小學(xué)三年級(jí)數(shù)學(xué)教案
發(fā)表時(shí)間:2021-02-15九年級(jí)數(shù)學(xué)競(jìng)賽走進(jìn)追問(wèn)求根公式講座。
形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法.而公式法是解一元二次方程的最普遍、最具有一般性的方法.
求根公式內(nèi)涵豐富:它包含了初中階段已學(xué)過(guò)的全部代數(shù)運(yùn)算;它回答了一元二次方程的諸如怎樣求實(shí)根、實(shí)根的個(gè)數(shù)、何時(shí)有實(shí)根等基本問(wèn)題;它展示了數(shù)學(xué)的簡(jiǎn)潔美.
降次轉(zhuǎn)化是解方程的基本思想,有些條件中含有(或可轉(zhuǎn)化為)一元二次方程相關(guān)的問(wèn)題,直接求解可能給解題帶來(lái)許多不便,往往不是去解這個(gè)二次方程,而是對(duì)方程進(jìn)行適當(dāng)?shù)淖冃蝸?lái)代換,從而使問(wèn)題易于解決.解題時(shí)常用到變形降次、整體代入、構(gòu)造零值多項(xiàng)式等技巧與方法.
【例題求解】
【例1】滿足的整數(shù)n有個(gè).
思路點(diǎn)撥從指數(shù)運(yùn)算律、±1的特征人手,將問(wèn)題轉(zhuǎn)化為解方程.
【例2】設(shè)、是二次方程的兩個(gè)根,那么的值等于()
A.一4B.8C.6D.0
思路點(diǎn)撥求出、的值再代入計(jì)算,則計(jì)算繁難,解題的關(guān)鍵是利用根的定義及變形,使多項(xiàng)式降次,如,.
【例3】解關(guān)于的方程.
思路點(diǎn)撥因不知曉原方程的類型,故需分及兩種情況討論.
【例4】設(shè)方程,求滿足該方程的所有根之和.
思路點(diǎn)撥通過(guò)討論,脫去絕對(duì)值符號(hào),把絕對(duì)值方程轉(zhuǎn)化為一般的一元二次方程求解.
【例5】已知實(shí)數(shù)、、、互不相等,且,試求的值.
思路點(diǎn)撥運(yùn)用連等式,通過(guò)迭代把、、用的代數(shù)式表示,由解方程求得的值.
JAb88.Com
注:一元二次方程常見(jiàn)的變形形式有:
(1)把方程()直接作零值多項(xiàng)式代換;
(2)把方程()變形為,代換后降次;
(3)把方程()變形為或,代換后使之轉(zhuǎn)化關(guān)系或整體地消去.
解合字母系數(shù)方程時(shí),在未指明方程類型時(shí),應(yīng)分及兩種情況討論;解絕對(duì)值方程需脫去絕對(duì)值符號(hào),并用到絕對(duì)值一些性質(zhì),如.
學(xué)歷訓(xùn)練
1.已知、是實(shí)數(shù),且,那么關(guān)于的方程的根為.
2.已知,那么代數(shù)式的值是.
3.若,,則的值為.
4.若兩個(gè)方程和只有一個(gè)公共根,則()
A.B.C.D.
5.當(dāng)分式有意義時(shí),的取值范圍是()
A.B.C.D.且
6.方程的實(shí)根的個(gè)數(shù)是()
A.0B.1C.2D.3
7.解下列關(guān)于的方程:
(1);
(2);(3).
8.已知,求代數(shù)式的值.
9.是否存在某個(gè)實(shí)數(shù)m,使得方程和有且只有一個(gè)公共的實(shí)根?如果存在,求出這個(gè)實(shí)數(shù)m及兩方程的公共實(shí)根;如果不存在,請(qǐng)說(shuō)明理由.
注:解公共根問(wèn)題的基本策略是:當(dāng)方程的根有簡(jiǎn)單形式表示時(shí),利用公共根相等求解,當(dāng)方程的根不便于求出時(shí),可設(shè)出公共根,設(shè)而不求,通過(guò)消去二次項(xiàng)尋找解題突破口.
10.若,則=.
11.已知、是有理數(shù),方程有一個(gè)根是,則的值為.
12.已知是方程的一個(gè)正根。則代數(shù)式的值為.
13.對(duì)于方程,如果方程實(shí)根的個(gè)數(shù)恰為3個(gè),則m值等于()
A.1n.2C.D.2.5
14.自然數(shù)滿足,這樣的的個(gè)數(shù)是()
A.2B.1C.3D.4
15.已知、都是負(fù)實(shí)數(shù),且,那么的值是()
A.B.C.D.
16.已知,求的值.
20.如圖,銳角△ABC中,PQRS是△ABC的內(nèi)接矩形,且S△ABC=S矩形PQRS,其中為不小于3的自然數(shù).求證:需為無(wú)理數(shù).
參考答案
相關(guān)閱讀
九年級(jí)數(shù)學(xué)競(jìng)賽由常量數(shù)學(xué)到變量數(shù)學(xué)講座
數(shù)學(xué)漫長(zhǎng)的發(fā)展歷史大致歷經(jīng)四個(gè)時(shí)期:以自然數(shù)、分?jǐn)?shù)體系形成的萌芽期;以代數(shù)符號(hào)體系形成的常量數(shù)學(xué)時(shí)期;以函數(shù)概念產(chǎn)生的變量數(shù)學(xué)時(shí)期;以集合論為標(biāo)志的現(xiàn)代數(shù)學(xué)時(shí)期.
函數(shù)是數(shù)學(xué)中最重要的概念之一,它是變量數(shù)學(xué)的標(biāo)志,“函數(shù)”是從量的側(cè)面去描述客觀世界的運(yùn)動(dòng)變化、相互聯(lián)系,從量的側(cè)面反映了客觀世界的動(dòng)態(tài)和它們的相互制約性.
函數(shù)的基本知識(shí)有:與平面直角坐標(biāo)系相關(guān)的概念、函數(shù)概念、函數(shù)的表示法、函數(shù)圖象概念及畫(huà)法.
在坐標(biāo)平面內(nèi),由點(diǎn)的坐標(biāo)找點(diǎn)和由點(diǎn)求坐標(biāo)是“數(shù)”與“形”相互轉(zhuǎn)換的最基本形式.點(diǎn)的坐標(biāo)是解決函數(shù)問(wèn)題的基礎(chǔ),函數(shù)解析式是解決函數(shù)問(wèn)題的關(guān)鍵,所以,求點(diǎn)的坐標(biāo)、探求函數(shù)解析式是研究函數(shù)的兩大重要課題.
【例題求解】
【例1】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(2,2),B(2,-3),點(diǎn)P在y軸上,且△APB為直角三角形,則點(diǎn)P的個(gè)數(shù)為.(河南省競(jìng)賽題)
思路點(diǎn)撥先在直角坐標(biāo)平面內(nèi)描出A、B兩點(diǎn),連結(jié)AB,因題設(shè)中未指明△APB的哪個(gè)角是直角,故應(yīng)分別就∠A、∠B、∠C為直角來(lái)討論,設(shè)點(diǎn)P(0,x),運(yùn)用幾何知識(shí)建立x的方程.
注:點(diǎn)的坐標(biāo)是數(shù)與形結(jié)合的橋梁,求點(diǎn)的坐標(biāo)的基本方法有:
(1)利用幾何計(jì)算求;
(2)通過(guò)解析式求;
(3)解由解析式聯(lián)立的方程組求.
【例2】如圖,向放在水槽底部的燒杯注水(流量一定),注滿燒杯后,繼續(xù)注水,直至注滿水槽.水槽中水面上升高度與注水時(shí)間之間的函數(shù)關(guān)系,大致是下列圖象中的()
思路點(diǎn)撥向燒杯注水需要時(shí)間,并且水槽中水面上升高.
注:實(shí)際生活中量與量之間的關(guān)系可以形象地通過(guò)圖象直觀地表現(xiàn)出來(lái),如心電圖、,股市行情走勢(shì)圖等,圖象中包含著豐富的圖象信息,要善于從圖象的形狀、位置、發(fā)展變化趨勢(shì)等有關(guān)信息中獲得啟示.
【例3】南方A市欲將一批容易變質(zhì)的水果運(yùn)往B市銷售,共有飛機(jī)、火車、汽車三種運(yùn)輸方式,現(xiàn)只可選擇其中的一種,這三種運(yùn)輸方式的主要參考數(shù)據(jù)如下表所示:
運(yùn)輸工具途中速度(千米/時(shí))途中費(fèi)用(元/千米)裝卸費(fèi)用(元)裝卸時(shí)間(小時(shí))
飛機(jī)2001610002
火車100420004
汽車50810002
若這批水果在運(yùn)輸(包括裝卸)過(guò)程中的損耗為200元/小時(shí),記A、B兩市間的距離為x千米.
(1)如果用Wl、W2、W3分別表示使用飛機(jī)、火車、汽車運(yùn)輸時(shí)的總支出費(fèi)用(包括損耗),求出Wl、W2、W3與小x間的函數(shù)關(guān)系式.
(2)應(yīng)采用哪種運(yùn)輸方式,才使運(yùn)輸時(shí)的總支出費(fèi)用最小?
(湖北省黃岡市中考題)
思路點(diǎn)撥每種運(yùn)輸工具總支出費(fèi)用=途中所需費(fèi)用(含裝卸費(fèi)用)+損耗費(fèi)用;總支出費(fèi)用隨距離變化而變化,由Wl—W2=0,W2一W3=0,先確定自變量的特定值,通過(guò)討論選擇最佳運(yùn)輸方式.
【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐標(biāo)系中,使AD邊在y軸上,點(diǎn)C的坐標(biāo)為(2,8).
(1)畫(huà)出符合題目條件的菱形與直角坐標(biāo)系;
(2)寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(3)設(shè)菱形ABCD的對(duì)角線交點(diǎn)為P.問(wèn):在y軸上是否存在一點(diǎn)F,使得點(diǎn)P與點(diǎn)F關(guān)于菱形ABCD的某條邊所在的直線對(duì)稱,如果存在,寫(xiě)出點(diǎn)F的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(江蘇省常州市中考題)
思路點(diǎn)撥(1)關(guān)鍵是探求點(diǎn)A是在y軸正半軸上、負(fù)半軸上還是坐標(biāo)原點(diǎn),只須判斷∠COy與∠CAD的大??;(2)利用解直角三角形求A,B兩點(diǎn)坐標(biāo);(3)設(shè)軸上存在點(diǎn)F(0,y),則P與F只可能關(guān)于直線DC對(duì)稱.
注:建立函數(shù)關(guān)系式,實(shí)際上都是根據(jù)具體的實(shí)際問(wèn)題和一些特殊的關(guān)系、數(shù)據(jù)而抽象、歸納建立函數(shù)的模型.
【例5】如圖,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分別為AB、AC、BC邊上的中點(diǎn),若P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥BC,且交AC于點(diǎn)Q,以PQ為一邊,在點(diǎn)A的右側(cè)作正方形PQMN,記PQMN與矩形EDBF的公共部分的面積為y.
(1)當(dāng)AP=3cm時(shí),求的值;
(2)設(shè)AP=cm時(shí),求y與x的函數(shù)關(guān)系式;
(3)當(dāng)y=2cm2,試確定點(diǎn)P的位置.(2001年天津市中考題)
思路點(diǎn)撥對(duì)于(2),由于點(diǎn)P的位置不同,y與x之間存在不同的函數(shù)關(guān)系,故需分類討論;對(duì)于(3),由相應(yīng)函數(shù)解析式求x值.
注:確定幾何元素間的函數(shù)關(guān)系式,首先是借助幾何知識(shí)與方法把相應(yīng)線段用自變量表示,再代入相應(yīng)的等量關(guān)系式,需要注意的是:
(1)當(dāng)圖形運(yùn)動(dòng)導(dǎo)致圖形之間位置發(fā)生變化,需要分類討論;
(2)確定自變量的幾何意義,常用到運(yùn)動(dòng)變化、考慮極端情形、特殊情形等思想方法.
學(xué)力訓(xùn)練
1.如圖,在直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(4,4),∠OAB=90°,有直角三角形與Rt△ABO全等且以AB為公共邊,請(qǐng)寫(xiě)出這些直角三角形未知頂點(diǎn)的坐標(biāo).
(貴州省中考題)
2.在直角坐標(biāo)系中有兩點(diǎn)A(4,0),B(0,2),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為時(shí),使得由點(diǎn)B、O、C組成的三角形與△AOB相似(至少找出兩個(gè)滿足條件的點(diǎn)的坐標(biāo)).(廣西桂林市中考題)
3.根據(jù)指令(S≥0,0°A180°),機(jī)器人在平面上能完成下列動(dòng)作:先原地逆時(shí)針旋轉(zhuǎn)角度A,再朝其面對(duì)的方向沿直線行走距離S.現(xiàn)機(jī)器人在直角坐標(biāo)系的坐標(biāo)原點(diǎn),且面對(duì)x軸的正方向,(1)若給機(jī)器人下了一個(gè)指令,則機(jī)器人應(yīng)移動(dòng)到點(diǎn);(2)請(qǐng)你給機(jī)器人下一個(gè)指令,使其移動(dòng)到點(diǎn)(一5,5).
(浙江省杭州市中考題)
4.如圖,在平面直角坐標(biāo)系中,直線AB與x軸的夾角為60°,且點(diǎn)A的坐標(biāo)為(一2,0),點(diǎn)B在x軸上方,設(shè)AB=,那么點(diǎn)B的橫坐標(biāo)為()
A.B.C.D.
(年南昌市中考題)
5.一天,小軍和爸爸去登山,已知山腳到山頂?shù)穆烦虨?00米,小軍先走了一段路程,爸爸才開(kāi)始出發(fā).圖中兩條線段分別表示小軍和爸爸離開(kāi)山腳登山的路程(米)與登山所用的時(shí)間(分鐘的關(guān)系)(從爸爸開(kāi)始登山時(shí)計(jì)時(shí)),根據(jù)圖象,下列說(shuō)法錯(cuò)誤的是()
A.爸爸登山時(shí),小軍已走了50米
B.爸爸走了5分鐘,小軍仍在爸爸的前面
C.小軍比爸爸晚到山頂
D.爸爸前10分鐘登山的速度比小軍慢,10分鐘之后登山的速度比小軍快
(江蘇省淮安市中考題)
6.若函數(shù)的自變量的取值范圍為一切實(shí)數(shù),則的取值范圍是()
A.mlB.m=1C.mlD.m≤1
7.如圖,在直角坐標(biāo)系中,已知點(diǎn)A(4,0)、點(diǎn)B(0,3),若有一個(gè)直角三角形與Rt△ABO全等,且它們有一條公共邊,請(qǐng)寫(xiě)出這個(gè)直角三角形未知頂點(diǎn)的坐標(biāo)(不必寫(xiě)出計(jì)算過(guò)程).
(常州市中考題)
8.如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請(qǐng)觀察下列圖形并解答有關(guān)問(wèn)題:
(1)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為,請(qǐng)寫(xiě)出與(表示第個(gè)圖形)的函數(shù)關(guān)系式;
(2)按上述鋪設(shè)方案,鋪一塊這樣的矩形地面共用了506塊瓷磚,求此時(shí)的值;
(3)若黑瓷磚每塊4元,白瓷磚每塊3元,在問(wèn)題(2)中,共需花多少元錢(qián)購(gòu)買瓷磚?
(4)是否存在黑瓷磚與白瓷磚塊數(shù)相等情形?請(qǐng)通過(guò)計(jì)算說(shuō)明為什么?
(吉林省中考題)
9.如圖,在平面直角坐標(biāo)系中有一個(gè)正方形ABCD,它的4個(gè)頂點(diǎn)為A(10,0),B(0,10),C(一10,0),D(0,一10),則該正方形內(nèi)及邊界上共有個(gè)整點(diǎn)(即縱橫坐標(biāo)都是整數(shù)的點(diǎn)).(上海市初中數(shù)學(xué)競(jìng)賽題)
10.如圖,已知邊長(zhǎng)為l的正方形OABC在直角坐標(biāo)系中,A、B兩點(diǎn)在第一象限內(nèi),OA與軸的夾角為30°,那么點(diǎn)B的坐標(biāo)是.
11.如圖,一個(gè)粒子在第一象限運(yùn)動(dòng),在第一分鐘內(nèi)它從原點(diǎn)運(yùn)動(dòng)到(1,0),而后它接著按圖所示在與軸、軸平行的方向上來(lái)回運(yùn)動(dòng),且每分鐘移動(dòng)1個(gè)單位長(zhǎng)度,那么在1989分鐘后這個(gè)粒子所處位置為.
(美國(guó)高中數(shù)學(xué)考試題)
12.在直角坐標(biāo)系中,已知A(1,1),在軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P共有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)(2001年湖北賽區(qū)選拔賽題)
13.已知點(diǎn)P的坐標(biāo)是(l,),這里、是有理數(shù),PA、PB分別是點(diǎn)P到軸和軸的垂線段,且矩形OAPB的面積為,則P點(diǎn)可能出現(xiàn)的象限有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)(江蘇省競(jìng)賽題)
14.甲、乙二人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度Vl與V2(ViV2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;關(guān)于甲乙二人從A地到達(dá)B地的路程與時(shí)間的函數(shù)圖象及關(guān)系,有圖中4個(gè)不同的圖示分析.其中橫軸表示時(shí)間,縱軸表示路程,其中正確的圖示分析為()
A.圖(1)B.圖(1)或圖(2)C.圖(3)D.圖(4)
(河北省初中數(shù)學(xué)創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽試題)
15.依法納稅是每個(gè)公民應(yīng)盡的義務(wù).《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民每月工資、薪金收入不超過(guò)800元,不需交稅;超過(guò)800元的部分為全月應(yīng)納稅所得額,都應(yīng)交稅,且根據(jù)超過(guò)部分的多少按不同的稅率交稅,詳細(xì)的稅率如下表:
級(jí)別全月應(yīng)納稅所得額稅率(%)
1不超過(guò)500元部分5
2超過(guò)500元至2000元部分10
3超過(guò)2000元至5000元部分15
……
(1)某公民2002年10月的總收人為1350元,問(wèn)他應(yīng)交稅款多少元?
(2)設(shè)表示每月收入(單位:元),表示應(yīng)交稅款(單位:元),當(dāng)1300x≤2800時(shí),請(qǐng)寫(xiě)出關(guān)于的函數(shù)關(guān)系式;
(3)某企業(yè)高級(jí)職員2002年11月應(yīng)交稅款55元,問(wèn)該月他的總收入是多少元?
(四川省競(jìng)賽題)
16.如圖,在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB上任意一點(diǎn)(A、B兩點(diǎn)除外),過(guò)D作AB垂線與△ABC的直角邊相交于E,設(shè)AD=,△ADE的面積為,當(dāng)點(diǎn)D在AB上移動(dòng)時(shí),求關(guān)于之間的函數(shù)關(guān)系式.
九年級(jí)數(shù)學(xué)競(jìng)賽坐標(biāo)平面上的直線講座
每個(gè)老師需要在上課前弄好自己的教案課件,大家在認(rèn)真準(zhǔn)備自己的教案課件了吧。寫(xiě)好教案課件工作計(jì)劃,才能規(guī)范的完成工作!你們會(huì)寫(xiě)一段優(yōu)秀的教案課件嗎?考慮到您的需要,小編特地編輯了“九年級(jí)數(shù)學(xué)競(jìng)賽坐標(biāo)平面上的直線講座”,相信能對(duì)大家有所幫助。
一般地,若(,是常數(shù),),則叫做的一次函數(shù),它的圖象是一條直線,函數(shù)解析式6中的系數(shù)符號(hào),決定圖象的大致位置及單調(diào)性(隨的變化情況).如圖所示:
一次函數(shù)、二元一次方程、直線有著深刻的聯(lián)系,任意一個(gè)一次函數(shù)都可看作是關(guān)于、的一個(gè)二元一次方程;任意一個(gè)關(guān)于、的二元一次方程,可化為形如()的函數(shù)形式.坐標(biāo)平面上的直線可以表示一次函數(shù)與二元一次方程,而利用方程和函數(shù)的思想可以研究直線位置關(guān)系,求坐標(biāo)平面上的直線交點(diǎn)坐標(biāo)轉(zhuǎn)化為解由函數(shù)解析式聯(lián)立的方程組.
【例題求解】
【例1】如圖,在直角坐標(biāo)系中,直角梯形OABC的頂點(diǎn)A(3,0)、B(2,7),P為線段OC上一點(diǎn),若過(guò)B、P兩點(diǎn)的直線為,過(guò)A、P兩點(diǎn)的直線為,且BP⊥AP,則=.
思路點(diǎn)撥解題的關(guān)鍵是求出P點(diǎn)坐標(biāo),只需運(yùn)用幾何知識(shí)建立OP的等式即可.
【例2】設(shè)直線(為自然數(shù))與兩坐標(biāo)軸圍成的三角形面積為(=1,2,…2000),則S1+S2+…+S2000的值為()
A.1B.C.D.
思路點(diǎn)撥求出直線與軸、軸交點(diǎn)坐標(biāo),從一般形式入手,把用含的代數(shù)式表示.
【例3】某空軍加油飛機(jī)接到命令,立即給另一架正在飛行的運(yùn)輸飛機(jī)進(jìn)行空中加油.在加油過(guò)程中,設(shè)運(yùn)輸飛機(jī)的油箱余油量為Q1噸,加油飛機(jī)的加油油箱余油量為Q2噸,加油時(shí)間為分鐘,Q1、Q2與之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問(wèn)題:
(1)加油飛機(jī)的加油油箱中裝載了多少噸油?將這些油全部加給運(yùn)輸飛機(jī)需多少分鐘?
(2)求加油過(guò)程中,運(yùn)輸飛機(jī)的余油量Q1(噸)與時(shí)間(分鐘)的函數(shù)關(guān)系式;
(3)運(yùn)輸飛機(jī)加完油后,以原速繼續(xù)飛行,需10小時(shí)到達(dá)目的地,油料是否夠用?說(shuō)明理由.
思路點(diǎn)撥對(duì)于(3),解題的關(guān)鍵是先求出運(yùn)輸飛機(jī)每小時(shí)耗油量.
注:(1)當(dāng)自變量受限制時(shí),一次函數(shù)圖象可能是射線、線段、折線或點(diǎn),一次函數(shù)當(dāng)自變量取值受限制時(shí),存在最大值與最小值,根據(jù)圖象求最值直觀明了.
(2)當(dāng)一次函數(shù)圖象與兩坐標(biāo)軸有交點(diǎn)時(shí),就與直角三角形聯(lián)系在一起,求兩交點(diǎn)坐標(biāo)并能發(fā)掘隱含條件是解相關(guān)綜合題的基礎(chǔ).
【例4】如圖,直線與軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°,如果在第二象限內(nèi)有一點(diǎn)P(,),且△ABP的面積與△AABC的面積相等,求的值.
思路點(diǎn)撥利用S△ABP=S△ABC建立含的方程,解題的關(guān)鍵是把S△ABP表示成有邊落在坐標(biāo)軸上的三角形面積和、差.
注:解函數(shù)圖象與面積結(jié)合的問(wèn)題,關(guān)鍵是把相關(guān)三角形用邊落在坐標(biāo)軸的其他三角形面積來(lái)表示,這樣面積與坐標(biāo)就建立了聯(lián)系.
【例5】在直角坐標(biāo)系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)為頂點(diǎn)的正方形,設(shè)它在折線上側(cè)部分的面積為S,試求S關(guān)于的函數(shù)關(guān)系式,并畫(huà)出它們的圖象.
思路點(diǎn)撥先畫(huà)出符合題意的圖形,然后對(duì)不確定折線及其中的字母的取值范圍進(jìn)行分類討論,的取值決定了正方形在折線上側(cè)部分的圖形的形狀.
注:我們把有自變量或關(guān)于自變量的代數(shù)式包含在絕對(duì)值符號(hào)在內(nèi)的一類函數(shù)稱為絕對(duì)值函數(shù).去掉絕對(duì)值符號(hào),把絕對(duì)值函數(shù)化為分段函數(shù),這是解絕對(duì)值的一般思路.
學(xué)歷訓(xùn)練
1.一次函數(shù)的自變量的取值范圍是-3≤≤6,相應(yīng)函數(shù)值的取值范圍是-5≤≤-2,則這個(gè)函數(shù)的解析式為.
2.已知,且,則關(guān)于自變量的一次函數(shù)的圖象一定經(jīng)過(guò)第象限.
3.一家小型放影廳的盈利額(元)與售票數(shù)之間的關(guān)系如圖所示,其中超過(guò)150人時(shí),要繳納公安消防保險(xiǎn)費(fèi)50元.試根據(jù)關(guān)系圖回答下列問(wèn)題:
(1)當(dāng)售票數(shù)滿足0≤150時(shí),盈利額(元)與之間的函數(shù)關(guān)系式是.
(2)當(dāng)售票數(shù)滿足150x≤200時(shí),盈利額(元)與之間的函數(shù)關(guān)系式是.
(3)當(dāng)售票數(shù)為時(shí),不賠不賺;當(dāng)售票數(shù)滿足時(shí),放影廳要賠本;若放影廳要獲得最大利潤(rùn)200元,此時(shí)售票數(shù)應(yīng)為
(4)當(dāng)售票數(shù)滿足時(shí),此時(shí)利潤(rùn)比=150時(shí)多.
4.如圖,在平行四邊形ABCD中,AC=4,BD=6,P是BD上的任一點(diǎn),過(guò)P作EF∥AC,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn),設(shè)BP=,EF=,則能反映與之間關(guān)系的圖象是()
5.下列圖象中,不可能是關(guān)于的一次函數(shù)的圖象是()
6.小李以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克西瓜到市場(chǎng)去銷售,在銷售了部分西瓜之后,余下的每千克降價(jià)0.4元,全部售完.銷售金額與賣瓜的千克數(shù)之間關(guān)系如圖所示,那么小李賺了()
A.32元B.36元C.38元D.44元
7.某醫(yī)藥研究所開(kāi)發(fā)了一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時(shí)時(shí)血液中含藥量最高,達(dá)每毫升6微克(1微克=10-3毫克),接著逐步衰減,10小時(shí)時(shí)血液中含藥量為每毫升3微克,每毫升血液中含藥量(微克)隨時(shí)間(小時(shí))的變化如圖所示,當(dāng)成人按規(guī)定劑量服用后.
(1)分別求出≤2和≥2時(shí)與之間的函數(shù)關(guān)系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時(shí)在治療疾病時(shí)是有效的,那么這個(gè)有效時(shí)間是多長(zhǎng)?
8.如圖,正方形ABCD的邊長(zhǎng)是4,將此正方形置于平面直角坐標(biāo)系O中,使AB在軸的正半軸上,A點(diǎn)的坐標(biāo)是(1,0)
(1)經(jīng)過(guò)C點(diǎn)的直線與軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線經(jīng)過(guò)點(diǎn)E且將正方形ABCD分成面積相等的兩部分,求直線的方程,并在坐標(biāo)系中畫(huà)出直線.(2001年湖北省荊州市中考題)
9.如圖,已知點(diǎn)A與B的坐標(biāo)分別為(4,0),(0,2)
(1)求直線AB的解析式.
(2)過(guò)點(diǎn)C(2,0)的直線(與軸不重合)與△AOB的另一邊相交于點(diǎn)P,若截得的三角形與△AOB相似,求點(diǎn)P的坐標(biāo).
10.如圖,直線與軸、y軸分別交于P、Q兩點(diǎn),把△POQ沿PQ翻折,點(diǎn)O落在R處,則點(diǎn)R的坐標(biāo)是.
11.在直角坐標(biāo)系O中,軸上的動(dòng)點(diǎn)M(,0)到定點(diǎn)P(5,5)、Q(2,1)的距離分別為MP和MQ,那么,當(dāng)MP+MQ取最小值時(shí),點(diǎn)M的橫坐標(biāo)為.
12.如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(15,6),直線恰好將矩形OABC分成面積相等的兩部分,那么b=.
13.如果—條直線經(jīng)過(guò)不同的三點(diǎn)A(a,b),B(b,a),C(a-b,b-a),那么,直線經(jīng)過(guò)()象限.
A.二、四B.—、三C.二、三、四D.一、三、四
14.一個(gè)一次函數(shù)的圖象與直線平行,與軸、軸的交點(diǎn)分別為A、B,并且過(guò)點(diǎn)(一l,—25),則在線段AB(包括端點(diǎn)A、B)上,橫、縱坐標(biāo)都是整數(shù)的的點(diǎn)有()
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)
15.點(diǎn)A(一4,0),B(2,0)是坐標(biāo)平面上兩定點(diǎn),C是的圖象上的動(dòng)點(diǎn),則滿足上述條件的直角△ABC可以畫(huà)出()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
16.有—個(gè)附有進(jìn)、出水管的容器,每單位時(shí)間進(jìn)、出的水量都是一定的,設(shè)從某時(shí)刻開(kāi)始5分鐘內(nèi)只進(jìn)不出水,在隨后的15分鐘內(nèi)既進(jìn)水又出水,得到時(shí)間(分)與水量(升)之間的關(guān)系如下圖.若20分鐘后只出水不進(jìn)水,求這時(shí)(即≥20)y與之間的函數(shù)關(guān)系式.
17.如圖,△AOB為正三角形,點(diǎn)B坐標(biāo)為(2,0),過(guò)點(diǎn)C(一2,0)作直線交AO于D,交AB于E,且使△ADE和△DCO的面積相等,求直線的函數(shù)解析式.
18.在直角坐標(biāo)系中,有四個(gè)點(diǎn)A(一8,3),B(一4,5),C(0,),D(,0),當(dāng)四邊形ABCD的周長(zhǎng)最短時(shí),求的值.
19.轉(zhuǎn)爐煉鋼產(chǎn)生的棕紅色煙塵會(huì)污染大氣,某裝置可通過(guò)回收棕紅色煙塵中的氧化鐵從而降低污染,該裝置的氧化鐵回收率與其通過(guò)的電流有關(guān).現(xiàn)經(jīng)過(guò)試驗(yàn)得到下列數(shù)據(jù):
通過(guò)電流強(qiáng)度(單位A)11.71.92.12.4
氧化鐵回收率(%)7579888778
如圖建立直角坐標(biāo)系,用橫坐標(biāo)表示通過(guò)的電流強(qiáng)度,縱坐標(biāo)表示氧化鐵回收率.
(1)將試驗(yàn)所得數(shù)據(jù)在右圖所給的直角坐標(biāo)系中用點(diǎn)表示(注:該圖中坐標(biāo)軸的交點(diǎn)代表點(diǎn)(1,70);
(2)用線段將題(1)所畫(huà)的點(diǎn)從左到右順次連接,若用此圖象來(lái)模擬氧化鐵回收率y關(guān)于通過(guò)電流x的函數(shù)關(guān)系,試寫(xiě)出該函數(shù)在1.7≤x≤2.4時(shí)的表達(dá)式;
(3)利用題(2)所得函數(shù)關(guān)系,求氧化鐵回收率大于85%時(shí),該裝置通過(guò)的電流應(yīng)該控制的范圍(精確到0.1A).
20.如圖,直線OC、BC的函數(shù)關(guān)系式分別為和,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(03),過(guò)點(diǎn)P作直線與軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線左側(cè)部分的面積為S,寫(xiě)出S與之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫(huà)出(2)中的函數(shù)的圖象;
(4)當(dāng)為何值時(shí),直線平分△OBC的面積?
參考答案
九年級(jí)數(shù)學(xué)競(jìng)賽直線與圓專題輔導(dǎo)講座
每個(gè)老師不可缺少的課件是教案課件,規(guī)劃教案課件的時(shí)刻悄悄來(lái)臨了。將教案課件的工作計(jì)劃制定好,新的工作才會(huì)如魚(yú)得水!你們會(huì)寫(xiě)一段適合教案課件的范文嗎?考慮到您的需要,小編特地編輯了“九年級(jí)數(shù)學(xué)競(jìng)賽直線與圓專題輔導(dǎo)講座”,僅供參考,歡迎大家閱讀。
注:點(diǎn)與圓的位置關(guān)系和直線與圓的位置關(guān)系的確定有共同的精確判定方法,即量化的方法(距離與半徑的比較),我們稱“由數(shù)定形”,勾股定理的逆定理也具有這一特點(diǎn).
【例題求解】
【例1】如圖,AB是半圓O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長(zhǎng)線于E,若EA=1,ED=2,則BC的長(zhǎng)為.
思路點(diǎn)撥從C點(diǎn)看,可用切線長(zhǎng)定理,從E點(diǎn)看,可用切割線定理,而連OD,則OD⊥EC,又有相似三角形,先求出⊙O的半徑.
注:連結(jié)圓心與切點(diǎn)是一條常用的輔助線,利用切線的性質(zhì)可構(gòu)造出直角三角形,在圓的證明與計(jì)算中有廣泛的應(yīng)用.
【例2】如圖,AB、AC與⊙O相切于B、C,∠A=50°,點(diǎn)P是圓上異于B、C的一個(gè)動(dòng)點(diǎn),則∠BPC的度數(shù)是()
A.65°B.115°C.60°和115°D.130°和50°
(山西省中考題)
思路點(diǎn)撥略
【例3】如圖,以等腰△ABC的一腰AB為直徑的⊙O交BC于D,過(guò)D作DE⊥AC于E,可得結(jié)論:DE是⊙O的切線.
問(wèn):(1)若點(diǎn)O在AB上向點(diǎn)B移動(dòng),以O(shè)為圓心,OB為半徑的圓的交BC于D,DE⊥AC的條件不變,那么上述結(jié)論是否還成立?請(qǐng)說(shuō)明理由;
(2)如果AB=AC=5cm,sinA=,那么圓心O在AB的什么位置時(shí),⊙O與AC相切?(2001年黑龍江省中考題)
【例4】如圖,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB邊上的動(dòng)點(diǎn)(與點(diǎn)A、B不重合),Q是BC邊上的動(dòng)點(diǎn)(與點(diǎn)B、C不重合).
(1)當(dāng)PQ∥AC,且Q為BC的中點(diǎn)時(shí),求線段PC的長(zhǎng);
(2)當(dāng)PQ與AC不平行時(shí),△CPQ可能為直角三角形嗎?若有可能,求出線段CQ的長(zhǎng)的取值范圍;若不可能,請(qǐng)說(shuō)明理由.(廣州市中考題)
思路點(diǎn)撥對(duì)于(2),易發(fā)現(xiàn)只有點(diǎn)P能作為直角頂點(diǎn),建立一個(gè)研究的模型——以CQ為直徑的圓與線段AB的交點(diǎn)就是符合要求的點(diǎn)P,從直線與圓相切特殊位置入手,以此確定CQ的取值范圍.
注:判定一直線為圓的切線是平面幾何中一種常見(jiàn)問(wèn)題,判定的基本方法有:
(1)從直線與圓交點(diǎn)個(gè)數(shù)入手;
(2)利用角證明,即證明半徑和直線垂直;
(3)運(yùn)用線段證明,即證明圓心到直線的距離等于半徑.
一個(gè)圓的問(wèn)題,從不同的條件出發(fā),可有不同的添輔助線方式,進(jìn)而可得不同的證法,對(duì)于分層次設(shè)問(wèn)的問(wèn)題,需整體考慮;
【例5】如圖,在正方形ABCD中,AB=1,︵AC是以點(diǎn)B為圓心,AB長(zhǎng)為半徑的圓的一段弧,點(diǎn)E是邊AD上的任意一點(diǎn)(點(diǎn)E與點(diǎn)A、D不重合),過(guò)E作︵AC所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn).
(1)當(dāng)∠DEF=45°時(shí),求證點(diǎn)G為線段EF的中點(diǎn);
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)將△DEF沿直線EF翻折后得△D1EF,如圖,當(dāng)EF=時(shí),討論△AD1D與△ED1F是否相似,如果相似,請(qǐng)加以證明;如果不相似,只要求寫(xiě)出結(jié)論,不要求寫(xiě)出理由.
(上海市中考題)
思路點(diǎn)撥圖中有多條⊙B的切線,由切線長(zhǎng)定理可得多對(duì)等長(zhǎng)線段,這是解(1)、(2)問(wèn)的基礎(chǔ),對(duì)于(3),由(2)求出的值,確定E點(diǎn)位置,這是解題的關(guān)鍵.
注:本例將幾何圖形置于直角坐標(biāo)系中,綜合了圓的有關(guān)性質(zhì)、相似三角形的判定與性質(zhì)、切線的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等豐富的知識(shí),并結(jié)合了待定系數(shù)法、數(shù)形互
助等思想方法,具有較強(qiáng)的選拔功能.
學(xué)力訓(xùn)練
1.如圖,AB為⊙O的直徑,P點(diǎn)在AB延長(zhǎng)線上,PM切⊙O于M點(diǎn),若OA=,F(xiàn)M=,那么△PMB的周長(zhǎng)為.(河北省中考題)
2.PA、PB切⊙O于A、B,∠APB=78°,點(diǎn)C是⊙O上異于A、B的任意一點(diǎn),則
∠ACB=.
3.如圖,EB、EC是⊙O的兩條切線,B、C是切點(diǎn),A、D是⊙O上兩點(diǎn),如果∠F=46°,∠DCF=32°,則∠A的度數(shù)是.(重慶市中考題)
4.如圖,以△ABC的邊AB為直徑作⊙O交BC于D,過(guò)點(diǎn)D作⊙O的切線交AC于E,要使DE⊥AC,則△ABC的邊必須滿足的條件是.
(武漢市中考題)
5.、表示直線,給出下列四個(gè)論斷:①∥;②切⊙O于點(diǎn)A;③切⊙O于點(diǎn)B;④AB是⊙O的直徑.若以其中三個(gè)論斷作為條件,余下的一個(gè)作為結(jié)論,可以構(gòu)造出一些命題,在這些命題中,正確命題的個(gè)數(shù)為()
1B.2C.3D.4
(江蘇鎮(zhèn)江市中考題)
6.如圖,圓心O在邊長(zhǎng)為的正方形ABCD的對(duì)角線BD上,⊙O過(guò)B點(diǎn)且與AD、DC邊均相切,則⊙O的半徑是()
A.B.C.D.
(廣西玉林市中考題)
7.直角梯形ABCD中,AD∥BC,∠B=90°,AD+BCDC,若腰DC上有一點(diǎn)P,使AP⊥BP,則這樣的點(diǎn)()
A.不存在B.只有一個(gè)C.只有兩個(gè)D.有無(wú)數(shù)個(gè)
(大連市中考題)
8.如圖,圓內(nèi)接△ABC的外角∠ACH的平分線與圓交于D點(diǎn),DP⊥AC于P,DH⊥BH于H,下列結(jié)論:①CH=CP;②AD=DB;③AP=BH;④DH為圓的切線,其中一定成立的是()
A.①②④B.①③④C.②③④D.①②③
(武漢市中考題)
9.如圖,⊙O是△ABC的外接圓,已知∠ACB=45°,∠ABC=120°,⊙O的半徑為1,
(1)求弦AC、AB的長(zhǎng);
(2)若P為CB的延長(zhǎng)線上一點(diǎn),試確定P點(diǎn)的位置,使PA與⊙O相切,并證明你的結(jié)論.
10.如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD⊥AB于E,且PC2=PEPO.
(1)求證:PC是⊙O的切線;
(2)若OE:EA=1:2,且PA=6,求⊙O的半徑;
(3)求sin∠PCA的值.(長(zhǎng)沙市中考題)
11.(1)如圖a,已知直線AB過(guò)圓心O,交⊙O于A、B,直線AF交⊙O于F(不與B重合),直線交⊙O于C、D,交AB于E且與AF垂直,垂足為G,連AC、AD,求證:①∠BAD=∠CAG;②ACAD=AEAF.
(2)在問(wèn)題(1)中,當(dāng)直線向上平行移動(dòng)與⊙O相切時(shí),其他條件不變.
①請(qǐng)你在圖b中畫(huà)出變化后的圖形,并對(duì)照?qǐng)Da標(biāo)記字母;
②問(wèn)題(1)中的兩個(gè)結(jié)論是否成立?如果成立,請(qǐng)給出證明;如不成立,請(qǐng)說(shuō)明理由.
(遼寧省中考題)
12.如圖,在Rt△ABC中,∠A=90°,⊙O分別與AB、AC相切于點(diǎn)E、F,圓心O在BC上,若AB=a,AC=b,則⊙O的半徑等于.
13.如圖,AB是半圓O的直徑,點(diǎn)M是半徑OA的中點(diǎn),點(diǎn)P在線段AM上運(yùn)動(dòng)(不與點(diǎn)M重合),點(diǎn)Q在半圓O上運(yùn)動(dòng),且總保持PQ=PO,過(guò)點(diǎn)Q作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)C.
(1)當(dāng)∠QPA=60°時(shí),請(qǐng)你對(duì)△QCP的形狀做出猜想,并給予證明.
(2)當(dāng)QP⊥AB時(shí),△QCP的形狀是三角形.
(3)由(1)、(2)得出的結(jié)論,請(qǐng)進(jìn)一步猜想當(dāng)點(diǎn)P在線段AM上運(yùn)動(dòng)到任何位置時(shí),△QCP一定是三角形.(吉林省中考題)
14.如圖,已知AB為⊙O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長(zhǎng)線于E,若AB=3,ED=2,則BC的長(zhǎng)為()
A.2B.3C.3.5D.4
15.如圖,PA、PB是⊙O的兩條切線,A、B切點(diǎn),直線OP交⊙O于C、D,交AB于E,AF為⊙O的直徑,下列結(jié)論:(1)∠APB=∠AOP;(2)BC=DF;(3)PCPD=PEPO,其中正確結(jié)論的個(gè)數(shù)有()
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
16.如圖,已知△ABC,過(guò)點(diǎn)A作外接圓的切線交BC的延長(zhǎng)線于點(diǎn)P,,點(diǎn)D在AC上,且,延長(zhǎng)PD交AB于點(diǎn)E,則的值為()
A.B.C.D.
(太原市競(jìng)賽題)
17.如圖,已知AB為半圓O的直徑,AP為過(guò)點(diǎn)A的半圓的切線.在AB上任取一點(diǎn)C(點(diǎn)C與A、B不重合),過(guò)點(diǎn)C作半圓的切線CD交AP于點(diǎn)D;過(guò)點(diǎn)C作CE⊥AB,垂足為E.連結(jié)BD,交CE于點(diǎn)F.
(1)當(dāng)點(diǎn)C為AB的中點(diǎn)時(shí)(如圖1),求證:CF=EF;
(2)當(dāng)點(diǎn)C不是AB的中點(diǎn)時(shí)(如圖2),試判斷CF與EF的相等關(guān)系是否保持不變,并證明你的結(jié)論.(蘇州市中考題)
18.如圖,△ABC中,∠C=90°,AC=6,BC=3,點(diǎn)D在AC邊上,以D為圓心的⊙D與AB切于點(diǎn)E.
(1)求證:△ADE∽△ABC;
(2)設(shè)⊙D與BC交于點(diǎn)F,當(dāng)CF=2時(shí),求CD的長(zhǎng);
(3)設(shè)CD=,試給出一個(gè)值,使⊙D與BC沒(méi)有公共點(diǎn),并說(shuō)明你給出的值符合的要求.
(浙江省中考題)
19.如圖,PA、PB與⊙O切于A、B兩點(diǎn),PC是任意一條割線,且交⊙O于點(diǎn)E、C,交AB于點(diǎn)D.求證:
(天津市選拔賽試題)
20.如圖,⊙Oˊ與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心Oˊ的坐標(biāo)是(1,一1),半徑是,
(1)求A、B、C、D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)D的切線的解析式;
(3)問(wèn)過(guò)點(diǎn)A的切線與過(guò)點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫(xiě)出
證明過(guò)程;若不垂直,試說(shuō)明理由.
21.當(dāng)你進(jìn)入博物館的展覽廳時(shí),你知道站在何處觀賞最理想?如圖,設(shè)墻壁上的展品最高處點(diǎn)P距離地面a米,最低處點(diǎn)Q距離地面b米,觀賞者的眼睛點(diǎn)E距離地面m米,當(dāng)過(guò)P、Q、E三點(diǎn)的圓與過(guò)點(diǎn)E的水平線相切于點(diǎn)E時(shí),視角∠PEQ最大,站在此處觀賞最理想.
(1)設(shè)點(diǎn)E到墻壁的距離為x米,求a、b、m,x的關(guān)系式;
(2)當(dāng)a=2.5,b=2,m=1.6時(shí),求:
(a)點(diǎn)E和墻壁距離x米;(b)最大視角∠PER的度數(shù)(精確到1度).
(常州市中考題)