必須考慮有無限多個(gè)試驗(yàn)結(jié)果的情況。例如一個(gè)人到單位的時(shí)間可能是8:00至9:00之間的任何一個(gè)時(shí)刻;往一個(gè)方格中投一個(gè)石子,石子可能落在方格中的任何一點(diǎn)……這些試驗(yàn)可能出現(xiàn)的結(jié)果都是無限多個(gè)。
2、基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=;
(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.
3、例題分析:
課本例題略
例1判下列試驗(yàn)中事件A發(fā)生的概度是古典概型,
還是幾何概型。
(1)拋擲兩顆骰子,求出現(xiàn)兩個(gè)“4點(diǎn)”的概率;
(2)如課本P132圖3.3-1中的(2)所示,圖中有一個(gè)轉(zhuǎn)盤,甲乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時(shí),甲獲勝,否則乙獲勝,求甲獲勝的概率。
分析:本題考查的幾何概型與古典概型的特點(diǎn),古典概型具有有限性和等可能性。而幾何概型則是在試驗(yàn)中出現(xiàn)無限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度有關(guān)。
解:(1)拋擲兩顆骰子,出現(xiàn)的可能結(jié)果有6×6=36種,且它們都是等可能的,因此屬于古典概型;
(2)游戲中指針指向B區(qū)域時(shí)有無限多個(gè)結(jié)果,而且不難發(fā)現(xiàn)“指針落在陰影部分”,概率可以用陰影部分的面積與總面積的比來衡量,即與區(qū)域長(zhǎng)度有關(guān),因此屬于幾何概型.
例2某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時(shí)一班,求此人等車時(shí)間不多于10分鐘的概率.
分析:假設(shè)他在0~60分鐘之間任何一個(gè)時(shí)刻到車站等車是等可能的,但在0到60分鐘之間有無窮多個(gè)時(shí)刻,不能用古典概型公式計(jì)算隨機(jī)事件發(fā)生的概率.可以通過幾何概型的求概率公式得到事件發(fā)生的概率.因?yàn)榭蛙嚸啃r(shí)一班,他在0到60分鐘之間任何一個(gè)時(shí)刻到站等車是等可能的,所以他在哪個(gè)時(shí)間段到站等車的概率只與該時(shí)間段的長(zhǎng)度有關(guān),而與該時(shí)間段的位置無關(guān),這符合幾何概型的條件.
解:設(shè)A={等待的時(shí)間不多于10分鐘},我們所關(guān)心的事件A恰好是到站等車的時(shí)刻位于[50,60]這一時(shí)間段內(nèi),因此由幾何概型的概率公式,得P(A)==,即此人等車時(shí)間不多于10分鐘的概率為.
小結(jié):在本例中,到站等車的時(shí)刻X是隨機(jī)的,可以是0到60之間的任何一刻,并且是等可能的,我們稱X服從[0,60]上的均勻分布,X為[0,60]上的均勻隨機(jī)數(shù).
練習(xí):1.已知地鐵列車每10min一班,在車站停1min,求乘客到達(dá)站臺(tái)立即乘上車的概率。
2.兩根相距6m的木桿上系一根繩子,并在繩子上掛一盞燈,求燈與兩端距離都大于2m的概率.
解:1.由幾何概型知,所求事件A的概率為P(A)=;
2.記“燈與兩端距離都大于2m”為事件A,則P(A)==.
例3在1萬平方千米的海域中有40平方千米的大陸架儲(chǔ)藏著石油,假設(shè)在海域中任意一點(diǎn)鉆探,鉆到油層面的概率是多少?
分析:石油在1萬平方千米的海域大陸架的分布可以看作是隨機(jī)的而40平方千米可看作構(gòu)成事件的區(qū)域面積,有幾何概型公式可以求得概率。
解:記“鉆到油層面”為事件A,則P(A)===0.004.
答:鉆到油層面的概率是0.004.
例4在1升高產(chǎn)小麥種子中混入了一種帶麥誘病的種子,從中隨機(jī)取出10毫升,則取出的種子中含有麥誘病的種子的概率是多少?
分析:病種子在這1升中的分布可以看作是隨機(jī)的,取得的10毫克種子可視作構(gòu)成事件的區(qū)域,1升種子可視作試驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域,可用“體積比”公式計(jì)算其概率。
解:取出10毫升種子,其中“含有病種子”這一事件記為A,則
P(A)===0.01.
答:取出的種子中含有麥誘病的種子的概率是0.01.
例5取一根長(zhǎng)度為3m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長(zhǎng)都不小于1m的概率有多大?
分析:在任意位置剪斷繩子,則剪斷位置到一端點(diǎn)的距離取遍[0,3]內(nèi)的任意數(shù),并且每一個(gè)實(shí)數(shù)被取到都是等可能的。因此在任意位置剪斷繩子的所有結(jié)果(基本事件)對(duì)應(yīng)[0,3]上的均勻隨機(jī)數(shù),其中取得的[1,2]內(nèi)的隨機(jī)數(shù)就表示剪斷位置與端點(diǎn)距離在[1,2]內(nèi),也就是剪得兩段長(zhǎng)都不小于1m。這樣取得的[1,2]內(nèi)的隨機(jī)數(shù)個(gè)數(shù)與[0,3]內(nèi)個(gè)數(shù)之比就是事件A發(fā)生的概率。
解法1:(1)利用計(jì)算器或計(jì)算機(jī)產(chǎn)生一組0到1區(qū)間的均勻隨機(jī)數(shù)a1=RAND.
(2)經(jīng)過伸縮變換,a=a1*3.
(3)統(tǒng)計(jì)出[1,2]內(nèi)隨機(jī)數(shù)的個(gè)數(shù)N1和[0,3]內(nèi)隨機(jī)數(shù)的個(gè)數(shù)N.
(4)計(jì)算頻率fn(A)=即為概率P(A)的近似值.
解法2:做一個(gè)帶有指針的圓盤,把圓周三等分,標(biāo)上刻度[0,3](這里3和0重合).轉(zhuǎn)動(dòng)圓盤記下指針在[1,2](表示剪斷繩子位置在[1,2]范圍內(nèi))的次數(shù)N1及試驗(yàn)總次數(shù)N,則fn(A)=即為概率P(A)的近似值.
小結(jié):用隨機(jī)數(shù)模擬的關(guān)鍵是把實(shí)際問題中事件A及基本事件總體對(duì)應(yīng)的區(qū)域轉(zhuǎn)化為隨機(jī)數(shù)的范圍。解法2用轉(zhuǎn)盤產(chǎn)生隨機(jī)數(shù),這種方法可以親自動(dòng)手操作,但費(fèi)時(shí)費(fèi)力,試驗(yàn)次數(shù)不可能很大;解法1用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),可以產(chǎn)生大量的隨機(jī)數(shù),又可以自動(dòng)統(tǒng)計(jì)試驗(yàn)的結(jié)果,同時(shí)可以在短時(shí)間內(nèi)多次重復(fù)試驗(yàn),可以對(duì)試驗(yàn)結(jié)果的隨機(jī)性和規(guī)律性有更深刻的認(rèn)識(shí).
例6在長(zhǎng)為12cm的線段AB上任取一點(diǎn)M,并以線段AM為邊作正方形,求這個(gè)正方形的面積介于36cm2與81cm2之間的概率.
分析:正方形的面積只與邊長(zhǎng)有關(guān),此題可以轉(zhuǎn)化為在12cm長(zhǎng)的線段AB上任取一點(diǎn)M,求使得AM的長(zhǎng)度介于6cm與9cm之間的概率.
解:(1)用計(jì)算機(jī)產(chǎn)生一組[0,1]內(nèi)均勻隨機(jī)數(shù)a1=RAND.
(2)經(jīng)過伸縮變換,a=a1*12得到[0,12]內(nèi)的均勻隨機(jī)數(shù).
(3)統(tǒng)計(jì)試驗(yàn)總次數(shù)N和[6,9]內(nèi)隨機(jī)數(shù)個(gè)數(shù)N1
(4)計(jì)算頻率.
記事件A={面積介于36cm2與81cm2之間}={長(zhǎng)度介于6cm與9cm之間},則P(A)的近似值為fn(A)=.
4、課堂小結(jié):1、幾何概型是區(qū)別于古典概型的又一概率模型,使用幾何概型的概率計(jì)算公式時(shí),一定要注意其適用條件:每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度成比例;
2、均勻隨機(jī)數(shù)在日常生活中,有著廣泛的應(yīng)用,我們可以利用計(jì)算器或計(jì)算機(jī)來產(chǎn)生均勻隨機(jī)數(shù),從而來模擬隨機(jī)試驗(yàn),其具體方法是:建立一個(gè)概率模型,它與某些我們感興趣的量(如概率值、常數(shù))有關(guān),然后設(shè)計(jì)適當(dāng)?shù)脑囼?yàn),并通過這個(gè)試驗(yàn)的結(jié)果來確定這些量.
5、自我評(píng)價(jià)與課堂練習(xí):
1.在500ml的水中有一個(gè)草履蟲,現(xiàn)從中隨機(jī)取出2ml水樣放到顯微鏡下觀察,則發(fā)現(xiàn)草履蟲的概率是()
A.0.5B.0.4C.0.004D.不能確定
2.平面上畫了一些彼此相距2a的平行線,把一枚半徑ra的硬幣任意擲在這個(gè)平面上,求硬幣不與任何一條平行線相碰的概率.
3.某班有45個(gè),現(xiàn)要選出1人去檢查其他班的衛(wèi)生,若每個(gè)人被選到的機(jī)會(huì)均等,則恰好選中學(xué)生甲主機(jī)會(huì)有多大?
4.如圖3-18所示,曲線y=-x2+1與x軸、y軸圍成一個(gè)區(qū)域A,直線x=1、直線y=1、x軸圍成一個(gè)正方形,向正方形中隨機(jī)地撒一把芝麻,利用計(jì)算機(jī)來模擬這個(gè)試驗(yàn),并統(tǒng)計(jì)出落在區(qū)域A內(nèi)的芝麻數(shù)與落在正方形中的芝麻數(shù)。
6、評(píng)價(jià)標(biāo)準(zhǔn):
1.C(提示:由于取水樣的隨機(jī)性,所求事件A:“在取出2ml的水樣中有草履蟲”的概率等于水樣的體積與總體積之比=0.004)
2.解:把“硬幣不與任一條平行線相碰”的事件記為事件A,為了確定硬幣的位置,由硬幣中心O向靠得最近的平行線引垂線OM,垂足為M,如圖所示,這樣線段OM長(zhǎng)度(記作OM)的取值范圍就是[o,a],只有當(dāng)r<OM≤a時(shí)硬幣不與平行線相碰,所以所求事件A的概率就是P(A)==
3.提示:本題應(yīng)用計(jì)算器產(chǎn)生隨機(jī)數(shù)進(jìn)行模擬試驗(yàn),請(qǐng)按照下面的步驟獨(dú)立完成。
(1)用1~45的45個(gè)數(shù)來替代45個(gè)人;
(2)用計(jì)算器產(chǎn)生1~45之間的隨機(jī)數(shù),并記錄;
(3)整理數(shù)據(jù)并填入下表
試驗(yàn)
次數(shù)5010015020025030035040045050060065070075080085090010001050
1出現(xiàn)
的頻數(shù)
1出現(xiàn)
的頻率
(4)利用穩(wěn)定后1出現(xiàn)的頻率估計(jì)恰好選中學(xué)生甲的機(jī)會(huì)。
4.解:如下表,由計(jì)算機(jī)產(chǎn)生兩例0~1之間的隨機(jī)數(shù),它們分別表示隨機(jī)點(diǎn)(x,y)的坐標(biāo)。如果一個(gè)點(diǎn)(x,y)滿足y≤-x2+1,就表示這個(gè)點(diǎn)落在區(qū)域A內(nèi),在下表中最后一列相應(yīng)地就填上1,否則填0。
xy計(jì)數(shù)
0.5988950.9407940
0.5122840.1189611
0.4968410.7844170
0.1127960.6906341
0.3596000.3714411
0.1012600.6505121
………
0.9473860.9021270
0.1176180.3056731
0.5164650.2229071
0.5963930.9696950
7、作業(yè):根據(jù)情況安排
高二數(shù)學(xué)下冊(cè)《圓》知識(shí)點(diǎn)復(fù)習(xí)
俗話說,居安思危,思則有備,有備無患。高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓上課時(shí)的教學(xué)氛圍非?;钴S,幫助高中教師有計(jì)劃有步驟有質(zhì)量的完成教學(xué)任務(wù)。關(guān)于好的高中教案要怎么樣去寫呢?下面是小編精心收集整理,為您帶來的《高二數(shù)學(xué)下冊(cè)《圓》知識(shí)點(diǎn)復(fù)習(xí)》,僅供您在工作和學(xué)習(xí)中參考。
高二數(shù)學(xué)下冊(cè)《圓》知識(shí)點(diǎn)復(fù)習(xí)
1、圓的定義:
平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有
(2)過圓外一點(diǎn)的切線:
①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
練習(xí)題:
1.下列命題:
①長(zhǎng)度相等的弧是等?、谌我馊c(diǎn)確定一個(gè)圓③相等的圓心角所對(duì)的弦相等④外心在三角形的一條邊上的三角形是直角三角形,其中真命題共有()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
2.同一平面內(nèi)兩圓的半徑是R和r,圓心距是d,若以R、r、d為邊長(zhǎng),能圍成一個(gè)三角形,則這兩個(gè)圓的位置關(guān)系是()
A.外離
B.相切
C.相交
D.內(nèi)含
答案:1.B2.C
高二數(shù)學(xué)下冊(cè)《抽樣》知識(shí)點(diǎn)復(fù)習(xí)
作為杰出的教學(xué)工作者,能夠保證教課的順利開展,作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生能夠在課堂積極的參與互動(dòng),幫助高中教師能夠更輕松的上課教學(xué)。那么如何寫好我們的高中教案呢?小編經(jīng)過搜集和處理,為您提供高二數(shù)學(xué)下冊(cè)《抽樣》知識(shí)點(diǎn)復(fù)習(xí),供您參考,希望能夠幫助到大家。
高二數(shù)學(xué)下冊(cè)《抽樣》知識(shí)點(diǎn)復(fù)習(xí)
隨機(jī)抽樣
簡(jiǎn)介
(抽簽法、隨機(jī)樣數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;
優(yōu)點(diǎn):操作簡(jiǎn)便易行
缺點(diǎn):總體過大不易實(shí)行
方法
(1)抽簽法
一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。
(抽簽法簡(jiǎn)單易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體攪拌均勻就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)
(2)隨機(jī)數(shù)法
隨機(jī)抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。
分層抽樣
簡(jiǎn)介
分層抽樣(StratifiedRandomSampling)主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有明顯差異。共同點(diǎn):每個(gè)個(gè)體被抽到的概率都相等N/M。
定義
一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是一種分層抽樣(stratifiedsampling)。
整群抽樣
定義
什么是整群抽樣(Clustersampling)
整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個(gè)互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。
應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。
優(yōu)缺點(diǎn)
整群抽樣的優(yōu)點(diǎn)是實(shí)施方便、節(jié)省經(jīng)費(fèi);
整群抽樣的缺點(diǎn)是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡(jiǎn)單隨機(jī)抽樣。
實(shí)施步驟
先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對(duì)這些群內(nèi)所有個(gè)體或單元均進(jìn)行調(diào)查。抽樣過程可分為以下幾個(gè)步驟:
一、確定分群的標(biāo)注
二、總體(N)分成若干個(gè)互不重疊的部分,每個(gè)部分為一群。
三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。
四、采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。
例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個(gè)班做統(tǒng)計(jì);進(jìn)行產(chǎn)品檢驗(yàn);每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗(yàn)等。
與分層抽樣的區(qū)別
整群抽樣與分層抽樣在形式上有相似之處,但實(shí)際上差別很大。
分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個(gè)體或單元差異大;
分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
系統(tǒng)抽樣
定義
當(dāng)總體中的個(gè)體數(shù)較多時(shí),采用簡(jiǎn)單隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣(systematicsample)。
步驟
一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:
(1)先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門牌號(hào)等;
(2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;
(3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l
(4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獲取整個(gè)樣本。
練習(xí)題:
1.在簡(jiǎn)單隨機(jī)抽樣中,某一個(gè)個(gè)體被抽到的可能性()
A.與第幾次抽樣有關(guān),第一次抽到的可能性最大
B.與第幾次抽樣有關(guān),第一次抽到的可能性最小
C.與第幾次抽樣無關(guān),每一次抽到的可能性相等
D.與第幾次抽樣無關(guān),與樣本容量無關(guān)
解析:由隨機(jī)抽樣的特點(diǎn)知某個(gè)體被抽到的可能性與第幾次抽樣無關(guān),每一次抽到的可能性相等.
答案:C
2.某學(xué)校有男、女學(xué)生各500名.為了解男、女學(xué)生在學(xué)習(xí)興趣與業(yè)余愛好方面是否存在顯著差異,擬從全體學(xué)生中抽取100名學(xué)生進(jìn)行調(diào)查,則宜采用的抽樣方法是()
A.抽簽法
B.隨機(jī)數(shù)法
C.系統(tǒng)抽樣法
D.分層抽樣法
解析:從全體學(xué)生中抽取100名應(yīng)用分層抽樣法,按男、女學(xué)生所占的比例抽取.故選D.
答案:D
高二數(shù)學(xué)下冊(cè)《向量公式》知識(shí)點(diǎn)復(fù)習(xí)
高二數(shù)學(xué)下冊(cè)《向量公式》知識(shí)點(diǎn)復(fù)習(xí)
向量定義:
在數(shù)學(xué)中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長(zhǎng)度:代表向量的大小。與向量對(duì)應(yīng)的只有大小,沒有方向的量叫做數(shù)量(物理學(xué)中稱標(biāo)量)。
向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時(shí)在字母頂上加一小箭頭“→”。
如果給定向量的起點(diǎn)(A)和終點(diǎn)(B),可將向量記作AB(并于頂上加→)。在空間直角坐標(biāo)系中,也能把向量以數(shù)對(duì)形式表示,例如Oxy平面中(2,3)是一向量。
向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2Cosα=向量a*向量b/|向量a|*|向量b|(x1x2+y1y2)=————————————————————根號(hào)(x1平方+y1平方)*根號(hào)(x2平方+y2平方)
5.空間向量:同上推論(提示:向量a={x,y,z})
6.充要條件:如果向量a⊥向量b那么向量a*向量b=0如果向量a//向量b那么向量a*向量b=±|向量a|*|向量b|或者x1/x2=y1/y2
7.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a*向量b=(向量a±向量b)平方
練習(xí)題:
1、下列說法中,不正確的是()
A.0與任意一個(gè)向量都平行
B.任何一個(gè)非零向量都可以平行移動(dòng)
C.長(zhǎng)度不相等而方向相反的兩個(gè)向量一定是共線向量
D.兩個(gè)有共同起點(diǎn)且共線的向量其終點(diǎn)必相同
【解析】易知A、B、C均正確,D不正確,它們的終點(diǎn)可能相同,故選D.
【答案】D