小學(xué)數(shù)學(xué)復(fù)習(xí)教案
發(fā)表時(shí)間:2021-04-06中考數(shù)學(xué)總復(fù)習(xí)圓的基本性質(zhì)導(dǎo)學(xué)案(湘教版)。
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,大家靜下心來(lái)寫(xiě)教案課件了。需要我們認(rèn)真規(guī)劃教案課件工作計(jì)劃,才能對(duì)工作更加有幫助!你們到底知道多少優(yōu)秀的教案課件呢?為滿(mǎn)足您的需求,小編特地編輯了“中考數(shù)學(xué)總復(fù)習(xí)圓的基本性質(zhì)導(dǎo)學(xué)案(湘教版)”,僅供參考,歡迎大家閱讀。
第31課圓的基本性質(zhì)
【知識(shí)梳理】
1.圓的有關(guān)概念:(1)圓:(2)圓心角:(3)圓周角:(4)弧:(5)弦:
2.圓的有關(guān)性質(zhì):
(1)圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn);圓是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心為圓心.(2)垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的?。?/p>
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧.
(3)弧、弦、圓心角的關(guān)系:在同圓或等圓中,如果兩個(gè)圓心角,兩條弧,兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等.
推論:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等;直徑所對(duì)的圓周角是直角;900的圓周角所對(duì)的弦是直徑.
3.三角形的內(nèi)心和外心:
(1)確定圓的條件:不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓.
(2)三角形的外心:(3)三角形的內(nèi)心:
4.圓心角的度數(shù)等于它所對(duì)弧的度數(shù).圓周角的度數(shù)等于它所對(duì)弧的度數(shù)一半.
同圓或等圓中,同弧或等弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
【例題精講】
例題1.如圖,公園的一座石拱橋是圓弧形(劣弧),其跨度為24米,拱的半徑為13米,則拱高為()A.5米B.8米C.7米D.5米
例題2.如圖⊙O的半徑為5,弦AB=8,M是弦AB上的動(dòng)點(diǎn),則OM不可能為()
A.2B.3C.4D.5
例題1圖例題2圖例題3圖例題4圖
例題3.如圖⊙O弦AB=6,M是AB上任意一點(diǎn),且OM最小值為4,則⊙O半徑為()
A.5B.4C.3D.2
例題4.如圖,⊙O的半徑為1,AB是⊙O的一條弦,且AB=,則弦AB所對(duì)圓周角的度數(shù)為()A.30°B.60°C.30°或150°D.60°或120°
例題5.AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,∠CDB=30°,⊙O的半徑為,則弦CD的長(zhǎng)為()A.B.C.D.
例題6.如圖,是以線(xiàn)段為直徑的的切線(xiàn),交于點(diǎn),過(guò)點(diǎn)作弦垂足為點(diǎn),連接.(1)仔細(xì)觀察圖形并寫(xiě)出四個(gè)不同的正確結(jié)論:①______,②________,③______,④________(不添加其它字母和輔助線(xiàn))(2)=,=,求的半徑
【當(dāng)堂檢測(cè)】
1.如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點(diǎn)C,且AB∥OP.若陰影部分的面積為,則弦AB的長(zhǎng)為()A.3B.4C.6D.9
2.如圖,△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小為()
A.28°B.56°C.60°D.62°
第1題圖第2題圖第3題圖第5題圖第6題圖
3.如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,∠CDB=30°,⊙O的半徑為,則弦CD的長(zhǎng)為()A.B.C.D.
4.⊙O的半徑為10cm,弦AB=12cm,則圓心到AB的距離為()
A.2cmB.6cmC.8cmD.10cm
5.如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,連結(jié)OC,若OC=5,CD=8,
則tan∠COE=()A.B.C.D.
6.如圖,弦CD垂直于⊙O的直徑AB,垂足為H,且CD=,BD=,則AB的長(zhǎng)為()
A.2B.3C.4D.5
7.如圖,小量角器的零度線(xiàn)在大量角器的零度線(xiàn)上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點(diǎn)在小量角器上對(duì)應(yīng)的度數(shù)為,那么在大量角器上對(duì)應(yīng)的度數(shù)為_(kāi)_________(只需寫(xiě)出~的角度).
第7題圖第8題圖第9題圖
8.如圖,⊙O的半徑為5,P為圓內(nèi)一點(diǎn),P點(diǎn)到圓心O的距離為4,則過(guò)P點(diǎn)的弦長(zhǎng)的最小值是_______.
9.如圖,AB是⊙0的直徑,弦CD∥AB.若∠ABD=65°,則∠ADC=______.
10.如圖,半圓的直徑,點(diǎn)C在半圓上,.
(1)求弦的長(zhǎng);(2)若P為AB的中點(diǎn),交于點(diǎn)E,求長(zhǎng).
精選閱讀
中考數(shù)學(xué)總復(fù)習(xí)圓的有關(guān)計(jì)算導(dǎo)學(xué)案(湘教版)
第33課圓的有關(guān)計(jì)算
【知識(shí)梳理】
1.圓周長(zhǎng)公式:
2.n°的圓心角所對(duì)的弧長(zhǎng)公式:
3.圓心角為n°的扇形面積公式:、.
4.圓錐的側(cè)面展開(kāi)圖是;底面半徑為,母線(xiàn)長(zhǎng)為的圓錐的側(cè)面積公式為:
;圓錐的表面積的計(jì)算方法是:
5.圓柱的側(cè)面展開(kāi)圖是:;底面半徑為,高為的圓柱的側(cè)面積公式是:;圓柱的表面積的計(jì)算方法是:
【注意點(diǎn)】
【例題精講】
【例1】如圖,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(頂點(diǎn)都是格點(diǎn)),將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,得到△AB1C1.(1)在正方形網(wǎng)格中,作出△AB1C1;
(2)設(shè)網(wǎng)格小正方形的邊長(zhǎng)為1,求旋轉(zhuǎn)過(guò)程中動(dòng)點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng).
【例2】如圖,AB為⊙O的直徑,CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,OF⊥AC于點(diǎn)F.
(1)請(qǐng)寫(xiě)出三條與BC有關(guān)的正確結(jié)論;
(2)當(dāng)∠D=30°,BC=1時(shí),求圓中陰影部分的面積.
【例3】如圖,小明從半徑為5的圓形紙片中剪下40%圓周的一個(gè)扇形,然后利用剪下的扇形制作成一個(gè)圓錐形玩具紙帽(接縫處不重疊),那么這個(gè)圓錐的高為()
A.3B.4C.D.
【例4】(慶陽(yáng))如圖,線(xiàn)段AB與⊙O相切于點(diǎn)C,連結(jié)OA、OB,OB交⊙O于點(diǎn)D,已知OA=OB=6㎝,AB=㎝.
求:(1)⊙O的半徑;(2)圖中陰影部分的面積.
【當(dāng)堂檢測(cè)】
1.圓錐的底面半徑為3cm,母線(xiàn)為9,則圓錐的側(cè)面積為()
A.6B.9C.12D.27
2.在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線(xiàn)旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是()
A.25πB.65πC.90πD.130π
3.圓錐的側(cè)面展開(kāi)圖形是半徑為8cm,圓心角為120°的扇形,則此圓錐的底面半徑為()A.cmB.cmC.3cmD.cm
4.圓錐側(cè)面積為8πcm2,側(cè)面展開(kāi)圖圓心角為450,則圓錐母線(xiàn)長(zhǎng)為()A.64cmB.8cmC.㎝D.㎝
5.一個(gè)圓錐側(cè)面展開(kāi)圖的扇形的弧長(zhǎng)為,則這個(gè)圓錐底面圓的半徑為()
A.B.C.D.
6.如圖,有一圓心角為120o、半徑長(zhǎng)為6cm的扇形,若將OA、OB重合后圍成一
圓錐側(cè)面,那么圓錐的高是()
A.cmB.cmC.cmD.cm
7.已知圓錐的底面半徑是2㎝,母線(xiàn)長(zhǎng)是4㎝,則圓錐的側(cè)面積是㎝2.
8.如圖,兩個(gè)同心圓的半徑分別為2和1,∠AOB=120°,則陰影部分的面積為
9.如圖,Rt△ABC中,AC=8,BC=6,∠C=90°,分別以AB、BC、AC為直徑作三個(gè)半圓,那么陰影部分的面積為(平方單位)
10.王小剛制作了一個(gè)高12cm,底面直徑為10cm的圓錐,則這個(gè)圓錐的側(cè)面積
是cm2.
11.如圖,梯形中,,,,,以為圓心在梯形內(nèi)畫(huà)出一個(gè)最大的扇形(圖中陰影部分)的面積是.
12.制作一個(gè)圓錐模型,圓錐底面圓的半徑為3.5cm,側(cè)面母線(xiàn)長(zhǎng)為6cm,則此圓錐側(cè)面展開(kāi)圖的扇形圓心
角為度.
13.如圖,是由繞點(diǎn)順時(shí)針旋轉(zhuǎn)而得,且點(diǎn)在同一條
直線(xiàn)上,在中,若,,,則斜邊旋轉(zhuǎn)到所掃過(guò)的扇形面積為.
14.翔宇中學(xué)的鉛球場(chǎng)如圖所示,已知扇形AOB的面積是36米2,弧AB的長(zhǎng)為9米,那么半徑OA=______米.
15.如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,DE=3.
求:(1)⊙O的半徑;(2)弦AC的長(zhǎng);(3)陰影部分的面積.
中考數(shù)學(xué)總復(fù)習(xí)實(shí)數(shù)導(dǎo)學(xué)案(湘教版)
做好教案課件是老師上好課的前提,大家在認(rèn)真準(zhǔn)備自己的教案課件了吧。寫(xiě)好教案課件工作計(jì)劃,才能規(guī)范的完成工作!你們會(huì)寫(xiě)多少教案課件范文呢?下面是小編精心收集整理,為您帶來(lái)的《中考數(shù)學(xué)總復(fù)習(xí)實(shí)數(shù)導(dǎo)學(xué)案(湘教版)》,希望對(duì)您的工作和生活有所幫助。
湘教版數(shù)學(xué)中考總復(fù)習(xí)第1課實(shí)數(shù)導(dǎo)學(xué)案
第1課時(shí)實(shí)數(shù)的有關(guān)概念
【知識(shí)梳理】
1.實(shí)數(shù)的分類(lèi):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限
環(huán)循小數(shù))都是有理數(shù).有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)為實(shí)數(shù).
2.數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫數(shù)軸.實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).
3.絕對(duì)值:在數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離叫數(shù)a的絕對(duì)值,記作∣a∣,正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.
4.相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù),叫做互為相反數(shù).a(chǎn)的相反數(shù)是-a,0的相反數(shù)是0.
5.有效數(shù)字:一個(gè)近似數(shù),從左邊笫一個(gè)不是0的數(shù)字起,到最末一個(gè)數(shù)字止,所有的數(shù)字,都叫做這個(gè)近似數(shù)的有效數(shù)字.
6.科學(xué)記數(shù)法:把一個(gè)數(shù)寫(xiě)成a×10n的形式(其中1≤a10,n是整數(shù)),這種記數(shù)法叫做科學(xué)記數(shù)法.如:407000=4.07×105,0.000043=4.3×10-5.
7.大小比較:正數(shù)大于0,負(fù)數(shù)小于0,兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小.
8.數(shù)的乘方:求相同因數(shù)的積的運(yùn)算叫乘方,乘方運(yùn)算的結(jié)果叫冪.
9.平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a那么這個(gè)數(shù)x就叫做a的平方根(也叫做二次方根).一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根.
10.開(kāi)平方:求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方.
11.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根,0的算術(shù)平方根是0.
12.立方根:一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根(也叫做三次方根),正數(shù)的立方根是正數(shù);負(fù)數(shù)的立方根是負(fù)數(shù);0的立方根是0.
13.開(kāi)立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方.
【思想方法】
數(shù)形結(jié)合,分類(lèi)討論
【例題精講】
例1.下列運(yùn)算正確的是()
A.B.C.D.
例2.的相反數(shù)是()
A.B.C.D.
例3.2的平方根是()
A.4B.C.D.
例4.《廣東省2009年重點(diǎn)建設(shè)項(xiàng)目計(jì)劃(草案)》顯示,港珠澳大橋工程估算總投資726億元,用科學(xué)記數(shù)法表示正確的是()
A.元B.元
C.元D.元
例5.實(shí)數(shù)在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,
則必有()
A.B.C.D.
例6.(改編題)有一個(gè)運(yùn)算程序,可以使:
⊕=(為常數(shù))時(shí),得
(+1)⊕=+2,⊕(+1)=-3
現(xiàn)在已知1⊕1=4,那么2009⊕2009=.
【當(dāng)堂檢測(cè)】
1.計(jì)算的結(jié)果是()
A.B.C.D.
2.的倒數(shù)是()
A.B.C.D.
3.下列各式中,正確的是()
A.B.C.D.
4.已知實(shí)數(shù)在數(shù)軸上的位置如圖所示,則化簡(jiǎn)的結(jié)果為()
A.1B.C.D.
5.的相反數(shù)是()
A.B.C.D.
6.-5的相反數(shù)是____,-的絕對(duì)值是____,=_____.
7.寫(xiě)出一個(gè)有理數(shù)和一個(gè)無(wú)理數(shù),使它們都是小于-1的數(shù).
8.如果,則“”內(nèi)應(yīng)填的實(shí)數(shù)是()
A.B.C.D.
第2課時(shí)實(shí)數(shù)的運(yùn)算
【知識(shí)梳理】
1.有理數(shù)加法法則:同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).
2.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù).
3.有理數(shù)乘法法則:兩個(gè)有理數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;
任何數(shù)與0相乘,積仍為0.
4.有理數(shù)除法法則:兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除;
0除以任何非0的數(shù)都得0;除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù).
5.有理數(shù)的混合運(yùn)算法則:先算乘方,再算乘除,最后算加減;
如果有括號(hào),先算括號(hào)里面的.
6.有理數(shù)的運(yùn)算律:
加法交換律:為任意有理數(shù))
加法結(jié)合律:(a+b)+c=a+(b+c)(a,b,c為任意有理數(shù))
【思想方法】
數(shù)形結(jié)合,分類(lèi)討論
【例題精講】
例1.某校認(rèn)真落實(shí)蘇州市教育局出臺(tái)的“三項(xiàng)規(guī)定”,校園生活豐富多彩.星期二下午4點(diǎn)至5點(diǎn),初二年級(jí)240名同學(xué)分別參加了美術(shù)、音樂(lè)和體育活動(dòng),其中參加體育活動(dòng)人數(shù)是參加美術(shù)活動(dòng)人數(shù)的3倍,參加音樂(lè)活動(dòng)人數(shù)是參加美術(shù)活動(dòng)人數(shù)的2倍,那么參加美術(shù)活動(dòng)的同學(xué)其有____________名.
例2.下表是5個(gè)城市的國(guó)際標(biāo)準(zhǔn)時(shí)間(單位:時(shí))那么北京時(shí)間2006年6月17日上午9時(shí)應(yīng)是()
A.倫敦時(shí)間2006年6月17日凌晨1時(shí).
B.紐約時(shí)間2006年6月17日晚上22時(shí).
C.多倫多時(shí)間2006年6月16日晚上20時(shí).
D.漢城時(shí)間2006年6月17日上午8時(shí).
例3.如圖,由等圓組成的一組圖中,第1個(gè)圖由1個(gè)圓組成,第2個(gè)圖由7個(gè)圓組成,第3個(gè)圖由19個(gè)圓組成,……,按照這樣的規(guī)律排列下去,則第9個(gè)圖形由__________個(gè)圓組成.
例4.下列運(yùn)算正確的是()
A.B.
C.D.
例5.計(jì)算:
(1)(2)
(3);(4).
【當(dāng)堂檢測(cè)】
1.下列運(yùn)算正確的是()
A.a(chǎn)4×a2=a6B.
C.D.
2.某市2008年第一季度財(cái)政收入為億元,用科學(xué)記數(shù)法(結(jié)果保留兩個(gè)有效數(shù)字)表示為()
A.元B.元C.元D.元
3.估計(jì)68的立方根的大小在()
A.2與3之間B.3與4之間C.4與5之間D.5與6之間
4.如圖,數(shù)軸上點(diǎn)表示的數(shù)可能是()
A.B.
C.D.
5.計(jì)算:
(1)(2)
中考數(shù)學(xué)總復(fù)習(xí)圖形的變換導(dǎo)學(xué)案(湘教版)
老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,大家在認(rèn)真寫(xiě)教案課件了。只有制定教案課件工作計(jì)劃,可以更好完成工作任務(wù)!你們了解多少教案課件范文呢?下面是由小編為大家整理的“中考數(shù)學(xué)總復(fù)習(xí)圖形的變換導(dǎo)學(xué)案(湘教版)”,供您參考,希望能夠幫助到大家。
第35課圖形的變換
(一)
【知識(shí)梳理】
1、軸對(duì)稱(chēng)及軸對(duì)稱(chēng)圖形的聯(lián)系:軸對(duì)稱(chēng)及軸對(duì)稱(chēng)圖形可以相互轉(zhuǎn)化.區(qū)別:軸對(duì)稱(chēng)是指兩個(gè)圖形之間的位置關(guān)系,而軸對(duì)稱(chēng)圖形一個(gè)圖形自身的性質(zhì);軸對(duì)稱(chēng)只有一條對(duì)稱(chēng)軸,軸對(duì)稱(chēng)圖形可能有幾條對(duì)稱(chēng)軸.
2、通過(guò)具體實(shí)例認(rèn)識(shí)軸對(duì)稱(chēng),探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)所連的線(xiàn)段被對(duì)稱(chēng)軸垂直平分的性質(zhì).
3、能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過(guò)一次或兩次軸對(duì)稱(chēng)后的圖形;探索簡(jiǎn)單圖形之間的軸對(duì)稱(chēng)關(guān)系,并能指出對(duì)稱(chēng)軸.
4、探索基本圖形(等腰三角形、矩形、菱形、等腰梯形、正多邊形、圓)的軸對(duì)稱(chēng)性及其相關(guān)性質(zhì).
5、欣賞現(xiàn)實(shí)生活中的軸對(duì)稱(chēng)圖形,結(jié)合現(xiàn)實(shí)生活中典型實(shí)例了解并欣賞物體的鏡面對(duì)稱(chēng),能利用軸對(duì)稱(chēng)進(jìn)行圖案設(shè)計(jì).
【思想方法】抓住變與不變的量
【例題精講】
1、觀察下列一組圖形,根據(jù)你所發(fā)現(xiàn)的規(guī)律下面一個(gè)應(yīng)該是什么形狀?
2、如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是.
3、如圖,P在∠AOB內(nèi),點(diǎn)M、N分別是點(diǎn)P關(guān)于
AO、BO的對(duì)稱(chēng)點(diǎn),MN分別交OA、OB于E、F.⑴若
△PEF的周長(zhǎng)是20cm,求MN的長(zhǎng).⑵若∠AOB=30°試判斷△MNO的形狀,并說(shuō)明理由
4、將一張矩形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線(xiàn)).繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得到7條折痕,那么對(duì)折四次可得到條折痕.如果對(duì)折n次,可以得到條折痕.
5、做一做:用四塊如圖1的瓷磚拼成一個(gè)正方形,使拼成的圖案成軸對(duì)稱(chēng)圖形.請(qǐng)你在圖2、圖3、圖4中各畫(huà)出一種拼法(要求三種拼法各不相同,所畫(huà)圖案中的陰影部分用斜線(xiàn)表示).
6、已知如圖,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60,∠ABC=90,等邊三角形MNP(N為不動(dòng)點(diǎn))的邊長(zhǎng)為acm,邊MN和直角梯形ABCD的底邊BC都在直線(xiàn)l上,NC=8cm,將直角梯形ABCD向左翻折180,翻折一次得圖形①,翻折二次得圖形②,如此翻折下去.(1)、將直角梯形ABCD向左翻折二次,如果此時(shí)等邊三角形MNP的邊長(zhǎng)a≥2cm,這時(shí)兩圖形重疊部分的面積是多少?(2)、將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形與等邊三角形重疊部分的面積就等于直角梯形ABCD的面積,這時(shí)等邊三角形MNP的邊長(zhǎng)a至少應(yīng)為多少?(3)、將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形與等邊三角形重疊部分的面積等于直角梯形ABCD的面積的一半,這時(shí)等邊三角形MNP的邊長(zhǎng)a應(yīng)為多少?
【當(dāng)堂檢測(cè)】
1.下列圖形是否是軸對(duì)稱(chēng)圖形,找出軸對(duì)稱(chēng)圖形的有幾條對(duì)稱(chēng)軸.
2.小明的運(yùn)動(dòng)衣號(hào)在鏡子中的像是,則小明的運(yùn)動(dòng)衣號(hào)碼是()
A.B.C.D
3.在角、線(xiàn)段、等邊三角形、平行四邊形形中,軸對(duì)稱(chēng)圖形有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
4.下面四個(gè)圖形中,從幾何圖形的性質(zhì)考慮,哪一個(gè)與其它三個(gè)不同?請(qǐng)指出這個(gè)圖形,并簡(jiǎn)述你的理由.答:圖形;理由是:
5.如圖,ΔABC中,DE是邊AC的垂直平分線(xiàn)AC=6cm,
ΔABD的周長(zhǎng)為13cm,則ΔABC的周長(zhǎng)為_(kāi)_____cm.
6.如圖,AD是△ABC的中線(xiàn),∠ADC=45°,把△ADC沿AD對(duì)折,點(diǎn)C落在點(diǎn)的位置,則與BC之間的數(shù)量關(guān)系是.
(二)
【知識(shí)梳理】
一、圖形的平移
1、平移的概念:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移,平移不改變圖形的形狀和大小.
注:(1)平移是運(yùn)動(dòng)的一種形式,是圖形變換的一種,本講的平移是指平面圖形在同一平面內(nèi)的變換.
(2)圖形的平移有兩個(gè)要素:一是圖形平移的方向,二是圖形平移的距離,這兩個(gè)要素是圖形平移的依據(jù).
(3)圖形的平移是指圖形整體的平移,經(jīng)過(guò)平移后的圖形,與原圖形相比,只改變了位置,而不改變圖形的大小,這個(gè)特征是得出圖形平移的基本性質(zhì)的依據(jù).
2.平移的基本性質(zhì):由平移的基本概念知,經(jīng)過(guò)平移,圖形上的每一個(gè)點(diǎn)都沿同一個(gè)方向移動(dòng)相同的距離,平移不改變圖形的形狀和大小,因此平移具有下列性質(zhì):經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線(xiàn)段平行且相等,對(duì)應(yīng)線(xiàn)段平行且相等,對(duì)應(yīng)角相等.
注:(1)要注意正確找出“對(duì)應(yīng)線(xiàn)段,對(duì)應(yīng)角”,從而正確表達(dá)基本性質(zhì)的特征.(2)“對(duì)應(yīng)點(diǎn)所連的線(xiàn)段平行且相等”,這個(gè)基本性質(zhì)既可作為平移圖形之間的性質(zhì),又可作為平移作圖的依據(jù).
二、圖形的旋轉(zhuǎn)
1.圖形旋轉(zhuǎn)的基本性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線(xiàn)所成的角彼此相等;
2.中心對(duì)稱(chēng)圖形:____________________________________
3.平行四邊形、矩形、菱形、正多邊形(邊數(shù)是偶數(shù))、圓是中心對(duì)稱(chēng)圖形;
【思想方法】數(shù)形結(jié)合
【例題精講】
1.如圖,在△ABC中,∠C=90°,AC=2cm,把這個(gè)三角形在平面內(nèi)
繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,那么點(diǎn)A移動(dòng)所走過(guò)的路線(xiàn)長(zhǎng)是cm.
2.將兩塊含30°角且大小相同的直角三角板如圖1擺放.(1)將圖2中△繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45°得圖2,點(diǎn)與AB的交點(diǎn),求證:;(2)將圖2中△繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°到△(如圖3),點(diǎn)與AB的交點(diǎn).線(xiàn)段之間存在一個(gè)確定的等量關(guān)系,請(qǐng)你寫(xiě)出這個(gè)關(guān)系式并說(shuō)明理由;(3)將圖3中線(xiàn)段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°到(圖4),連結(jié),求證:⊥AB.
3.把兩個(gè)全等的等腰直角三角板ABC和EFG(其直角邊長(zhǎng)均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合.現(xiàn)將三角板EFG繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角α滿(mǎn)足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過(guò)程中兩三角板的重疊部分(如圖②).(1)在上述旋轉(zhuǎn)過(guò)程中,BH與CK有怎樣的數(shù)量關(guān)系?四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結(jié)論;(2)連接HK,在上述旋轉(zhuǎn)過(guò)程中,設(shè)BH=,△GKH的面積為,求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時(shí)的值;若不存在,說(shuō)明理由.
4.如圖1,小明將一張矩形紙片沿對(duì)角線(xiàn)剪開(kāi),得到兩張三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線(xiàn)上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用F表示)
(圖1)(圖2)(圖3)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點(diǎn)B與點(diǎn)F重合,請(qǐng)你求出平移的距離;
(2)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖5的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線(xiàn)段FG的長(zhǎng)度;
(3)將圖3中的△ABF沿直線(xiàn)AF翻折到圖6的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH﹦DH
(圖4)(圖5)(圖6)
【當(dāng)堂檢測(cè)】
1.下列說(shuō)法正確的是()
A.旋轉(zhuǎn)后的圖形的位置一定改變B.旋轉(zhuǎn)后的圖形的位置一定不變
C.旋轉(zhuǎn)后的圖形的位置可能不變D.旋轉(zhuǎn)后的圖形的位置和形狀都發(fā)生變化
2.下列關(guān)于旋轉(zhuǎn)和平移的說(shuō)法錯(cuò)誤的是()
A.旋轉(zhuǎn)需旋轉(zhuǎn)中心和旋轉(zhuǎn)角,而平移需平移方向和平移距離
B.旋轉(zhuǎn)和平移都只能改變圖形的位置
C.旋轉(zhuǎn)和平移圖形的形狀和大小都不發(fā)生變化
D.旋轉(zhuǎn)和平移的定義是相同的
3.在“黨”“在”“我”“心”“中”五個(gè)漢字中,旋轉(zhuǎn)180o后不變的字是_____,在字母“X”、“V”、“Z”、“H”中繞某點(diǎn)旋轉(zhuǎn)不超過(guò)180后能與原圖形重合的是____.
4.△ABC是等腰直角三角形,如圖,AB=AC,∠BAC=90°,D是BC上一點(diǎn),△ACD經(jīng)過(guò)旋轉(zhuǎn)到達(dá)△ABE的位置,則其旋轉(zhuǎn)角的度數(shù)為()
A.90°B.120°C.60°D.45°
5.以下圖形:平行四邊形、矩形、等腰三角形、線(xiàn)段、圓、
菱形,其中既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的有()
A.4個(gè)B.5個(gè)C.6個(gè)D.3個(gè)
6.如圖的圖案中,可以看出由圖案自身的部分經(jīng)過(guò)平移而得到的是()
7.有以下現(xiàn)象:①溫度計(jì)中,液柱的上升或下降;②打氣筒打氣時(shí),活塞的運(yùn)動(dòng);③鐘擺的擺動(dòng);④傳送帶上瓶裝飲料的移動(dòng),其中屬于平移的是()
A.①③B.①②C.②③D.②④
8.如圖,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到△,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(-3,-2)B.(2,2)C.(3,0)D.(2,1)