小學五年級教案
發(fā)表時間:2020-12-08八年級上冊《平方差公式》教案。
老師工作中的一部分是寫教案課件,大家在仔細設(shè)想教案課件了。寫好教案課件工作計劃,我們的工作會變得更加順利!你們知道適合教案課件的范文有哪些呢?下面是由小編為大家整理的“八年級上冊《平方差公式》教案”,歡迎大家與身邊的朋友分享吧!
八年級上冊《平方差公式》教案
一、教材分析
本節(jié)課選自人教版八年級上冊第14章第二節(jié)內(nèi)容,它是在學生已經(jīng)掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認知規(guī)律的典型范例.對它的學習和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡等內(nèi)容奠定了基礎(chǔ),同時也為學習完全平方公式提供了方法.因此,平方差公式作為初中階段的第一個公式,在教學中具有很重要地位,同時也是最基本、用途最廣泛的公式之一.
二、學情分析
1.學生的知識技能基礎(chǔ):學生在前面的學習中,已經(jīng)學習了整式的有關(guān)內(nèi)容,并經(jīng)歷了用字母表示數(shù)量關(guān)系的過程,有了一定的符號感.經(jīng)過一個學期的培養(yǎng),學生已經(jīng)具備了小組合作、交流的能力.學生剛學過多項式的乘法,已具備學習并運用平方差公式的知識結(jié)構(gòu),通過創(chuàng)造問題情境,讓學生承擔任務(wù),在探究相應問題中,建立并運用公式,從而使拓展學生知識技能結(jié)構(gòu)成為可能.通過實際問題的探究,學生已感受到多項式乘法運算的重要性,同時,具備了對式的運算基礎(chǔ)“快”“準”的積極心理,學生已具備學習公式的知識與技能結(jié)構(gòu),通過新課程教學的實施,培養(yǎng)學生具有獨立探索、合作交流的習慣.
2.學生活動經(jīng)驗基礎(chǔ):學生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會出現(xiàn)符號錯誤及漏項等問題;另外,數(shù)學公式中字母具有高度概括性、廣泛應用性.
三、教學目標
1.知識目標:經(jīng)歷平方差公式的探索及推導過程,掌握平方差公式的結(jié)構(gòu)特征并能熟練應用.
2.能力目標:運用公式進行簡單的運算,獲得一些數(shù)學活動的經(jīng)驗,進一步增強學生的符號感、推理和歸納能力及解決問題的能力.
3.情感目標:讓學生經(jīng)歷“特殊到一般再到特殊”(即:特例─歸納─猜想─驗證─用數(shù)學符號表示—解決問題)這一數(shù)學活動過程,積累數(shù)學活動的經(jīng)驗,體會數(shù)學的簡潔美和數(shù)形結(jié)合的思想方法.培養(yǎng)他們合情推理和歸納的能力以及在解決問題過程中與他人合作交流的意識.
通過幾方面的合力,提高學生歸納概括、邏輯推理等核心素養(yǎng)水平.
四、教學重難點
教學重點:體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì)和結(jié)構(gòu)特征,能用自己的語言說明公式及其特點;并會運用公式進行簡單的計算.
教學難點:從廣泛意義上理解公式中的字母含義,具體問題要具體分析,會運用公式進行計算.
五、信息技術(shù)應用思路
1.本課運用了信息技術(shù)輔助教學,主要使用的技術(shù)有:PPT課件、幾何畫板.
2.使用幾何畫板技術(shù),演示利用動態(tài)繪圖軟件研究周期性快速切換、更改周期,形象演示圖形變化,利用面積法推導平方差公式;在導入、難點突破、練習鞏固等環(huán)節(jié)使用信息技術(shù).
3.預期效果:激發(fā)學生學習興趣;找準并突破難點;提高課堂學習效率.整個教學過程用PPT節(jié)約了時間,使課容量適中;多媒體更能吸引學生的注意力,更利于課堂的完整.
六、教學過程設(shè)計
(一)創(chuàng)設(shè)情境,導入課題
問題1:美麗壯觀的城市廣場,是人們休閑旅游的地方,已經(jīng)成為現(xiàn)代化城市的一道風景線.某城市廣場呈長方形,長為1003米,寬997米.
你能用簡便的方法計算出它的面積嗎?看誰算得快:
師生活動:學生欣賞圖片,感受生活中的數(shù)學問題,并進行生活中的數(shù)學向數(shù)學模型轉(zhuǎn)換.
信息技術(shù)支持:PPT演示由現(xiàn)實中的實際問題入手,創(chuàng)設(shè)情境,從中挖掘蘊含的數(shù)學問題.
(二)探索新知,嘗試發(fā)現(xiàn)
問題2:時代中學計劃將一個邊長為m米的正方形花壇改造成長(m+1)米,寬為(m-1)米的長方形花壇.你會計算改造后的花壇的面積嗎?
計算下列多項式的積,你能發(fā)現(xiàn)什么規(guī)律?
(1)(m+1)(m-1)=;
(2)(5+x)(5-x)=;
(3)(2x+1)(2x-1)=.
師生活動:學生在教師的引導下,通過小組討論探究,進行多項式的乘法,計算出結(jié)論.
信息技術(shù)支持:PPT動畫演示.
結(jié)論是一個平方減去另一個平方的形式,效果十分鮮明.
(三)總結(jié)歸納,發(fā)現(xiàn)新知
問題3:依照以上三道題的計算回答下列問題:
(1)式子的左邊具有什么共同特征?
(2)它們的結(jié)果有什么特征?
(3)能不能用字母表示你的發(fā)現(xiàn)?
問題4:你能用文字語言表示所發(fā)現(xiàn)的規(guī)律嗎?
教師提問,學生通過自主探究、合作交流,發(fā)現(xiàn)規(guī)律:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.
師生活動:學生在教師的引導下,通過小組討論探究,歸納平方差公式的語言敘述.式子左邊是兩個數(shù)的和與這兩個數(shù)的差的積,右邊是這兩個數(shù)的平方差,
信息技術(shù)支持:PPT和幾何畫板演示,培養(yǎng)了學生的探究意識和合情推理的能力以及概括總結(jié)知識的能力.
(四)數(shù)形結(jié)合,幾何說理
問題5:在邊長為a的正方形中剪去一個邊長為b的小正方形,然后把剩余的兩個長方形拼成一個長方形,你能用這兩個圖形的面積說明平方差公式嗎?
提示:a2-b2與(a+b)(a-b)都可表示該圖形的面積.
師生活動:通過學生小組合作,完成剪拼游戲活動,利用這些圖形面積的相等關(guān)系,進一步從幾何角度驗證了平方差公式的正確性,滲透了數(shù)形結(jié)合的思想.
信息技術(shù)支持:PPT演示,進一步利用動畫的演示鞏固對平方差公式的理解程度,培養(yǎng)了學生的應用意識.
(五)剖析公式,發(fā)現(xiàn)本質(zhì)
1.左邊是兩個二項式相乘,其中“a與a”是相同項,“b與-b”是相反項;右邊是二項式,相同項與相反項的平方差,即(a+b)(a-b)=a2-b2.
2.讓學生說明以上四個算式中,哪些式子相當于公式中的a和b,明確公式中a和b的廣泛含義,歸納得出:a和b可能數(shù)或代表式.
師生活動:在認清公式的結(jié)構(gòu)特征的基礎(chǔ)上,進一步剖析a、b的廣泛含義,抓住概念的核心.
信息技術(shù)支持:通過PPT練習實現(xiàn)了知識向能力的轉(zhuǎn)化,讓學生主動嘗試運用所學知識尋求解決問題.
(六)鞏固運用,內(nèi)化新知
問題6:判斷下列算式能否運用平方差公式計算:
(1)(2x+3a)(2x–3b);
(2)(-m+n)(m-n).
問題7:利用平方差公式計算:
(1)(3x+2y)(3x-2y);
(2)(-7+2m2)(-7-2m2).
師生活動:學生經(jīng)過思考、討論、交流,進一步熟悉平方差公式的本質(zhì)特征,掌握運用平方差公式必須具備的條件.
信息技術(shù)支持:PPT展示書寫步驟,有利于節(jié)省時間,提高效率,規(guī)范學生書寫.
(七)拓展應用,強化思維
問題8:利用平方差公式計算情景導航中提出的問題:
即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991.
問題9:小明家有一塊“L”形的自留地,現(xiàn)在要分成兩塊形狀、面積相同的部分,種上兩種不同的蔬菜,請你來幫小明設(shè)計,并算出這塊自留地的面積.
師生活動:設(shè)計此組題旨在從正反兩方面靈活運用平方差公式,由結(jié)果追溯算式中的相同項和相反項,關(guān)鍵在于理解公式結(jié)構(gòu)特征,同時訓練了學生逆向思維能力.
信息技術(shù)支持:PPT展示書寫步驟,有利于節(jié)省時間.
(八)總結(jié)概括,自我評價
問題10:這節(jié)課你有哪些收獲?還有什么困惑?
提示:從知識和情感態(tài)度兩個方面加以小結(jié).
師生活動:使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,分組討論后交流.
信息技術(shù)支持:PPT演示,復習、鞏固本節(jié)課的知識,在掌握基礎(chǔ)知識的前提下,增加提高練習,適當增加靈活度,進一步深化對知識的理解.
(九)課后作業(yè)
1.必做題:課本P36習題2.1A組1、2.
2.選做題:課本P36習題2.1B組1、2.
作業(yè)分層處理有較大的彈性,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,尊重學生的個體差異.
七、教學反思
1.本節(jié)課通過與學生生活緊密聯(lián)系問題及多媒體圖畫設(shè)計引入,激發(fā)了學生學習興趣,同時在教學中以學生自主探究為主,為不同學生設(shè)計練習,有利于提升了學生的自信心.
2.多媒體的應用能使學生充分體驗到教育信息技術(shù)的優(yōu)點,在操作過程中體會學習的快樂,特別是操作簡單,學習效率大大提升,在學習過程中使教學軟件與本節(jié)課的教學內(nèi)容緊密結(jié)合在一起,使學生的思維始終關(guān)注學科本質(zhì).
3.信息技術(shù)的應用,便于及時發(fā)現(xiàn)問題,反饋教學,使教與學更有層次性、針對性、實效性.教師要善于抓住這個契機,充分利用多媒體技術(shù),利用圖形結(jié)合功能,降低難度,增強直觀性.信息技術(shù)的應用大大提高了課堂效率.
擴展閱讀
八年級上冊《用“平方差公式”分解因式》學案
八年級上冊《用“平方差公式”分解因式》學案
用“完全平方公式”分解因式
一、學習目標:
1.使學生會用完全平方公式分解因式.
2.使學生學習多步驟,多方法的分解因式
二、重點難點:
重點:讓學生掌握多步驟、多方法分解因式方法
難點:讓學生學會觀察多項式特點,恰當安排步驟,恰當?shù)剡x用不同方法分解因式
三、合作學習
創(chuàng)設(shè)問題情境,引入新課
完全平方公式(a±b)2=a2±2ab+b2
講授新課
1.推導用完全平方公式分解因式的公式以及公式的特點.
將完全平方公式倒寫:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解
用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.
練一練.下列各式是不是完全平方式?
(1)a2-4a+4;(2)x2+4x+4y2;
(3)4a2+2ab+b2;(4)a2-ab+b2;
四、精講精練
例1、把下列完全平方式分解因式:
(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.
課堂練習:教科書練習
補充練習:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2-12(2a+b)+9;
五、小結(jié):兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
六、作業(yè):1、
2、分解因式:
X2-4x+42x2-4x+2(x2+y2)2-8(x2+y2)+16(x2+y2)2-4x2y2
45ab2-20a-a+a3a-ab2a4-1(a2+1)2-4(a2+1)+4
完全平方公式與平方差公式
老師會對課本中的主要教學內(nèi)容整理到教案課件中,大家應該開始寫教案課件了。我們制定教案課件工作計劃,才能對工作更加有幫助!你們會寫多少教案課件范文呢?為了讓您在使用時更加簡單方便,下面是小編整理的“完全平方公式與平方差公式”,僅供您在工作和學習中參考。
內(nèi)容:8.3完全平方公式與平方差公式(2)P64--67
課型:新授日期:
學習目標:
1、經(jīng)歷探索平方差公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。
2、會推導平方差公式,了解公式的幾何背景,會用公式計算。
3、進一步體會數(shù)形結(jié)合的數(shù)學思想和方法。
學習重點:會推導平差方公式,并能運用公式進行簡單的計算。
學習難點:掌握平方差公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。
學習過程:
一、學習準備
1、利用多項式乘以多項式計算:
(1)(a+1)(a-1)
(2)(x+y)(x-y)
(3)(3a+2b)(3a-2b)
(4)(0.2x+0.04y)(0.2x-0.04y)
觀察以上算式及運算結(jié)果,你發(fā)現(xiàn)了什么?再舉兩例驗證你的發(fā)現(xiàn)。
2、以上算式都是兩個數(shù)的和與這兩個的差相乘,運算結(jié)果是這兩個數(shù)的平方的差。我們把這樣特殊形式的多項式相乘,稱為平方差公式,以后可以直接使用。
平方差公式用字母表示為:(a+b)(a-b)=a2-b2
嘗試用自己的語言敘述平方差公式:
3、平方差公式的幾何意義:閱讀課本65頁,完成填空。
4、平方差公式的結(jié)構(gòu)特征:(a+b)(a-b)=a2-b2
左邊是兩個二項式相乘,兩個二項式中的項有什么特點?右邊的結(jié)果與左邊的項有什么關(guān)系?
注意:公式中字母的含義廣泛,可以是,只要題目符合公式的結(jié)構(gòu)特征,就可以運用這一公式,可用符號表示為:(□+○)(□-○)=□2-○2
5、判斷下列算式能否運用平方差公式。
(1)(x+y)(-x-y)(2)(-y+x)(x+y)
(3)(x-y)(-x-y)(4)(x-y)(-x+y)
二、合作探究
1、利用乘法公式計算:
(1)(2m+3)(2m-3)(2)(-4x+5y)(4x+5y)
分析:要分清題目中哪個式子相當于公式中的a(相同的一項),哪個式子相當于公式中的b(互為相反數(shù)的一項)
2、利用乘法公式計算:
(1)999×1001(2)
分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以999×1001可以轉(zhuǎn)化為()×(),可以轉(zhuǎn)化為()×()
3、利用乘法公式計算:
(1)(x+y+z)(x+y-z)(2)(a-2b+3c)(a+2b-3c)
三、學習體會
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?
四、自我測試
1、下列計算是否正確,若不正確,請訂正;
(1)(x+2)(2-x)=x2-4
(2)(2x+y2)(2x-y2)=2x2-y4
(3)(3x2+1)(3x2-1)=9x2-1
(4)(x+2)(x-3)=x2-6
2、利用乘法公式計算:
(1)(m+n)(m-m)+3n2(2)(a+2b)(a-2b)(a2+4b4)
(3)1007×993(4)(x+3)2-(x+2)(x-1)
4、先化簡,再求值;
(-b+a)(a+b)+(a+b)2-2a2,其中a=3,b=
五、思維拓展
1、如果x2-y2=6,x+y=3,則x-y=
2、計算:20072-4014×2008+20082
3、計算:123462-12345×12347
4、計算:(2+1)(22+1)(24+1)…(22n+1)
平方差公式導學案
一般給學生們上課之前,老師就早早地準備好了教案課件,大家都在十分嚴謹?shù)南虢贪刚n件。只有規(guī)劃好教案課件計劃,新的工作才會更順利!你們清楚有哪些教案課件范文呢?小編收集并整理了“平方差公式導學案”,供大家借鑒和使用,希望大家分享!
章節(jié)與課題§9.4.2平方差公式課時安排2課時
使用人使用日期或周次
本課時
學習目標
或?qū)W習任務(wù)1、經(jīng)歷探索平方差公式的過程,能總結(jié)出平方差公式及語言敘述.
2、能正確運用平方差公式進行簡單的計算.
3、培養(yǎng)語言表達能力、邏輯思維能力.
本課時
重點難點
或?qū)W習建議教學重點:理解平方差公式,運用平方差公式進行計算.
教學難點:平方差公式的推導.
本課時
教學資源
的使用電腦、投影儀.
學習過程學習要求
或?qū)W法指導教師
二次備課欄
自學準備與知識導學:
1、看圖回答:邊長為的小正方形紙片放
置在邊長為的大正方形紙片上,你能求出
陰影部分的面積嗎?
⑴陰影部分由2個相同的直角梯形組成,梯
形的上底等于_____,下底等于_____,高等
于_____,因此梯形的面積等于___________,
陰影部分的面積等于____________________.
⑵大正方形的面積等于_____,小正方形的面
積等于_____,因此陰影部分的面積等于____________.
⑶顯然,⑴和⑵中求得的面積一樣.由此可得出的結(jié)論是:
__________________=____________,這個公式稱為平方差公式.
2、你還能用多項式乘多項式法則得到同樣的結(jié)論嗎?請寫出你的過程.
(a+b)(a-b)=
3、你能說出平方差公式的特點,以及它與完全平方公式的不同點嗎?
4、平方差公式的語言敘述是:_____________________________________.
5、總結(jié):完全平方公式(2個)、平方差公式通常稱為乘法公式,在計算時可以直接使用.
分別從整體和局部兩個方面去思考.
梯形的面積=
(上底+下底)×高÷2.
公式的語言敘述:兩數(shù)和乘兩數(shù)差等于這兩個數(shù)的平方差.
學習交流與問題研討:
1、例題一(準備好,跟著老師一起做!)
用平方差公式計算:⑴⑵
2、例題二(有困難,大家一起討論吧!)
計算:⑴⑵
分析:把⑴中的看作平方差公式中的,把看作,把⑵中的看作平方差公式中的,把看作,再用平方差公式進行計算.
與公式比較,哪個相當于公式中的,哪個相當于公式中的.
練習檢測與拓展延伸:
1、鞏固練習一
⑴口答下列各題
①②
③④
⑵判斷正誤
①()②()
③()④()
⑶填空
①
②
③
④
2、鞏固練習二
⑴課本P67練一練1、2;⑵補充習題P381、2.
3、提升訓練
⑴課本P67練一練3;
⑵計算:
4、當堂測試
探究與訓練P45-464-9.
分析:與公式比較,哪個相當于公式中的,哪個相當于公式中的.要更好、更靈活的掌握平方差公式.
課后反思或經(jīng)驗總結(jié):
1、通過適量的練習使學生能夠正確熟練的運用乘法公式進行混合運算,引導學生運用公式簡單計算,讓學生在應用公式的過程中,提高變形應用公式的能力.