一元二次方程高中教案
發(fā)表時間:2020-12-08八年級下冊《二次根式》第2課時教案設計。
作為老師的任務寫教案課件是少不了的,大家在認真寫教案課件了。我們制定教案課件工作計劃,就可以在接下來的工作有一個明確目標!有多少經(jīng)典范文是適合教案課件呢?以下是小編收集整理的“八年級下冊《二次根式》第2課時教案設計”,但愿對您的學習工作帶來幫助。
八年級下冊《二次根式》第2課時教案設計
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學生學習二次根式概念的基礎上,結(jié)合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過“探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).
二、目標和目標解析
1.教學目標
(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
(2)會運用二次根式的性質(zhì)進行二次根式的化簡;
(3)了解代數(shù)式的概念.
2.目標解析
(1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
(2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;
(3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.
四、教學過程設計
1.探究性質(zhì)1
問題1你能解釋下列式子的含義嗎?
,,,.
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.
問題2根據(jù)算術平方根的意義填空,并說出得到結(jié)論的依據(jù).
;;;.
師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì):(≥0).
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.
例2計算
(1);(2).
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.
2.探究性質(zhì)2
問題4你能解釋下列式子的含義嗎?
,,,.
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.
問題5根據(jù)算術平方根的意義填空,并說出得到結(jié)論的依據(jù).
=,=,=,=.
師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì):(≥0)
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.
例3計算
(1);(2).
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.
3.歸納代數(shù)式的概念
問題7回顧我們學過的式子,如,,,,,,,(≥0),這些式子有哪些共同特征?
師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.
【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.
4.綜合運用
(1)算一算:
;;;.
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
(2)想一想:中,的取值范圍是什么?當≥0時,等于多少?當時,又等于多少?
【設計意圖】通過此問題的設計,加深學生對的理解,開闊學生的視野,訓練學生的思維.
(3)談一談你對與的認識.
【設計意圖】加深學生對二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
(2)運用二次根式性質(zhì)進行化簡需要注意什么?
(3)請談談發(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.
6.布置作業(yè):教科書習題16.1第2,4題.
五、目標檢測設計
1.;;.
【設計意圖】考查對二次根式性質(zhì)的理解.
2.下列運算正確的是()
A.B.C.D.
【設計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.
3.若,則的取值范圍是.
【設計意圖】考查學生對一個數(shù)非負數(shù)的算術平方根的理解.
4.計算:.
【設計意圖】考查二次根式性質(zhì)的靈活運用.
相關知識
人教版八年級數(shù)學下冊16.1二次根式第2課時教學設計
每個老師為了上好課需要寫教案課件,大家在認真寫教案課件了。我們要寫好教案課件計劃,這對我們接下來發(fā)展有著重要的意義!你們會寫多少教案課件范文呢?以下是小編收集整理的“人教版八年級數(shù)學下冊16.1二次根式第2課時教學設計”,歡迎您閱讀和收藏,并分享給身邊的朋友!
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學生學習二次根式概念的基礎上,結(jié)合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過“探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).
二、目標和目標解析
1.教學目標
(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
(2)會運用二次根式的性質(zhì)進行二次根式的化簡;
(3)了解代數(shù)式的概念.
2.目標解析
(1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
(2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;
(3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.
四、教學過程設計
1.探究性質(zhì)1
問題1你能解釋下列式子的含義嗎?
,,,.
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.
問題2根據(jù)算術平方根的意義填空,并說出得到結(jié)論的依據(jù).
;;;.
師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì):(≥0).
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.
例2計算
(1);(2).
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.
2.探究性質(zhì)2
問題4你能解釋下列式子的含義嗎?
,,,.
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.
問題5根據(jù)算術平方根的意義填空,并說出得到結(jié)論的依據(jù).
=,=,=,=.
師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì):(≥0)
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.
例3計算
(1);(2).
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.
3.歸納代數(shù)式的概念
問題7回顧我們學過的式子,如,,,,,,,(≥0),這些式子有哪些共同特征?
師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.
【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.
4.綜合運用
(1)算一算:
;;;.
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
(2)想一想:中,的取值范圍是什么?當≥0時,等于多少?當時,又等于多少?
【設計意圖】通過此問題的設計,加深學生對的理解,開闊學生的視野,訓練學生的思維.
(3)談一談你對與的認識.
【設計意圖】加深學生對二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
(2)運用二次根式性質(zhì)進行化簡需要注意什么?
(3)請談談發(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.
6.布置作業(yè):教科書習題16.1第2,4題.
五、目標檢測設計
1.;;.
【設計意圖】考查對二次根式性質(zhì)的理解.
2.下列運算正確的是()
A.B.C.D.
【設計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.
3.若,則的取值范圍是.
【設計意圖】考查學生對一個數(shù)非負數(shù)的算術平方根的理解.
4.計算:.
【設計意圖】考查二次根式性質(zhì)的靈活運用.
八年級數(shù)學下冊《二次根式的乘除(第2課時)》教學設計
八年級數(shù)學下冊《二次根式的乘除(第2課時)》教學設計
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎.
基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質(zhì),最簡二次根式.
二、目標和目標解析
1.教學目標
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3)理解最簡二次根式的概念.
2.目標解析
(1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.
(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.
三、教學問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結(jié)果,明確運算方向.
本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質(zhì)之間的關系和應用.
四、教學過程設計
1.復習提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.
2.觀察思考,理解法則
問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結(jié)二次根式除法法則:
.
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了.
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤.
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù).
【設計意圖】讓學生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算.
問題5對比積的算術平方根的性質(zhì),商的算術平方根有沒有類似性質(zhì)?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即.利用該性質(zhì)可以進行二次根式的化簡.
3.例題示范,學會應用
例1計算:(1);(2);(3).
師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
再提問:第(2)用什么方法計算更簡捷?第(3)題根號下含字母在移出根號時應注意什么?
【設計意圖】通過具體問題,讓學生在實際運算中培養(yǎng)運算能力,訓練運算技能,
問題5你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?
師生活動學生總結(jié),師生共同補充、完善。要總結(jié)出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設計意圖】引導學生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式.
問題6課件展示一組二次根式的計算、化簡題.
【設計意圖】讓學生用總結(jié)出的結(jié)論進行二次根式的運算.
4.鞏固概念,學以致用
例2教材第9頁例7.
師生活動提問本題是以長方形面積為背景的數(shù)學問題,二次根式的除法運算在此發(fā)揮什么作用?
再提問章引言中的問題現(xiàn)在能解決了嗎?
【設計意圖】鞏固性練習,同時培養(yǎng)學生應用二次根式的乘除運算法則解決實際問題的能力。
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:
(1)除法運算的法則如何?對等式中字母的取值范圍有何要求?
(2)你能說明最簡二次根式需要滿足的條件嗎?
6.布置作業(yè):教科書第10頁練習第1,2,3題;
教科書習題16.2第10,11題.
五、目標檢測設計
1.在、、中,最簡二次根式為.
【設計意圖】考查對最簡二次根式的概念的理解.
2.化簡下列各式為最簡二次根式:;.
【設計意圖】復習二次根式的運算法則和運算性質(zhì).鼓勵學生用不同方法進行計算.對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算.
3.化簡:(1);(2).
【設計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算.
人教版八年級數(shù)學下冊16.2二次根式的乘除第2課時教學設計
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎.
基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質(zhì),最簡二次根式.
二、目標和目標解析
1.教學目標
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3)理解最簡二次根式的概念.
2.目標解析
(1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.
(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.
三、教學問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結(jié)果,明確運算方向.
本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質(zhì)之間的關系和應用.
四、教學過程設計
1.復習提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.
2.觀察思考,理解法則
問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動學生回答,給出正確答案后,教師引導學生思考,并總結(jié)二次根式除法法則:
.
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了.
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤.
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù).
【設計意圖】讓學生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算.
問題5對比積的算術平方根的性質(zhì),商的算術平方根有沒有類似性質(zhì)?
師生活動學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即.利用該性質(zhì)可以進行二次根式的化簡.
3.例題示范,學會應用
例1計算:(1);(2);(3).
師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
再提問:第(2)用什么方法計算更簡捷?第(3)題根號下含字母在移出根號時應注意什么?
【設計意圖】通過具體問題,讓學生在實際運算中培養(yǎng)運算能力,訓練運算技能,
問題5你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?
師生活動學生總結(jié),師生共同補充、完善。要總結(jié)出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設計意圖】引導學生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式.
問題6課件展示一組二次根式的計算、化簡題.
【設計意圖】讓學生用總結(jié)出的結(jié)論進行二次根式的運算.
4.鞏固概念,學以致用
例2教材第9頁例7.
師生活動提問本題是以長方形面積為背景的數(shù)學問題,二次根式的除法運算在此發(fā)揮什么作用?
再提問章引言中的問題現(xiàn)在能解決了嗎?
【設計意圖】鞏固性練習,同時培養(yǎng)學生應用二次根式的乘除運算法則解決實際問題的能力。
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:
(1)除法運算的法則如何?對等式中字母的取值范圍有何要求?
(2)你能說明最簡二次根式需要滿足的條件嗎?
6.布置作業(yè):教科書第10頁練習第1,2,3題;
教科書習題16.2第10,11題.
五、目標檢測設計
1.在、、中,最簡二次根式為.
【設計意圖】考查對最簡二次根式的概念的理解.
2.化簡下列各式為最簡二次根式:;.
【設計意圖】復習二次根式的運算法則和運算性質(zhì).鼓勵學生用不同方法進行計算.對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算.
3.化簡:(1);(2).
【設計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算.