一元二次方程高中教案
發(fā)表時(shí)間:2021-04-06一元二次方程復(fù)習(xí)導(dǎo)學(xué)案。
老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,大家應(yīng)該開始寫教案課件了。我們制定教案課件工作計(jì)劃,才能對(duì)工作更加有幫助!你們會(huì)寫多少教案課件范文呢?為了讓您在使用時(shí)更加簡(jiǎn)單方便,下面是小編整理的“一元二次方程復(fù)習(xí)導(dǎo)學(xué)案”,僅供您在工作和學(xué)習(xí)中參考。
《一元二次方程復(fù)習(xí)》導(dǎo)學(xué)案
時(shí)間:12.29
1、復(fù)習(xí)一元二次方程,一元二次方程的解的概念;
2、復(fù)習(xí)4種方法解簡(jiǎn)單的一元二次方程;
3、會(huì)建立一元二次方程的模型解決簡(jiǎn)單的實(shí)際問題。
[學(xué)習(xí)過程]
一、回顧知識(shí)點(diǎn)
1、一元二次方程具有三個(gè)顯著特點(diǎn),它們是①_________________;②_________________;③_________________。
2、一元二次方程的一般形式是_______________________________。
3、一元二次方程的解法有____________、____________、____________、____________。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2-4ac。
①當(dāng)△>0時(shí),方程有__________;②當(dāng)△=0時(shí),方程有__________;③當(dāng)△<0時(shí),方程有__________。
5.一元二次方程的兩根為,,則兩根與方程系數(shù)之間有如下
關(guān)系:,
二鞏固練習(xí)
一、填空題:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④+x2=1中,是一元一次方程的是_____。
2、已知x=1是一元二次方程x2-2mx+1=0的一個(gè)解,則m=______。
3、若關(guān)于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常項(xiàng)為0,則m=________。
4、關(guān)于x的一元二次方程x2-mx+m-2=0的根的情況是__________。
5、寫出兩個(gè)一元二次方程,使每個(gè)方程都有一根為0,并且二次項(xiàng)系數(shù)都為1:________;______________。
6、三角形的每條邊的長(zhǎng)都是方程x2-6x+8=0的根,則三角形的周長(zhǎng)是___________。
7、解方程5(x-)2=2(x-)最適當(dāng)?shù)姆椒ㄊ莀____________。二、填空題:(每題3分,共24分)
8.一元二次方程的二次項(xiàng)系數(shù)為,一次項(xiàng)系數(shù)為,常數(shù)項(xiàng)為;
9.方程的解為
10.已知關(guān)于x一元二次方程有一個(gè)根為1,則
11.當(dāng)代數(shù)式的值等于7時(shí),代數(shù)式的值是;
12.關(guān)于實(shí)數(shù)根(注:填“有”或“沒有”)。
13.一個(gè)兩位數(shù),個(gè)位數(shù)字比十位數(shù)字大3,個(gè)位數(shù)字的平方剛好等于這個(gè)兩位數(shù),則這個(gè)兩
位數(shù)為;
14.已知一元二次方程的一個(gè)根為,則.
15.閱讀材料:設(shè)一元二次方程的兩根為,,則兩根與方程系數(shù)之間有如下
關(guān)系:,.根據(jù)該材料填空:已知,是方程的兩
實(shí)數(shù)根,則的值為______.
二、選擇題:(每題3分,共30分)
1、關(guān)于x的方程是一元二次方程,則()
A、a>0B、a≠0C、a=0D、a≥0
2.用配方法解下列方程,其中應(yīng)在左右兩邊同時(shí)加上4的是()
A、B、C、D、
3.方程的根是()
A、B、C、D、
4.下列方程中,關(guān)于x的一元二次方程的是()
A、B、C、D、
5.關(guān)于x的一元二次方程x2+kx-1=0的根的情況是()
A、有兩個(gè)不相等實(shí)數(shù)根B、沒有實(shí)數(shù)根
C、有兩個(gè)相等的實(shí)數(shù)根D、不能確定
6.已知x=1是一元二次方程x2-2mx+1=0的一個(gè)解,則m的值是()
A、1B、0C、0或1D、0或-1
7.為執(zhí)行“兩免一補(bǔ)”政策,某地區(qū)2008年投入教育經(jīng)費(fèi)2500萬元,預(yù)計(jì)2010年投入3600萬元.設(shè)這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)百分率為,則下列方程正確的是()
A、B、
C、D、
8.已知、是方程的兩個(gè)根,則代數(shù)式的值()
A、37B、26C、13D、10
9.等腰三角形的底和腰是方程的兩個(gè)根,則這個(gè)三角形的周長(zhǎng)是()
A、8B、10C、8或10D、不能確定
10.一元二次方程化為一般形式為()
A、B、C、D、
三、解答題:(共46分)
19、解方程(每題4分,共16分)
(1)(2)
22、已知a、b、c均為實(shí)數(shù),且,求方程
的根。(8分)
23.在北京2008年第29屆奧運(yùn)會(huì)前夕,某超市在銷售中發(fā)現(xiàn):奧運(yùn)會(huì)吉祥物“福娃”平均每天可售出20套,
每件盈利40元。為了迎接奧運(yùn)會(huì),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存。
經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每套降價(jià)1元,那么平均每天就可多售出2套。要想平均每天在銷售吉祥物上盈利
1200元,那么每套應(yīng)降價(jià)多少?(10分)
24.美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項(xiàng)重要內(nèi)容,某市城區(qū)近幾來,通過拆遷舊房,植草。
栽樹,修公園等措施,使城區(qū)綠地面積不斷增加(如圖)(12分)
(1)根據(jù)圖中所提供的信息,回答下列的問題:2003年的綠地面積為______公頃,比2002年增加了________
公頃。在2001年,2002年,2003年這三年中,綠地面積增加最多的是___________年。
(2)為了滿足城市發(fā)展的需要,計(jì)劃到2005年使城區(qū)綠地總面積達(dá)到72.6公頃,試求這兩年(2003~2005年)
綠地面積的年平均增長(zhǎng)率.
相關(guān)閱讀
一元二次方程
每個(gè)老師不可缺少的課件是教案課件,大家在仔細(xì)設(shè)想教案課件了。教案課件工作計(jì)劃寫好了之后,這樣我們接下來的工作才會(huì)更加好!你們會(huì)寫一段適合教案課件的范文嗎?下面是小編幫大家編輯的《一元二次方程》,僅供參考,大家一起來看看吧。
第二十二章一元二次方程
教材內(nèi)容
本單元教學(xué)的主要內(nèi)容:
1.一元二次方程及其有關(guān)概念,一元二次方程的解法(開平方法、配方法、公式法、分解因式法),
一元二次方程根與系數(shù)的關(guān)系,運(yùn)用一元二次方程分析和解決實(shí)際問題.
2.本單元在教材中的地位和作用:
教學(xué)目標(biāo)
1.一分析實(shí)際問題中的等量關(guān)系并求解其中未知數(shù)為背景,認(rèn)識(shí)一元二次方程及其有關(guān)概念。
2.根據(jù)化歸思想,抓住“降次”這一基本策略,熟練掌握開平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.經(jīng)歷分析和解決問題的過程,體會(huì)一元二次方程的教學(xué)模型作用,進(jìn)一步提高在實(shí)際問題中運(yùn)用方程這種重要數(shù)學(xué)工具的基本能力。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):
1.一元二次方程及其有關(guān)概念
2.一元二次方程的解法(開平方法、配方法、公式法、分解因式法)
3.一元二次方程根與系數(shù)的關(guān)系以及運(yùn)用一元二次方程分析和解決實(shí)際問題。
難點(diǎn):
1.一元二次方程及其有關(guān)概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根與系數(shù)的關(guān)系以及靈活運(yùn)用
課時(shí)安排
本章教學(xué)時(shí)約需課時(shí),具體分配如下(供參考)
22.1一元二次方程1課時(shí)
22.2降次7課時(shí)
22.3實(shí)際問題與一元二次方程3課時(shí)
教學(xué)活動(dòng)、習(xí)題課、小結(jié)
22.1一元二次方程
教學(xué)目的
1.使學(xué)生理解并能夠掌握整式方程的定義.
2.使學(xué)生理解并能夠掌握一元二次方程的定義.
3.使學(xué)生理解并能夠掌握一元二次方程的一般表達(dá)式以及各種特殊形式.
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):一元二次方程的定義.
難點(diǎn):一元二次方程的一般形式及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識(shí)別.
教學(xué)過程
復(fù)習(xí)提問
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已學(xué)過的方程?分別叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.結(jié)合上述有關(guān)方程講解什么叫做“元”,什么叫做“次”.
引入新課
1.方程的分類:(通過上面的復(fù)習(xí),引導(dǎo)學(xué)生答出)
學(xué)過的幾類方程是
沒學(xué)過的方程有x2-70x+825=0,x(x+5)=150.
這類“兩邊都是關(guān)于未知數(shù)的整式的方程,叫做整式方程.”像這樣,我們把“只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的整式方程叫做一元二次方程.”
據(jù)此得出復(fù)習(xí)中學(xué)生未學(xué)過的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同時(shí)指導(dǎo)學(xué)生把學(xué)過的方程分為兩大類:
2.一元二次方程的一般形式
注意引導(dǎo)學(xué)生考慮方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化為:x2+5x-150=0.
從而引導(dǎo)學(xué)生認(rèn)識(shí)到:任何一個(gè)一元二次方程,經(jīng)過整理都可以化為
ax2+bx+c=0(a≠0)的形式.并稱之為一元二次方程的一般形式.
其中ax2,bx,c分別稱為二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng);a,b分別稱為二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).
【注意】二次項(xiàng)系數(shù)a是不等于0的實(shí)數(shù)(a=0時(shí),方程化為bx+c=0,不再是二次方程了);b,c可為任意實(shí)數(shù).
例把方程5x(x+3)=3(x-1)+8化成一般形式.并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
課堂練習(xí)P271、2題
歸納總結(jié)
1.方程分為兩大類:
判別整式方程與分式方程的關(guān)鍵是看分母中是否含有未知數(shù);判別一元一次方程,一元二次方程的關(guān)鍵是看方程化為一般形式后,未知數(shù)的最高次數(shù)是一次還是二次.
2.一元二次方程的定義:一個(gè)整式方程,經(jīng)化簡(jiǎn)形成只含有一個(gè)未知數(shù)且未知數(shù)的最高次數(shù)是2,則這樣的整式方程稱一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可為任意實(shí)數(shù),而a不能等于零.
布置作業(yè):習(xí)題22.11、2題.
達(dá)標(biāo)測(cè)試
1.在下列方程中,一元二次方程的個(gè)數(shù)是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
2.關(guān)于x的一元二次方程3x2=5x-2的二次項(xiàng)系數(shù),一次項(xiàng)和常數(shù)項(xiàng),下列說法完全正確的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是關(guān)于x的一元二次方程,則()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,則k的取值范圍是
5.方程4x2=3x-+1的二次項(xiàng)是,一次項(xiàng)是,常數(shù)項(xiàng)是
課后反思:
22.2解一元二次方程
第一課時(shí)
直接開平方法
教學(xué)目的
1.使學(xué)生掌握用直接開平方法解一元二次方程.
2.引導(dǎo)學(xué)生通過特殊情況下的解方程,小結(jié)、歸納出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):準(zhǔn)確地求出方程的根.
難點(diǎn):正確地表示方程的兩個(gè)根.
教學(xué)過程
復(fù)習(xí)過程
回憶數(shù)的開方一章中的知識(shí),請(qǐng)學(xué)生回答下列問題,并說明解決問題的依據(jù).
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解題的依據(jù)是:一個(gè)正數(shù)有兩個(gè)平方根,這兩個(gè)平方根互為相反數(shù).
即一般地,如果一個(gè)數(shù)的平方等于a(a≥0),那么這樣的數(shù)有兩個(gè),它們是互為相反數(shù).
引入新課
我們已經(jīng)學(xué)過了一些方程知識(shí),那么上述方程屬于什么方程呢?
新課
例1解方程x2-4=0.
解:先移項(xiàng),得x2=4.
即x1=2,x2=-2.
這種解一元二次方程的方法叫做直接開平方法.
例2解方程(x+3)2=2.
練習(xí):P281、2
歸納總結(jié)
1.本節(jié)主要學(xué)習(xí)了簡(jiǎn)單的一元二次方程的解法——直接開平方法.
2.直接法適用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作業(yè):習(xí)題22.14、6題
達(dá)標(biāo)測(cè)試
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解為
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程無實(shí)根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.對(duì)于方程(ax+b)2=c下列敘述正確的是
A.不論c為何值,方程均有實(shí)數(shù)根B.方程的根是
C.當(dāng)c≥0時(shí),方程可化為:
D.當(dāng)c=0時(shí),
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
課后反思
一元二次方程學(xué)案
第二十一章一元二次方程
21.1一元二次方程
出示目標(biāo)
1.了解一元二次方程的概念.應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)及其派生的有關(guān)概念.
預(yù)習(xí)導(dǎo)學(xué)
自學(xué)指導(dǎo)閱讀教材第1至4頁,并完成預(yù)習(xí)內(nèi)容.
問題1如圖,有一塊長(zhǎng)方形鐵皮,長(zhǎng)100cm,寬50cm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,就能制作一個(gè)無蓋方盒.如果要制作的無蓋方盒的底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
分析:設(shè)切去的正方形的邊長(zhǎng)為xcm,則盒底的長(zhǎng)為100-2x,寬為50-2x.得方程(100-2x)(50-2x)=3600,
整理得4x2-300x+1400=0.化簡(jiǎn),得x2-75x+350=0.①
問題2要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng).根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,比賽組織者應(yīng)邀請(qǐng)多少個(gè)隊(duì)參賽?
分析:全部比賽的場(chǎng)數(shù)為28.
設(shè)應(yīng)邀請(qǐng)x個(gè)隊(duì)參賽,每個(gè)隊(duì)要與其他(x-1)個(gè)隊(duì)各賽1場(chǎng),所以全部比賽共_____場(chǎng).列方程_____=28.化簡(jiǎn)整理得x2-x-56=0.②
知識(shí)探究
(1)方程①②中未知數(shù)的個(gè)數(shù)各是多少?1個(gè)
(2)它們最高次數(shù)分別是幾次?2次
方程①②的共同特點(diǎn)是:這些方程的兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是二次的整式方程.
自學(xué)反饋
1.一元二次方程的概念.
2.一元二次方程的一般形式:ax2+bx+c=0(a≠0)
一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都要包含它前面的符號(hào).二次項(xiàng)系數(shù)a≠0是一個(gè)重要條件,不能漏掉.
合作探究
活動(dòng)1小組討論
例1將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
解:2x2-13x+11=0;2,-13,11.
將一元二次方程化成一般形式時(shí),通常要將首項(xiàng)化負(fù)為正,化分為整.
例2判斷下列方程是否為一元二次方程:
(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0;
(4)=0;(5)(x+3)2=(x-3)2;(6)9x2=5-4x.
解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.
(1)一元二次方程為整式方程;(2)類似(5)這樣的方程要化簡(jiǎn)后才能判斷.
例3下面哪些數(shù)是方程x2-x-6=0的根?-2,3.
-4,-3,-2,-1,0,1,2,3,4.
直接將x值代入方程,檢驗(yàn)方程兩邊是否相等.
活動(dòng)2跟蹤訓(xùn)練
1.下列各未知數(shù)的值是方程3x2+x-2=0的解的是(B)
A.x=1B.x=-1C.x=2D.x=-2
2.已知方程3x2-9x+m=0的一個(gè)根是1,則m的值是6.
3.將下列方程化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
(1)5x2-1=4x;(2)4x2=81;
(3)4x(x+2)=25;(4)(3x-2)(x+1)=8x-3.
解:(1)5x2-4x-1=0;5,-4,-1;
(2)4x2-81=0;4,0,-81;
(3)4x2+8x-25=0;4,8,-25;
(4)3x2-7x+1=0;3,-7,1.
4.根據(jù)下列問題,列出關(guān)于x的方程,并將其化成一元二次方程的一般形式:
(1)4個(gè)完全相同的正方形的面積之和是25,求正方形的邊長(zhǎng)x;
(2)一個(gè)長(zhǎng)方形的長(zhǎng)比寬多2,面積是100,求長(zhǎng)方形的長(zhǎng)x;
(3)把長(zhǎng)為1的木條分成兩段,使較短一段的長(zhǎng)與全長(zhǎng)的積,等于較長(zhǎng)一段的長(zhǎng)的平方,求較短一段的長(zhǎng)x.
解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;
(3)x=(1-x)2;x2-3x+1=0.
5.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
證明:∵二次項(xiàng)系數(shù)a=m2-8m+17=m2-8m+16+1=(m-4)2+10.∴二次項(xiàng)系數(shù)恒不等于零.∴不論m取何值,該方程都是一元二次方程.
第5題可用配方法說明二次項(xiàng)系數(shù)不為零.
活動(dòng)3課堂小結(jié)
1.一元二次方程的概念以及怎樣利用概念判斷一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)特別強(qiáng)調(diào)a≠0.
3.使一元二次方程成立的未知數(shù)的值,叫做一元二次方程的解,也叫做一元二次方程的根.
當(dāng)堂訓(xùn)練
教學(xué)至此,敬請(qǐng)使用學(xué)案當(dāng)堂訓(xùn)練部分.
一元二次方程復(fù)習(xí)教案
九年級(jí)數(shù)學(xué)《第三章一元二次方程》復(fù)習(xí)案人教新課標(biāo)版
課型復(fù)習(xí)課授課時(shí)間年月日
執(zhí)筆人審稿人總第課時(shí)
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
一、復(fù)習(xí)目標(biāo):
1、能說出一元二次方程及其相關(guān)概念,;
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡(jiǎn)單的一元二次方程,并在解一元二次方程的過程中體會(huì)轉(zhuǎn)化等數(shù)學(xué)思想。
3、能靈活應(yīng)用一元二次方程的知識(shí)解決相關(guān)問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識(shí)和能力。
二、復(fù)習(xí)重難點(diǎn):
重點(diǎn):一元二次方程的解法和應(yīng)用.
難點(diǎn):應(yīng)用一元二次方程解決實(shí)際問題的方法.
三、知識(shí)回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:
配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應(yīng)用?請(qǐng)舉例說明。
4、利用方程解決實(shí)際問題的關(guān)鍵是。
在解決實(shí)際問題的過程中,怎樣判斷求得的結(jié)果是否合理?請(qǐng)舉例說明。
四、例題解析:
例1、填空
1、當(dāng)m時(shí),關(guān)于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當(dāng)m時(shí),是一元二次方程;當(dāng)m時(shí),是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時(shí),應(yīng)將方程變形為()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當(dāng)?shù)姆椒ń?
例3、1、新竹文具店以16元/支的價(jià)格購進(jìn)一批鋼筆,根據(jù)市場(chǎng)調(diào)查,如果以20元/支的價(jià)格銷售,每月可以售出200支;而這種鋼筆的售價(jià)每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價(jià)?此時(shí)店主該進(jìn)貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點(diǎn)P、Q同時(shí)由A、B兩點(diǎn)出發(fā)分別沿AC,BC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?