小學(xué)幾何教案
發(fā)表時間:2021-01-25初中數(shù)學(xué)《幾何空間與圖形》知識點。
初中數(shù)學(xué)《幾何空間與圖形》知識點
A、圖形的認識
1、點,線,面
點,線,面:圖形是由點,線,面構(gòu)成的。面與面相交得線,線與線相交得點。點動成線,線動成面,面動成體。
展開與折疊:在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。圓可以分割成若干個扇形。
2、角
線:線段有兩個端點。將線段向一個方向無限延長就形成了射線。射線只有一個端點。將線段的兩端無限延長就形成了直線。直線沒有端點。經(jīng)過兩點有且只有一條直線。
比較長短:兩點之間的所有連線中,線段最短。兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。一度的1/60是一分,一分的1/60是一秒。
角的比較:角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:同一平面內(nèi),不相交的兩條直線叫做平行線。經(jīng)過直線外一點,有且只有一條直線與這條直線平行。如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直?;ハ啻怪钡膬蓷l直線的交點叫做垂足。平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線相等的菱形2、鄰邊相等的矩形
3、相交線與平行線
角:如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。同角或等角的余角/補角相等。對頂角相等。同位角相等/內(nèi)錯角相等/同旁內(nèi)角互補,兩直線平行,反之亦然。
4、三角形
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三角形任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。三角形三個內(nèi)角的和等于180度。三角形分銳角三角形/直角三角形/鈍角三角形。直角三角形的兩個銳角互余。三角形中一個內(nèi)角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。三角形中,連接一個頂點與他對邊中點的線段叫做這個三角形的中線。三角形的三條角平分線交于一點,三條中線交于一點。從三角形的一個頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。三角形的三條高所在的直線交于一點。
圖形的全等:全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。
全等三角形:全等三角形的對應(yīng)邊/角相等。
條件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。(零思考方案網(wǎng) Zhe135.COm)
5、四邊形
平行四邊形的性質(zhì):兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。平行四邊形的對邊/對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。
菱形:一組鄰邊相等的平行四邊形是菱形。領(lǐng)心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:有一個內(nèi)角是直角的平行四邊形叫做矩形。矩形的對角線相等,四個角都是直角。對角線相等的平行四邊形是矩形。正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。一組鄰邊相等的矩形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形叫梯形。兩條腰相等的梯形叫等腰梯形。一條腰和底垂直的梯形叫做直角梯形。等腰梯形同一底上的兩個內(nèi)角相等,對角線星等,反之亦然。
多邊形:N邊形的內(nèi)角和等于(N-2)180度。多邊心內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內(nèi)角和(都等于360度)
平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。
中心對稱圖形:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。
相關(guān)閱讀
中考數(shù)學(xué)知識點歸納:幾何定理
每個老師不可缺少的課件是教案課件,大家在認真寫教案課件了。只有寫好教案課件計劃,可以更好完成工作任務(wù)!有哪些好的范文適合教案課件的?以下是小編為大家精心整理的“中考數(shù)學(xué)知識點歸納:幾何定理”,希望能為您提供更多的參考。
中考數(shù)學(xué)知識點歸納:幾何定理
幾何必背定理總結(jié)
1、同角(或等角)的余角相等、
2、對頂角相等、
3、三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和、
4、在同一平面內(nèi)垂直于同一條直線的兩條直線是平行線、
5、同位角相等,兩直線平行、
6、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合、
7、直角三角形中,斜邊上的中線等于斜邊的一半、
8、在角平分線上的點到這個角的兩邊距離相等、及其逆定理、
9、夾在兩條平行線間的平行線段相等、夾在兩條平行線間的垂線段相等、
10、一組對邊平行且相等、或兩組對邊分別相等、或?qū)蔷€互相平分的四邊形是平行四邊形、
11、有三個角是直角的四邊形、對角線相等的平行四邊形是矩形、
12、菱形性質(zhì):四條邊相等、對角線互相垂直,并且每一條對角線平分一組對角、
13、正方形的四個角都是直角,四條邊相等、兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角、
14、在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦、兩個弦心距中有一對相等,那么它們所對應(yīng)的其余各對量都相等、
15、垂直于弦的直徑平分這條弦,并且平分弦所對弧、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧、
16、直角三角形被斜邊上的高線分成的兩個直角三角形和原三角形相似、
17、相似三角形對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比、相似三角形面積的比等于相似比的平方、
18.圓內(nèi)接四邊形的對角互補,并且任何一個外角等于它的內(nèi)對角、
19、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線、
20、切線的性質(zhì)定理①經(jīng)過圓心垂直于切線的直線必經(jīng)過切點、②圓的切線垂直于經(jīng)過切點的半徑、③經(jīng)過切點垂直于切線的直線必經(jīng)過圓心、
21、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等、連結(jié)圓外一點和圓心的直線,平分從這點向圓所作的兩條切線所夾的角、
22、弦切角定理弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半、弦切角等于它所夾的弧所對的圓周角、
23、相交弦定理;切割線定理;割線定理;
中考復(fù)習(xí)簡單幾何練習(xí)題及答案
點擊下載附件:中考復(fù)習(xí)簡單幾何練習(xí)題及答案.doc
一、選擇題(每小題3分)
1.已知∠AOB=30°,自∠AOB的頂點O引射線OC,若∠AOC:∠AOB=4:3,則∠BOC等于()。
A.10°B.40°C.70°D.10°或70°
2.用一副三角板可以作出大于0°而小于180°的角的個數(shù)()。
A.5個B.10個C.11個D.以上都不對
3.如果兩條平行線被第三條直線所截得的8個角中,有一個角的度數(shù)已知,
則()。
A.只能求出其余3個角的度數(shù)B.能求出其余5個角的度數(shù)
C.只能求出其余6個角的度數(shù)D.能求出其余7個角的度數(shù)
4.若兩條平行線被第三條直線所截,則下列說法錯誤的是()。
A.一對同位角的平分線互相平行
B.一對內(nèi)錯角的平分線互相平行
C.一對同旁內(nèi)角的平分線互相垂直
D.一對同旁內(nèi)角的平分線互相平行
5.下列說法,其中正確的是()。
A.兩條直線被第三條直線所截,內(nèi)錯角相等;
B.不相交的兩條直線就是平行線;
C.點到直線的垂線段,叫做點到直線的距離;
D.同位角相等,兩直線平行。
6.下列關(guān)于對頂角的說法:
(1)相等的角是對頂角(2)對頂角相等
(3)不相等的角不是對頂角(4)不是對頂角不相等
其中正確的有()。
A.1個B.2個C.3個D.4個
中考數(shù)學(xué)知識點總結(jié)幾何篇
中考數(shù)學(xué)知識點總結(jié)幾何篇
初中幾何公式:線
1、同角或等角的余角相等。
2、過一點有且只有一條直線和已知直線垂直。
3、過兩點有且只有一條直線。
4、兩點之間線段最短。
5、同角或等角的補角相等。
6、直線外一點與直線上各點連接的所有線段中,垂線段最短。
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
初中幾何公式:角
9、同位角相等,兩直線平行。
10、內(nèi)錯角相等,兩直線平行。
11、同旁內(nèi)角互補,兩直線平行。
12、兩直線平行,同位角相等。
13、兩直線平行,內(nèi)錯角相等。
14、兩直線平行,同旁內(nèi)角互補。
初中幾何公式:三角形
15、定理三角形兩邊的和大于第三邊。
16、推論三角形兩邊的差小于第三邊。
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°。
18、推論1直角三角形的兩個銳角互余。
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
21、全等三角形的對應(yīng)邊、對應(yīng)角相等。
22、邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。
23、角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。
24、推論有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等。
25、邊邊邊公理有三邊對應(yīng)相等的兩個三角形全等。
26、斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。
27、定理1在角的平分線上的點到這個角的兩邊的距離相等。
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。
29、角的平分線是到角的兩邊距離相等的所有點的集合。
初中幾何公式:等腰三角形
30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等。
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊。
32、等腰三角形的頂角平分線、底邊上的中線和高互相重合。
33、推論3等邊三角形的各角都相等,并且每一個角都等于60°。
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)。
35、推論1三個角都相等的三角形是等邊三角形。
36、推論2有一個角等于60°的等腰三角形是等邊三角形。
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半。
38、直角三角形斜邊上的中線等于斜邊上的一半。
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等。
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合。
42、定理1關(guān)于某條直線對稱的兩個圖形是全等形。
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線。
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。
45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
46、勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。
47、勾股定理的逆定理如果三角形的三邊長a、b、c滿足兩直角邊a、b的平方和等于斜邊c的平方,那么這個三角形是直角三角形。
初中幾何公式:四邊形
48、定理四邊形的內(nèi)角和等于360°。
49、四邊形的外角和等于360°。
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°。
51、推論任意多邊的外角和等于360°。
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等。
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等。
54、推論夾在兩條平行線間的平行線段相等。
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分。
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形。
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形。
58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形。
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形。
初中幾何公式:矩形
60、矩形性質(zhì)定理1矩形的四個角都是直角。
61、矩形性質(zhì)定理2矩形的對角線相等。
62、矩形判定定理1有三個角是直角的四邊形是矩形。
63、矩形判定定理2對角線相等的平行四邊形是矩形。
初中幾何公式:菱形
64、菱形性質(zhì)定理1菱形的四條邊都相等。
65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角。
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2。
67、菱形判定定理1四邊都相等的四邊形是菱形。
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形。
初中幾何公式:正方形
69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等。
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角。
71、定理1關(guān)于中心對稱的兩個圖形是全等的。
72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
初中幾何公式:等腰梯形
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等。
75、等腰梯形的兩條對角線相等。
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形。
77、對角線相等的梯形是等腰梯形。
初中幾何公式:等分
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。
80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半。
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h。
83、(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d。
84、(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d。
85、(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例。
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例。
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例。
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。
91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)。
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似。
93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)。
94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)。
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。
96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比。
97、性質(zhì)定理2相似三角形周長的比等于相似比。
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方。
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值。
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值。
初中幾何公式:圓
101、圓是定點的距離等于定長的點的集合。
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。
103、圓的外部可以看作是圓心的距離大于半徑的點的集合。
104、同圓或等圓的半徑相等。
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線。
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線。
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線。
109、不在同一直線上的三個點確定一條直線。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
111、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
112、推論2圓的兩條平行弦所夾的弧相等。
113、圓是以圓心為對稱中心的中心對稱圖形。
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
116、定理一條弧所對的圓周角等于它所對的圓心角的一半。
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
120、圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。
121、①直線L和⊙O相交d﹤r
②直線L和⊙O相切d=r
③直線L和⊙O相離d﹥r
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。
125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。
126、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
127、圓的外切四邊形的兩組對邊的和相等。
128、弦切角定理弦切角等于它所夾的弧對的圓周角。
129、如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。
130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等。
131、如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。
132、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。
133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等。
134、如果兩個圓相切,那么切點一定在連心線上。
135、①兩圓外離d﹥R+r
②兩圓外切d=R+r
③兩圓相交R-r﹤d﹤R+r(R﹥r)
④兩圓內(nèi)切d=R-r(R﹥r)⑤兩圓內(nèi)含d﹤R-r(R﹥r)
136、相交兩圓的連心線垂直平分兩圓的公共弦。
137、把圓分成n(n≥3):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形。
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
138、任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。
139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n。
140、正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形。
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長。
142、正三角形面積√3a/4a表示邊長。
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。
144、弧長計算公式:L=nπR/180。
145、扇形面積公式:S扇形=nπR/360=LR/2。
146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)。
初中數(shù)學(xué)知識點總匯
初中數(shù)學(xué)知識點總匯
B:方程與不等式
1:方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:
去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2:不等式與不等式組
不等式:
①用符號=號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
3:函數(shù)
變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):
①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
②當B=0時,稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。
③在一次函數(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二、空間與圖形
A:圖形的認識:
1:點,線,面
點,線,面:
①圖形是由點,線,面構(gòu)成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
3視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2:角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經(jīng)過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
3:相交線與平行線
角:
①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。
②同角或等角的余角/補角相等。
③對頂角相等。
④同位角相等/內(nèi)錯角相等/同旁內(nèi)角互補,兩直線平行,反之亦然。