小學(xué)一年級(jí)數(shù)學(xué)的教案
發(fā)表時(shí)間:2021-02-15九年級(jí)數(shù)學(xué)競(jìng)賽化歸—解方程組的基本思想講座。
初中階段已學(xué)過(guò)的方程組有:二元一次方程組、三元一次方程組、二元二次方程組.
盡管具體到每類方程組的解法不全相同,但縱有千變?nèi)f化,而萬(wàn)變不離其宗:
化歸是解方程組的基本思想,降次與消元是化歸的主要途徑,因式分解、換元是降次的常用方法,代人法、加減法是消元的兩種主要手段.
解一些特殊方程組(如未知數(shù)系數(shù)較大,未知數(shù)個(gè)數(shù)較多等),需要在整體分析方程組特點(diǎn)基礎(chǔ)上,靈活運(yùn)用一些技巧與方法,常用的技巧與方法有迭加、迭乘、換元、配方、取倒等.
注:轉(zhuǎn)化與化歸是解方程(組)的基本思想,常見(jiàn)形式有:
分式方程整式化
無(wú)理方程有理化
高次方程低次化
多元方程一元化
通過(guò)恰當(dāng)?shù)霓D(zhuǎn)化,化歸目的明確,復(fù)雜的方程(組)就會(huì)變?yōu)槲覀兪煜さ?、?jiǎn)單的方程(組).
【例題求解】
【例1】已知正實(shí)數(shù)、、滿足,則=.
思路點(diǎn)撥由想到從分解因式入手,還需整體考慮.
【例2】方程組的正整數(shù)解的組數(shù)是()
A.4B.3C2D.1
思路點(diǎn)撥直接消元降次解三元二次方程組較困難,從分析常數(shù)項(xiàng)的特征入手.
思路點(diǎn)撥對(duì)于(1),先求出整體、的值,對(duì)于(2),視、為整體,可得到、的值;對(duì)于(3)設(shè),,用換元法解.
【例4】已知、、三數(shù)滿足方程組,試求方程的根.
思路點(diǎn)撥先構(gòu)造以、為兩根的一元二次方程,從判別式入手,突破的值.
www.lvshijia.net
注:方程與方程組在一定的條件下可相互轉(zhuǎn)化,借助配方法、利用非負(fù)數(shù)性質(zhì)是促使轉(zhuǎn)化的常用工具,一個(gè)含多元的方程,往往蘊(yùn)含著方程組.
【例5】已知方程組有兩個(gè)實(shí)數(shù)解為和且,,設(shè),
(1)求的取值范圍;(2)試用關(guān)于的代數(shù)式表示出;
(3)是否存在的的值?若存在,就求出所有這樣的的值;若不存在,請(qǐng)說(shuō)明理由.
思路點(diǎn)撥代人消元,得到關(guān)于的一元二次方程,綜合運(yùn)用根的判別式、韋達(dá)定理等知識(shí)求解,解題中注意隱含條件的制約,方能準(zhǔn)確求出的取值范圍.
注:方程組解的性質(zhì)、個(gè)數(shù)的探討問(wèn)題,往往轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)、性質(zhì)的討論,但這種轉(zhuǎn)化不一定是等價(jià)的,注意隱含條件的制約,如本例中,則,這就是一個(gè)隱含條件.
學(xué)歷訓(xùn)練
1.一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組的解是,試寫(xiě)出符合要求的方程組(只要填寫(xiě)一個(gè)即可).
2.若方程組有兩組相同的實(shí)數(shù)解,則的取值是.
3.實(shí)數(shù)、、滿足,則的值為.
4.已知、、2是正整數(shù),并且滿足,那么的值等于.
5.已知,,則的值為()
A.2001B.2002C.2003D.2004
6.已知,,則=()
A.337B.17C.97D.1
7.解下列方程組:
(1)(2)
(3)
8.已知方程組有兩個(gè)實(shí)數(shù)解和,且,求的值.
9.方程組的解是.
10.已知實(shí)數(shù),是方程組的解,則+=.
11.已知,且,則是的值為.
12.已知方程組的兩組解是()與(),則的值是.
13.已知,,則的值是()
A.4B.2C.一2D.0
14.設(shè),為實(shí)數(shù),且滿足,則=()
A.1B.一1C.2D.一2
15.解下列方程組:
(1)(2)
(3)
16.已知方程組的兩個(gè)解為和,且,是兩個(gè)不相等的實(shí)數(shù),若.
(1)求的值;
(2)不解方程組判斷方程組的兩個(gè)解能否都是正數(shù)?為什么?
17.已知、是方程的兩個(gè)實(shí)根,解方程組
18.已知、為實(shí)數(shù),且滿足,,求的值.
相關(guān)閱讀
九年級(jí)數(shù)學(xué)競(jìng)賽拋物線講座
九年級(jí)數(shù)學(xué)競(jìng)賽拋物線講座
一般地說(shuō)來(lái),我們稱函數(shù)(、、為常數(shù),)為的二次函數(shù),其圖象為一條拋物線,與拋物線相關(guān)的知識(shí)有:
1.、、的符號(hào)決定拋物線的大致位置;
2.拋物線關(guān)于對(duì)稱,拋物線開(kāi)口方向、開(kāi)口大小僅與相關(guān),拋物線在頂點(diǎn)(,)處取得最值;
3.拋物線的解析式有下列三種形式:
①一般式:;
②頂點(diǎn)式:;
③交點(diǎn)式:,這里、是方程的兩個(gè)實(shí)根.
確定拋物線的解析式一般要兩個(gè)或三個(gè)獨(dú)立條件,靈活地選用不同方法求出拋物線的解析式是解與拋物線相關(guān)問(wèn)題的關(guān)鍵.
注:對(duì)稱是一種數(shù)學(xué)美,它展示出整體的和諧與平衡之美,拋物線是軸對(duì)稱圖形,解題中應(yīng)積極捕捉、創(chuàng)造對(duì)稱關(guān)系,以便從整體上把握問(wèn)題,由拋物線捕捉對(duì)稱信息的方式有:
(1)從拋物線上兩點(diǎn)的縱坐標(biāo)相等獲得對(duì)稱信息;
(2)從拋物線的對(duì)稱軸方程與拋物線被軸所截得的弦長(zhǎng)獲得對(duì)稱信息.
【例題求解】
【例1】二次函數(shù)的圖象如圖所示,則函數(shù)值時(shí),對(duì)應(yīng)的取值范圍是.
思路點(diǎn)撥由圖象知拋物線頂點(diǎn)坐標(biāo)為(一1,一4),可求出,值,先求出時(shí),對(duì)應(yīng)的值.
【例2】已知拋物線(0)經(jīng)過(guò)點(diǎn)(一1,0),且滿足.以下結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
思路點(diǎn)撥由條件大致確定拋物線的位置,進(jìn)而判定、、的符號(hào);由特殊點(diǎn)的坐標(biāo)得等式或不等式;運(yùn)用根的判別式、根與系數(shù)的關(guān)系.
【例3】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4分米,拋物線頂點(diǎn)處到邊MN的距離是4分米,要在鐵皮上截下一矩形ABCD,使矩形頂點(diǎn)B、C落在邊MN上,A、D落在拋物線上,問(wèn)這樣截下的矩形鐵皮的周長(zhǎng)能否等于8分米?
思路點(diǎn)撥恰當(dāng)建立直角坐標(biāo)系,易得出M、N及拋物線頂點(diǎn)坐標(biāo),從而求出拋物線的解析式,設(shè)A(,),建立含的方程,矩形鐵皮的周長(zhǎng)能否等于8分米,取決于求出的值是否在已求得的拋物線解析式中自變量的取值范圍內(nèi).
注:把一個(gè)生產(chǎn)、生活中的實(shí)際問(wèn)題轉(zhuǎn)化,成數(shù)學(xué)問(wèn)題,需要觀察分析、建模,建立直角坐標(biāo)系下的函數(shù)模型是解決實(shí)際問(wèn)題的常用方法,同一問(wèn)題有不同的建模方式,通過(guò)分析比較可獲得簡(jiǎn)解.
【例4】二次函數(shù)的圖象與軸交于A、兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與軸交于C點(diǎn),且∠ACB=90°.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)計(jì)兩種方案:作一條與軸不重合,與△ABC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的,寫(xiě)出所截得的三角形三個(gè)頂點(diǎn)的坐標(biāo)(注:設(shè)計(jì)的方案不必證明).
思路點(diǎn)撥(1)A、B、C三點(diǎn)坐標(biāo)可用m的代數(shù)式表示,利用相似三角形性質(zhì)建立含m的方程;(2)通過(guò)特殊點(diǎn),構(gòu)造相似三角形基本圖形,確定設(shè)計(jì)方案.
注:解函數(shù)與幾何結(jié)合的綜合題,善于求點(diǎn)的坐標(biāo),進(jìn)而求出函數(shù)解析式是解題的基礎(chǔ);而充分發(fā)揮形的因素,數(shù)形互助,把證明與計(jì)算相結(jié)合是解題的關(guān)鍵.
【例5】已知函數(shù),其中自變量為正整數(shù),也是正整數(shù),求何值時(shí),函數(shù)值最小.
思路點(diǎn)撥將函數(shù)解析式通過(guò)變形得配方式,其對(duì)稱軸為,因,,故函數(shù)的最小值只可能在取,,時(shí)達(dá)到.所以,解決本例的關(guān)鍵在于分類討論.
學(xué)歷訓(xùn)練
1.如圖,若拋物線與四條直線、、、所圍成的正方形有公共點(diǎn),則的取值范圍是.
2.拋物線與軸的正半軸交于A,B兩點(diǎn),與軸交于C點(diǎn),且線段AB的長(zhǎng)為1,△ABC的面積為1,則的值為.
3.如圖,拋物線的對(duì)稱軸是直線,它與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)A、C的坐標(biāo)分別為(-l,0)、(0,),則(1)拋物線對(duì)應(yīng)的函數(shù)解析式為;(2)若點(diǎn)P為此拋物線上位于軸上方的一個(gè)動(dòng)點(diǎn),則△ABP面積的最大值為.
4.已知二次函數(shù)的圖象如圖所示,且OA=OC,則由拋物線的特征寫(xiě)出如下含有、、三個(gè)字母的式子①,②,③,④,0,其中正確結(jié)論的序號(hào)是(把你認(rèn)為正確的都填上).
5.已知,點(diǎn)(,),(,),(,)都在函數(shù)的圖象上,則()
A.B.C.D.
6.把拋物線的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,所得圖象的解析式為,則有()
A.,B.,C.,c=3D.,
7.二次函數(shù)的圖象如圖所示,則點(diǎn)(,)所在的直角坐標(biāo)系是()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
8.周長(zhǎng)是4m的矩形,它的面積S(m2)與一邊長(zhǎng)(m)的函數(shù)圖象大致是()
9.閱讀下面的文字后,回答問(wèn)題:
“已知:二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(0,),B(1,-2),求證:這個(gè)二次函數(shù)圖象的對(duì)稱軸是直線.
題目中的橫線部分是一段被墨水污染了無(wú)法辨認(rèn)的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題目中二次函數(shù)的解析式?若能,寫(xiě)出求解過(guò)程;若不能,說(shuō)明理由.
(2)請(qǐng)你根據(jù)已有信息,在原題中的橫線上,填加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整.
10.如圖,一位運(yùn)動(dòng)員在距籃下4米處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05米.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線的解析式;
(2)該運(yùn)動(dòng)員身高1.8米,在這次跳投中,球在頭頂上方0.25米處出手,問(wèn):球出手時(shí),他跳離地面的高度是多少?
11.如圖,拋物線和直線()與軸、y軸都相交于A、B兩點(diǎn),已知拋物線的對(duì)稱軸與軸相交于C點(diǎn),且∠ABC=90°,求拋物線的解析式.
12.拋物線與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,若△ABC是直角三角形,則.
13.如圖,已知直線與拋物線相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),那么△OAB的面積等于.
14.已知二次函數(shù),一次函數(shù).若它們的圖象對(duì)于任意的實(shí)數(shù)是都只有一個(gè)公共點(diǎn),則二次函數(shù)的解析式為.
15.如圖,拋物線與兩坐標(biāo)軸的交點(diǎn)分別是A,B,E,且△ABE是等腰直角三角形,AE=BE,則下列關(guān)系式中不能總成立的是()
A.b=0B.S△ADC=c2C.a(chǎn)c=一1D.a(chǎn)+c=0
16.由于被墨水污染,一道數(shù)學(xué)題僅能見(jiàn)到如下文字:已知二次函數(shù)的圖象過(guò)點(diǎn)(1,0)…求證:這個(gè)二次函數(shù)的圖象關(guān)于直線對(duì)稱.
根據(jù)現(xiàn)有信息,題中的二次函數(shù)不具有的性質(zhì)是()
A.過(guò)點(diǎn)(3,0)B.頂點(diǎn)是(2,一2)
C.在軸上截得的線段長(zhǎng)為2D.與軸的交點(diǎn)是(0,3)
17.已知A(x1,2002),B(x2,2002)是二次函數(shù)()的圖象上兩時(shí),二次函數(shù)的值是()
A.B.C.2002D.5
18.某種產(chǎn)品的年產(chǎn)量不超過(guò)1000噸,該產(chǎn)品的年產(chǎn)量(單位:噸)與費(fèi)用(單位:萬(wàn)元)之間函數(shù)的圖象是頂點(diǎn)在原點(diǎn)的拋物線的一部分(如圖1所示);該產(chǎn)品的年銷(xiāo)售量(單位:噸)與銷(xiāo)售單價(jià)(單位:萬(wàn)元/噸)之間函數(shù)的圖象是線段(如圖2所示).若生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,問(wèn)年產(chǎn)量是多少噸時(shí),所獲毛利潤(rùn)最大?(毛利潤(rùn)=銷(xiāo)售額一費(fèi)用).
19.如圖,已知二次函數(shù)的圖象與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與軸交于點(diǎn)C,直線:x=m(m1)與軸交于點(diǎn)D.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)在直線x=m(m1)上有一點(diǎn)P(點(diǎn)P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求P點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問(wèn):拋物線上是否存在一點(diǎn)Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點(diǎn)Q,請(qǐng)求出m的值;如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.
20.已知二次函數(shù)及實(shí)數(shù),求
(1)函數(shù)在一2x≤a的最小值;
(2)函數(shù)在a≤x≤a+2的最小值.
21.如圖,在直角坐標(biāo):O中,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(4,),且在軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在軸上求作一點(diǎn)P(不寫(xiě)作法)使PA+PC最小,并求P點(diǎn)坐標(biāo);
(3)在軸的上方的拋物線上,是否存在點(diǎn)Q,使得以Q、A、B三點(diǎn)為頂點(diǎn)的三角形與△ABC相似?如果存在,求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
22.某校研究性學(xué)習(xí)小組在研究有關(guān)二次函數(shù)及其圖象性質(zhì)的問(wèn)題時(shí),發(fā)現(xiàn)了兩個(gè)重要結(jié)論.一是發(fā)現(xiàn)拋物線y=ax2+2x+3(a≠0),當(dāng)實(shí)數(shù)a變化時(shí),它的頂點(diǎn)都在某條直線上;二是發(fā)現(xiàn)當(dāng)實(shí)數(shù)a變化時(shí),若把拋物線y=ax2+2x+3的頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增加,得到A點(diǎn)的坐標(biāo);若把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加,得到B點(diǎn)的坐標(biāo),則A、B兩點(diǎn)一定仍在拋物線y=ax2+2x+3上.
(1)請(qǐng)你協(xié)助探求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3的頂點(diǎn)所在直線的解析式;
(2)問(wèn)題(1)中的直線上有一個(gè)點(diǎn)不是該拋物線的頂點(diǎn),你能找出它來(lái)嗎?并說(shuō)明理由;
(3)在他們第二個(gè)發(fā)現(xiàn)的啟發(fā)下,運(yùn)用“一般——特殊—一般”的思想,你還能發(fā)現(xiàn)什么?你能用數(shù)學(xué)語(yǔ)言將你的猜想表述出來(lái)嗎?你的猜想能成立嗎?若能成立請(qǐng)說(shuō)明理由.
參考答案
九年級(jí)數(shù)學(xué)競(jìng)賽坐標(biāo)平面上的直線講座
每個(gè)老師需要在上課前弄好自己的教案課件,大家在認(rèn)真準(zhǔn)備自己的教案課件了吧。寫(xiě)好教案課件工作計(jì)劃,才能規(guī)范的完成工作!你們會(huì)寫(xiě)一段優(yōu)秀的教案課件嗎?考慮到您的需要,小編特地編輯了“九年級(jí)數(shù)學(xué)競(jìng)賽坐標(biāo)平面上的直線講座”,相信能對(duì)大家有所幫助。
一般地,若(,是常數(shù),),則叫做的一次函數(shù),它的圖象是一條直線,函數(shù)解析式6中的系數(shù)符號(hào),決定圖象的大致位置及單調(diào)性(隨的變化情況).如圖所示:
一次函數(shù)、二元一次方程、直線有著深刻的聯(lián)系,任意一個(gè)一次函數(shù)都可看作是關(guān)于、的一個(gè)二元一次方程;任意一個(gè)關(guān)于、的二元一次方程,可化為形如()的函數(shù)形式.坐標(biāo)平面上的直線可以表示一次函數(shù)與二元一次方程,而利用方程和函數(shù)的思想可以研究直線位置關(guān)系,求坐標(biāo)平面上的直線交點(diǎn)坐標(biāo)轉(zhuǎn)化為解由函數(shù)解析式聯(lián)立的方程組.
【例題求解】
【例1】如圖,在直角坐標(biāo)系中,直角梯形OABC的頂點(diǎn)A(3,0)、B(2,7),P為線段OC上一點(diǎn),若過(guò)B、P兩點(diǎn)的直線為,過(guò)A、P兩點(diǎn)的直線為,且BP⊥AP,則=.
思路點(diǎn)撥解題的關(guān)鍵是求出P點(diǎn)坐標(biāo),只需運(yùn)用幾何知識(shí)建立OP的等式即可.
【例2】設(shè)直線(為自然數(shù))與兩坐標(biāo)軸圍成的三角形面積為(=1,2,…2000),則S1+S2+…+S2000的值為()
A.1B.C.D.
思路點(diǎn)撥求出直線與軸、軸交點(diǎn)坐標(biāo),從一般形式入手,把用含的代數(shù)式表示.
【例3】某空軍加油飛機(jī)接到命令,立即給另一架正在飛行的運(yùn)輸飛機(jī)進(jìn)行空中加油.在加油過(guò)程中,設(shè)運(yùn)輸飛機(jī)的油箱余油量為Q1噸,加油飛機(jī)的加油油箱余油量為Q2噸,加油時(shí)間為分鐘,Q1、Q2與之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問(wèn)題:
(1)加油飛機(jī)的加油油箱中裝載了多少噸油?將這些油全部加給運(yùn)輸飛機(jī)需多少分鐘?
(2)求加油過(guò)程中,運(yùn)輸飛機(jī)的余油量Q1(噸)與時(shí)間(分鐘)的函數(shù)關(guān)系式;
(3)運(yùn)輸飛機(jī)加完油后,以原速繼續(xù)飛行,需10小時(shí)到達(dá)目的地,油料是否夠用?說(shuō)明理由.
思路點(diǎn)撥對(duì)于(3),解題的關(guān)鍵是先求出運(yùn)輸飛機(jī)每小時(shí)耗油量.
注:(1)當(dāng)自變量受限制時(shí),一次函數(shù)圖象可能是射線、線段、折線或點(diǎn),一次函數(shù)當(dāng)自變量取值受限制時(shí),存在最大值與最小值,根據(jù)圖象求最值直觀明了.
(2)當(dāng)一次函數(shù)圖象與兩坐標(biāo)軸有交點(diǎn)時(shí),就與直角三角形聯(lián)系在一起,求兩交點(diǎn)坐標(biāo)并能發(fā)掘隱含條件是解相關(guān)綜合題的基礎(chǔ).
【例4】如圖,直線與軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°,如果在第二象限內(nèi)有一點(diǎn)P(,),且△ABP的面積與△AABC的面積相等,求的值.
思路點(diǎn)撥利用S△ABP=S△ABC建立含的方程,解題的關(guān)鍵是把S△ABP表示成有邊落在坐標(biāo)軸上的三角形面積和、差.
注:解函數(shù)圖象與面積結(jié)合的問(wèn)題,關(guān)鍵是把相關(guān)三角形用邊落在坐標(biāo)軸的其他三角形面積來(lái)表示,這樣面積與坐標(biāo)就建立了聯(lián)系.
【例5】在直角坐標(biāo)系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)為頂點(diǎn)的正方形,設(shè)它在折線上側(cè)部分的面積為S,試求S關(guān)于的函數(shù)關(guān)系式,并畫(huà)出它們的圖象.
思路點(diǎn)撥先畫(huà)出符合題意的圖形,然后對(duì)不確定折線及其中的字母的取值范圍進(jìn)行分類討論,的取值決定了正方形在折線上側(cè)部分的圖形的形狀.
注:我們把有自變量或關(guān)于自變量的代數(shù)式包含在絕對(duì)值符號(hào)在內(nèi)的一類函數(shù)稱為絕對(duì)值函數(shù).去掉絕對(duì)值符號(hào),把絕對(duì)值函數(shù)化為分段函數(shù),這是解絕對(duì)值的一般思路.
學(xué)歷訓(xùn)練
1.一次函數(shù)的自變量的取值范圍是-3≤≤6,相應(yīng)函數(shù)值的取值范圍是-5≤≤-2,則這個(gè)函數(shù)的解析式為.
2.已知,且,則關(guān)于自變量的一次函數(shù)的圖象一定經(jīng)過(guò)第象限.
3.一家小型放影廳的盈利額(元)與售票數(shù)之間的關(guān)系如圖所示,其中超過(guò)150人時(shí),要繳納公安消防保險(xiǎn)費(fèi)50元.試根據(jù)關(guān)系圖回答下列問(wèn)題:
(1)當(dāng)售票數(shù)滿足0≤150時(shí),盈利額(元)與之間的函數(shù)關(guān)系式是.
(2)當(dāng)售票數(shù)滿足150x≤200時(shí),盈利額(元)與之間的函數(shù)關(guān)系式是.
(3)當(dāng)售票數(shù)為時(shí),不賠不賺;當(dāng)售票數(shù)滿足時(shí),放影廳要賠本;若放影廳要獲得最大利潤(rùn)200元,此時(shí)售票數(shù)應(yīng)為
(4)當(dāng)售票數(shù)滿足時(shí),此時(shí)利潤(rùn)比=150時(shí)多.
4.如圖,在平行四邊形ABCD中,AC=4,BD=6,P是BD上的任一點(diǎn),過(guò)P作EF∥AC,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn),設(shè)BP=,EF=,則能反映與之間關(guān)系的圖象是()
5.下列圖象中,不可能是關(guān)于的一次函數(shù)的圖象是()
6.小李以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克西瓜到市場(chǎng)去銷(xiāo)售,在銷(xiāo)售了部分西瓜之后,余下的每千克降價(jià)0.4元,全部售完.銷(xiāo)售金額與賣(mài)瓜的千克數(shù)之間關(guān)系如圖所示,那么小李賺了()
A.32元B.36元C.38元D.44元
7.某醫(yī)藥研究所開(kāi)發(fā)了一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時(shí)時(shí)血液中含藥量最高,達(dá)每毫升6微克(1微克=10-3毫克),接著逐步衰減,10小時(shí)時(shí)血液中含藥量為每毫升3微克,每毫升血液中含藥量(微克)隨時(shí)間(小時(shí))的變化如圖所示,當(dāng)成人按規(guī)定劑量服用后.
(1)分別求出≤2和≥2時(shí)與之間的函數(shù)關(guān)系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時(shí)在治療疾病時(shí)是有效的,那么這個(gè)有效時(shí)間是多長(zhǎng)?
8.如圖,正方形ABCD的邊長(zhǎng)是4,將此正方形置于平面直角坐標(biāo)系O中,使AB在軸的正半軸上,A點(diǎn)的坐標(biāo)是(1,0)
(1)經(jīng)過(guò)C點(diǎn)的直線與軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線經(jīng)過(guò)點(diǎn)E且將正方形ABCD分成面積相等的兩部分,求直線的方程,并在坐標(biāo)系中畫(huà)出直線.(2001年湖北省荊州市中考題)
9.如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2)
(1)求直線AB的解析式.
(2)過(guò)點(diǎn)C(2,0)的直線(與軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB相似,求點(diǎn)P的坐標(biāo).
10.如圖,直線與軸、y軸分別交于P、Q兩點(diǎn),把△POQ沿PQ翻折,點(diǎn)O落在R處,則點(diǎn)R的坐標(biāo)是.
11.在直角坐標(biāo)系O中,軸上的動(dòng)點(diǎn)M(,0)到定點(diǎn)P(5,5)、Q(2,1)的距離分別為MP和MQ,那么,當(dāng)MP+MQ取最小值時(shí),點(diǎn)M的橫坐標(biāo)為.
12.如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(15,6),直線恰好將矩形OABC分成面積相等的兩部分,那么b=.
13.如果—條直線經(jīng)過(guò)不同的三點(diǎn)A(a,b),B(b,a),C(a-b,b-a),那么,直線經(jīng)過(guò)()象限.
A.二、四B.—、三C.二、三、四D.一、三、四
14.一個(gè)一次函數(shù)的圖象與直線平行,與軸、軸的交點(diǎn)分別為A、B,并且過(guò)點(diǎn)(一l,—25),則在線段AB(包括端點(diǎn)A、B)上,橫、縱坐標(biāo)都是整數(shù)的的點(diǎn)有()
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)
15.點(diǎn)A(一4,0),B(2,0)是坐標(biāo)平面上兩定點(diǎn),C是的圖象上的動(dòng)點(diǎn),則滿足上述條件的直角△ABC可以畫(huà)出()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
16.有—個(gè)附有進(jìn)、出水管的容器,每單位時(shí)間進(jìn)、出的水量都是一定的,設(shè)從某時(shí)刻開(kāi)始5分鐘內(nèi)只進(jìn)不出水,在隨后的15分鐘內(nèi)既進(jìn)水又出水,得到時(shí)間(分)與水量(升)之間的關(guān)系如下圖.若20分鐘后只出水不進(jìn)水,求這時(shí)(即≥20)y與之間的函數(shù)關(guān)系式.
17.如圖,△AOB為正三角形,點(diǎn)B坐標(biāo)為(2,0),過(guò)點(diǎn)C(一2,0)作直線交AO于D,交AB于E,且使△ADE和△DCO的面積相等,求直線的函數(shù)解析式.
18.在直角坐標(biāo)系中,有四個(gè)點(diǎn)A(一8,3),B(一4,5),C(0,),D(,0),當(dāng)四邊形ABCD的周長(zhǎng)最短時(shí),求的值.
19.轉(zhuǎn)爐煉鋼產(chǎn)生的棕紅色煙塵會(huì)污染大氣,某裝置可通過(guò)回收棕紅色煙塵中的氧化鐵從而降低污染,該裝置的氧化鐵回收率與其通過(guò)的電流有關(guān).現(xiàn)經(jīng)過(guò)試驗(yàn)得到下列數(shù)據(jù):
通過(guò)電流強(qiáng)度(單位A)11.71.92.12.4
氧化鐵回收率(%)7579888778
如圖建立直角坐標(biāo)系,用橫坐標(biāo)表示通過(guò)的電流強(qiáng)度,縱坐標(biāo)表示氧化鐵回收率.
(1)將試驗(yàn)所得數(shù)據(jù)在右圖所給的直角坐標(biāo)系中用點(diǎn)表示(注:該圖中坐標(biāo)軸的交點(diǎn)代表點(diǎn)(1,70);
(2)用線段將題(1)所畫(huà)的點(diǎn)從左到右順次連接,若用此圖象來(lái)模擬氧化鐵回收率y關(guān)于通過(guò)電流x的函數(shù)關(guān)系,試寫(xiě)出該函數(shù)在1.7≤x≤2.4時(shí)的表達(dá)式;
(3)利用題(2)所得函數(shù)關(guān)系,求氧化鐵回收率大于85%時(shí),該裝置通過(guò)的電流應(yīng)該控制的范圍(精確到0.1A).
20.如圖,直線OC、BC的函數(shù)關(guān)系式分別為和,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(03),過(guò)點(diǎn)P作直線與軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線左側(cè)部分的面積為S,寫(xiě)出S與之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫(huà)出(2)中的函數(shù)的圖象;
(4)當(dāng)為何值時(shí),直線平分△OBC的面積?
參考答案
九年級(jí)數(shù)學(xué)競(jìng)賽走進(jìn)追問(wèn)求根公式講座
形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法.而公式法是解一元二次方程的最普遍、最具有一般性的方法.
求根公式內(nèi)涵豐富:它包含了初中階段已學(xué)過(guò)的全部代數(shù)運(yùn)算;它回答了一元二次方程的諸如怎樣求實(shí)根、實(shí)根的個(gè)數(shù)、何時(shí)有實(shí)根等基本問(wèn)題;它展示了數(shù)學(xué)的簡(jiǎn)潔美.
降次轉(zhuǎn)化是解方程的基本思想,有些條件中含有(或可轉(zhuǎn)化為)一元二次方程相關(guān)的問(wèn)題,直接求解可能給解題帶來(lái)許多不便,往往不是去解這個(gè)二次方程,而是對(duì)方程進(jìn)行適當(dāng)?shù)淖冃蝸?lái)代換,從而使問(wèn)題易于解決.解題時(shí)常用到變形降次、整體代入、構(gòu)造零值多項(xiàng)式等技巧與方法.
【例題求解】
【例1】滿足的整數(shù)n有個(gè).
思路點(diǎn)撥從指數(shù)運(yùn)算律、±1的特征人手,將問(wèn)題轉(zhuǎn)化為解方程.
【例2】設(shè)、是二次方程的兩個(gè)根,那么的值等于()
A.一4B.8C.6D.0
思路點(diǎn)撥求出、的值再代入計(jì)算,則計(jì)算繁難,解題的關(guān)鍵是利用根的定義及變形,使多項(xiàng)式降次,如,.
【例3】解關(guān)于的方程.
思路點(diǎn)撥因不知曉原方程的類型,故需分及兩種情況討論.
【例4】設(shè)方程,求滿足該方程的所有根之和.
思路點(diǎn)撥通過(guò)討論,脫去絕對(duì)值符號(hào),把絕對(duì)值方程轉(zhuǎn)化為一般的一元二次方程求解.
【例5】已知實(shí)數(shù)、、、互不相等,且,試求的值.
思路點(diǎn)撥運(yùn)用連等式,通過(guò)迭代把、、用的代數(shù)式表示,由解方程求得的值.
注:一元二次方程常見(jiàn)的變形形式有:
(1)把方程()直接作零值多項(xiàng)式代換;
(2)把方程()變形為,代換后降次;
(3)把方程()變形為或,代換后使之轉(zhuǎn)化關(guān)系或整體地消去.
解合字母系數(shù)方程時(shí),在未指明方程類型時(shí),應(yīng)分及兩種情況討論;解絕對(duì)值方程需脫去絕對(duì)值符號(hào),并用到絕對(duì)值一些性質(zhì),如.
學(xué)歷訓(xùn)練
1.已知、是實(shí)數(shù),且,那么關(guān)于的方程的根為.
2.已知,那么代數(shù)式的值是.
3.若,,則的值為.
4.若兩個(gè)方程和只有一個(gè)公共根,則()
A.B.C.D.
5.當(dāng)分式有意義時(shí),的取值范圍是()
A.B.C.D.且
6.方程的實(shí)根的個(gè)數(shù)是()
A.0B.1C.2D.3
7.解下列關(guān)于的方程:
(1);
(2);(3).
8.已知,求代數(shù)式的值.
9.是否存在某個(gè)實(shí)數(shù)m,使得方程和有且只有一個(gè)公共的實(shí)根?如果存在,求出這個(gè)實(shí)數(shù)m及兩方程的公共實(shí)根;如果不存在,請(qǐng)說(shuō)明理由.
注:解公共根問(wèn)題的基本策略是:當(dāng)方程的根有簡(jiǎn)單形式表示時(shí),利用公共根相等求解,當(dāng)方程的根不便于求出時(shí),可設(shè)出公共根,設(shè)而不求,通過(guò)消去二次項(xiàng)尋找解題突破口.
10.若,則=.
11.已知、是有理數(shù),方程有一個(gè)根是,則的值為.
12.已知是方程的一個(gè)正根。則代數(shù)式的值為.
13.對(duì)于方程,如果方程實(shí)根的個(gè)數(shù)恰為3個(gè),則m值等于()
A.1n.2C.D.2.5
14.自然數(shù)滿足,這樣的的個(gè)數(shù)是()
A.2B.1C.3D.4
15.已知、都是負(fù)實(shí)數(shù),且,那么的值是()
A.B.C.D.
16.已知,求的值.
20.如圖,銳角△ABC中,PQRS是△ABC的內(nèi)接矩形,且S△ABC=S矩形PQRS,其中為不小于3的自然數(shù).求證:需為無(wú)理數(shù).
參考答案