小學語文微課教案
發(fā)表時間:2020-10-19平方差公式導學案。
一般給學生們上課之前,老師就早早地準備好了教案課件,大家都在十分嚴謹?shù)南虢贪刚n件。只有規(guī)劃好教案課件計劃,新的工作才會更順利!你們清楚有哪些教案課件范文呢?小編收集并整理了“平方差公式導學案”,供大家借鑒和使用,希望大家分享!
章節(jié)與課題§9.4.2平方差公式課時安排2課時
使用人使用日期或周次
本課時
學習目標
或學習任務1、經(jīng)歷探索平方差公式的過程,能總結出平方差公式及語言敘述.
2、能正確運用平方差公式進行簡單的計算.
3、培養(yǎng)語言表達能力、邏輯思維能力.
本課時
重點難點
或學習建議教學重點:理解平方差公式,運用平方差公式進行計算.
教學難點:平方差公式的推導.
本課時
教學資源
的使用電腦、投影儀.
學習過程學習要求
或學法指導教師
二次備課欄
自學準備與知識導學:
1、看圖回答:邊長為的小正方形紙片放
置在邊長為的大正方形紙片上,你能求出
陰影部分的面積嗎?
⑴陰影部分由2個相同的直角梯形組成,梯
形的上底等于_____,下底等于_____,高等
于_____,因此梯形的面積等于___________,
陰影部分的面積等于____________________.
⑵大正方形的面積等于_____,小正方形的面
積等于_____,因此陰影部分的面積等于____________.
⑶顯然,⑴和⑵中求得的面積一樣.由此可得出的結論是:
__________________=____________,這個公式稱為平方差公式.
2、你還能用多項式乘多項式法則得到同樣的結論嗎?請寫出你的過程.
(a+b)(a-b)=
3、你能說出平方差公式的特點,以及它與完全平方公式的不同點嗎?
4、平方差公式的語言敘述是:_____________________________________.
5、總結:完全平方公式(2個)、平方差公式通常稱為乘法公式,在計算時可以直接使用.
分別從整體和局部兩個方面去思考.
梯形的面積=
(上底+下底)×高÷2.
公式的語言敘述:兩數(shù)和乘兩數(shù)差等于這兩個數(shù)的平方差.
學習交流與問題研討:
1、例題一(準備好,跟著老師一起做!)
用平方差公式計算:⑴⑵
2、例題二(有困難,大家一起討論吧!)
計算:⑴⑵
分析:把⑴中的看作平方差公式中的,把看作,把⑵中的看作平方差公式中的,把看作,再用平方差公式進行計算.
與公式比較,哪個相當于公式中的,哪個相當于公式中的.www.lvshijia.net
練習檢測與拓展延伸:
1、鞏固練習一
⑴口答下列各題
①②
③④
⑵判斷正誤
①()②()
③()④()
⑶填空
①
②
③
④
2、鞏固練習二
⑴課本P67練一練1、2;⑵補充習題P381、2.
3、提升訓練
⑴課本P67練一練3;
⑵計算:
4、當堂測試
探究與訓練P45-464-9.
分析:與公式比較,哪個相當于公式中的,哪個相當于公式中的.要更好、更靈活的掌握平方差公式.
課后反思或經(jīng)驗總結:
1、通過適量的練習使學生能夠正確熟練的運用乘法公式進行混合運算,引導學生運用公式簡單計算,讓學生在應用公式的過程中,提高變形應用公式的能力.
精選閱讀
利用平方差公式分解因式導學案
每個老師需要在上課前弄好自己的教案課件,大家在用心的考慮自己的教案課件。是時候對自己教案課件工作做個新的規(guī)劃了,才能更好的在接下來的工作輕裝上陣!適合教案課件的范文有多少呢?以下是小編收集整理的“利用平方差公式分解因式導學案”,歡迎您閱讀和收藏,并分享給身邊的朋友!
章節(jié)與課題§9.6.1利用平方差公式分解因式課時安排2課時
使用人使用日期或周次
本課時
學習目標
或學習任務1、了解運用公式來分解因式的意義.
2、理解平方差公式的意義,弄清平方差公式的形式和特點,知道把乘法公式反過來就可以得到相應的因式分解.
3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次).
本課時
重點難點
或學習建議教學重點:運用平方差公式分解因式.
教學難點:靈活運用平方差公式分解因式.
本課時
教學資源
的使用電腦、投影儀.
學習過程學習要求
或學法指導教師
二次備課欄
自學準備與知識導學:
1、情景設置:
問題1:你能很快知道是100的倍數(shù)嗎?你是怎么想出來的?
問題2:從上面=容易看出,這種方法利用了我們剛學過的哪一個乘法公式?
2、計算下列各式:
⑴=___________________
⑵=___________________
⑶=___________________
下面請你根據(jù)上面的等式填空:
⑴=___________________
⑵=___________________
⑶=___________________
問題:對比以上兩題,你有什么發(fā)現(xiàn)?
3、把乘法公式=反過來就得到__________________,這個等式就是因式分解中的平方差公式.它有什么特征?
4、完成課本P72做一做.
等式的左邊是兩數(shù)的平方差,右邊是這兩個數(shù)的和與這兩個數(shù)的差的積,利用它可以把形式是平方差的多項式分解因式.
學習交流與問題研討:
1、例題一(準備好,跟著老師一起做!)
把下列各式分解因式:⑴⑵⑶
5、例題二(有困難,大家一起討論吧!)
如圖,求圓環(huán)形綠化區(qū)的面積.
分析:與公式比較,哪個相當于公式中的,哪個相當于公式中的.
分析:本題主要用環(huán)形面積來計算,運用平方差公式計算.
圓的面積=π×(半徑)2.
練習檢測與拓展延伸:
1、鞏固練習
⑴課本P73練一練1、2.
⑵填空:____=,=____________,
利用因式分解計算:=____________________________.
⑶下列多項式中能用平方差公式分解因式的是()
A.B.C.D.
⑷把下列各式分解因式:
①②③
2、提升訓練
①分解因式:
②探究與訓練P506、7.
3、當堂測試
補充習題P411、2、3、5、6.
分析:與公式比較,哪個相當于公式中的,哪個相當于公式中的.
課后反思或經(jīng)驗總結:
1、通過比較簡單的乘法運算推導出平方差公式,引導學生弄清平方差公式的形式和特點,讓學生在做題中感受,理解平方差公式的意義,使學生通過運算,掌握運用平方差公式分解因式的方法,并能正確運用平方差公式把多項式分解因式.
完全平方公式與平方差公式
老師會對課本中的主要教學內容整理到教案課件中,大家應該開始寫教案課件了。我們制定教案課件工作計劃,才能對工作更加有幫助!你們會寫多少教案課件范文呢?為了讓您在使用時更加簡單方便,下面是小編整理的“完全平方公式與平方差公式”,僅供您在工作和學習中參考。
內容:8.3完全平方公式與平方差公式(2)P64--67
課型:新授日期:
學習目標:
1、經(jīng)歷探索平方差公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。
2、會推導平方差公式,了解公式的幾何背景,會用公式計算。
3、進一步體會數(shù)形結合的數(shù)學思想和方法。
學習重點:會推導平差方公式,并能運用公式進行簡單的計算。
學習難點:掌握平方差公式的結構特征,理解公式中a.b的廣泛含義。
學習過程:
一、學習準備
1、利用多項式乘以多項式計算:
(1)(a+1)(a-1)
(2)(x+y)(x-y)
(3)(3a+2b)(3a-2b)
(4)(0.2x+0.04y)(0.2x-0.04y)
觀察以上算式及運算結果,你發(fā)現(xiàn)了什么?再舉兩例驗證你的發(fā)現(xiàn)。
2、以上算式都是兩個數(shù)的和與這兩個的差相乘,運算結果是這兩個數(shù)的平方的差。我們把這樣特殊形式的多項式相乘,稱為平方差公式,以后可以直接使用。
平方差公式用字母表示為:(a+b)(a-b)=a2-b2
嘗試用自己的語言敘述平方差公式:
3、平方差公式的幾何意義:閱讀課本65頁,完成填空。
4、平方差公式的結構特征:(a+b)(a-b)=a2-b2
左邊是兩個二項式相乘,兩個二項式中的項有什么特點?右邊的結果與左邊的項有什么關系?
注意:公式中字母的含義廣泛,可以是,只要題目符合公式的結構特征,就可以運用這一公式,可用符號表示為:(□+○)(□-○)=□2-○2
5、判斷下列算式能否運用平方差公式。
(1)(x+y)(-x-y)(2)(-y+x)(x+y)
(3)(x-y)(-x-y)(4)(x-y)(-x+y)
二、合作探究
1、利用乘法公式計算:
(1)(2m+3)(2m-3)(2)(-4x+5y)(4x+5y)
分析:要分清題目中哪個式子相當于公式中的a(相同的一項),哪個式子相當于公式中的b(互為相反數(shù)的一項)
2、利用乘法公式計算:
(1)999×1001(2)
分析:要利用完全平方公式,需具備完全平方公式的結構,所以999×1001可以轉化為()×(),可以轉化為()×()
3、利用乘法公式計算:
(1)(x+y+z)(x+y-z)(2)(a-2b+3c)(a+2b-3c)
三、學習體會
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?
四、自我測試
1、下列計算是否正確,若不正確,請訂正;
(1)(x+2)(2-x)=x2-4
(2)(2x+y2)(2x-y2)=2x2-y4
(3)(3x2+1)(3x2-1)=9x2-1
(4)(x+2)(x-3)=x2-6
2、利用乘法公式計算:
(1)(m+n)(m-m)+3n2(2)(a+2b)(a-2b)(a2+4b4)
(3)1007×993(4)(x+3)2-(x+2)(x-1)
4、先化簡,再求值;
(-b+a)(a+b)+(a+b)2-2a2,其中a=3,b=
五、思維拓展
1、如果x2-y2=6,x+y=3,則x-y=
2、計算:20072-4014×2008+20082
3、計算:123462-12345×12347
4、計算:(2+1)(22+1)(24+1)…(22n+1)
平方差公式教學設計
8.3完全平方公式與平方差公式
第2課時平方差公式
1.掌握平方差公式的推導和運用,以及對平方差公式的幾何背景的理解;(重點)
2.掌握平方差公式的應用.(重點、難點)
一、情境導入
1.教師引導學生回憶多項式與多項式相乘的法則.
學生積極舉手回答.
多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加.
2.教師肯定學生的表現(xiàn),并講解一種特殊形式的多項式與多項式相乘——平方差公式.
二、合作探究
探究點:平方差公式
【類型一】直接應用平方差公式進行計算
利用平方差公式計算:
(1)(3x-5)(3x+5);
(2)(-2a-b)(b-2a);
(3)(-7m+8n)(-8n-7m);
(4)(x-2)(x+2)(x2+4).
解析:直接利用平方差公式進行計算即可.
解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;
(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;
(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;
(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.
方法總結:應用平方差公式計算時,應注意以下幾個問題:(1)左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);(2)右邊是相同項的平方減去相反項的平方;(3)公式中的a和b可以是具體的數(shù),也可以是單項式或多項式.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第1題
【類型二】應用平方差公式進行簡便運算
利用平方差公式計算:
(1)2013×1923;(2)13.2×12.8.
解析:(1)把2013×1923寫成(20+13)×(20-13),然后利用平方差公式進行計算;(2)把13.2×12.8寫成(13+0.2)×(13-0.2),然后利用平方差公式進行計算.
解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;
(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.
方法總結:熟記平方差公式的結構并構造出公式結構是解題的關鍵.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第13題
【類型三】運用平方差公式進行化簡求值
先化簡,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.
解析:利用平方差公式展開并合并同類項,然后把x、y的值代入進行計算即可得解.
解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.當x=1,y=2時,原式=5×12-5×22=-15.
方法總結:利用平方差公式先化簡再求值,切忌代入數(shù)值直接計算.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第14題
【類型四】平方差公式的幾何背景
如圖①,在邊長為a的正方形中剪去一個邊長為b的小正形(a>b),把剩下部分拼成一個梯形(如圖②),利用這兩幅圖形的面積,可以驗證的乘法公式是______________.
解析:∵左圖中陰影部分的面積是a2-b2,右圖中梯形的面積是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以驗證的乘法公式為(a+b)(a-b)=a2-b2.
方法總結:通過幾何圖形面積之間的數(shù)量關系可對平方差公式做出幾何解釋.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第9題
【類型五】平方差公式的實際應用
王大伯家把一塊邊長為a米的正方形土地租給了鄰居李大媽.今年王大伯對李大媽說:“我把這塊地一邊減少4米,另外一邊增加4米,繼續(xù)原價租給你,你看如何?”李大媽一聽,就答應了.你認為李大媽吃虧了嗎?為什么?
解析:根據(jù)題意先求出原正方形的面積,再求出改變邊長后的面積,然后比較二者的大小即可.
解:李大媽吃虧了,理由如下:原正方形的面積為a2,改變邊長后面積為(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大媽吃虧了.
方法總結:解決實際問題的關鍵是根據(jù)題意列出算式,然后根據(jù)公式化簡解決問題.
三、板書設計
1.平方差公式
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差.即(a+b)(a-b)=a2-b2.
2.平方差公式的運用
學生通過“做一做”發(fā)現(xiàn)平方差公式,同時通過“試一試”用幾何方法證明公式的正確性.通過這兩種方式的演算,讓學生理解平方差公式.本節(jié)教學內容較多,因此教材中的練習可以讓學生在課后完成