小學(xué)三角形教案
發(fā)表時(shí)間:2020-12-08三角形的中位線導(dǎo)學(xué)案。
為了促進(jìn)學(xué)生掌握上課知識(shí)點(diǎn),老師需要提前準(zhǔn)備教案,大家正在計(jì)劃自己的教案課件了。只有規(guī)劃好教案課件計(jì)劃,這樣我們接下來的工作才會(huì)更加好!有哪些好的范文適合教案課件的?急您所急,小編為朋友們了收集和編輯了“三角形的中位線導(dǎo)學(xué)案”,歡迎大家閱讀,希望對大家有所幫助。
課題9.5三角形的中位線自主空間
學(xué)習(xí)目標(biāo)探索并掌握三角形中位線的概念、性質(zhì);會(huì)利用三角形中位線的性質(zhì)解決有關(guān)問題;
2.經(jīng)歷探索三角形中位線性質(zhì)的過程,體會(huì)轉(zhuǎn)化的思想方法;
3.通過對中位線的學(xué)習(xí)養(yǎng)成質(zhì)疑和獨(dú)立思考的習(xí)慣.
學(xué)習(xí)重難點(diǎn)1.探索并掌握三角形中位線的性質(zhì).
2.運(yùn)用轉(zhuǎn)化思想解決有關(guān)問題.
教學(xué)流程
預(yù)
習(xí)
導(dǎo)
航問題:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼與一個(gè)平行四邊形?
操作:
1:把一個(gè)等邊三角形剪成四個(gè)全等的三角形——取三邊中點(diǎn),并分別連接(圖1);
2:把一個(gè)任意三角形剪成四個(gè)全等的三角形——取三邊中點(diǎn),并分別連接(圖2);
3:把一個(gè)任意三角形剪拼成一個(gè)平等四邊形——剪一個(gè)三角形,記為△ABC;分別取AB、AC的中點(diǎn)D、E,連接DE;沿DE將△ABC剪成兩部分,并將△ADE續(xù)點(diǎn)E旋轉(zhuǎn)180°,得四邊形BCFD(圖3)。
觀察:四邊形BCFD是平行四邊形嗎?
探索:
問題1:要判定一個(gè)四邊形是平行四邊形,須具備什么條件?
(邊、角、對角線)
問題2:結(jié)合此題中的條件,你感覺應(yīng)該選用哪種方法?
合
作
探
究一、概念探究:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
1.聯(lián)想:你能說出三角形的中位和三角形中位線的區(qū)別嗎?畫圖描述。
2.探索:如上圖3,DE是△ABC的中位線,DE與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系?為什么?
操作1:你能直觀感知它們之間的關(guān)系嗎?用三角板驗(yàn)證。
操作2:你能用說理的方法來驗(yàn)證它們之間的這種關(guān)系嗎?
3.小結(jié):三角形中位線的性質(zhì):
。
二、例題分析:
例1:如圖,在四邊形ABCD中,E、F、G、H
分別是AB、BC、CD、DA、的中點(diǎn),四邊形EFGH
是平行四邊形嗎?為什么?
操作1:請任畫一個(gè)四邊形,順次連接四邊形各邊的中點(diǎn)。
問題1:猜想探索得到的四邊形的形狀,并說明理由。
問題2:由E、F分別是中點(diǎn),你能聯(lián)想到什么?你應(yīng)該如何做?
變式:(1)依次連接矩形4邊中點(diǎn)所得的四邊形是怎樣的圖形?為什么?
(2)如果將矩形改成菱形,結(jié)果怎樣?
三、展示交流:
1.順次連結(jié)矩形四邊的中點(diǎn)所得的四邊形是()
A.矩形B.菱形C.正方形D.以上都不對
2.如果四邊形的對角線互相垂直,那么順次連結(jié)四邊形中點(diǎn)所得的四邊形是()
A.矩形B.菱形C.正方形D.以上都不對
3.已知以一個(gè)三角形各邊中點(diǎn)為頂點(diǎn)的三角形的周長為8cm,則原三角形的周長為cm
4.一個(gè)三角形的周長是12cm,則這個(gè)三角形各邊中點(diǎn)圍成的三角形的周長.
5.已知△ABC中,D是AB上一點(diǎn),AD=AC,AE⊥CD,垂足是E、F是BC的中點(diǎn),試說明BD=2EF。
6.如圖,矩形ABCD的對角線相交于點(diǎn)O,點(diǎn)E、F、G、H分別是OA、OB、OC、DO的中點(diǎn),四邊形EFGH是矩形嗎?為什么?
當(dāng)
堂
達(dá)
標(biāo)1.如果四邊形的對角線相等,那么順次連結(jié)四邊形的中點(diǎn)所得的四邊形是()
A.矩形B.菱形C.正方形D.以上都不對
2.如果四邊形的對角線互相垂直,那么順次連結(jié)四邊形中點(diǎn)所得的四邊形是()
A.矩形B.菱形C.正方形D.以上都不對
3.如果順次連結(jié)四邊形各邊中點(diǎn)組成的四邊形是菱形,那么原來的四邊形的對角線()
A.互相平分B.互相垂直C.相等D.相等且互相平分
4.順次連結(jié)下列各四邊形中點(diǎn)所得的四邊形是矩形的是().
A.等腰梯形B.矩形C.平行四邊形
D.菱形或?qū)蔷€互相垂直的四邊形
5.△ABC中,D、E分別是AB、AC的中點(diǎn),則線段CD是△ABC的,線段DE是△ABC.
6.如圖,D、E、F分別是△ABC各邊的中點(diǎn),(1)如果EF=4cm,那么BC=cm;如果AB=10cm,那么DF=cm;(2)中線AD與中位線EF的關(guān)系是.
7.如圖,A、B兩地被建筑物阻隔,為測量A、B兩地的距離,在地面上選一點(diǎn)C,連接CA、CB,分別取CA、CB的中點(diǎn)D、E.
(1)若DE的長度為36米,求A、B兩地之間的距離;
(2)如果D、E兩點(diǎn)之間還有阻隔,你有什么方法解決?
[好工具范文網(wǎng) FaNWen.hao86.COm]
相關(guān)推薦
三角形中位線定理
課案(學(xué)生用)
三角形中位線定理
(新授課)
【學(xué)習(xí)目標(biāo)】
1.知識(shí)技能
利用平行四邊形的性質(zhì)和判定證明出三角形的中位線定理,并會(huì)用定理進(jìn)行計(jì)算或證明.
2.?dāng)?shù)學(xué)思考
通過猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),發(fā)展我們的動(dòng)手操作能力、合情推理能力以及應(yīng)用數(shù)學(xué)能力.
3.解決問題
通過三角形中位線定理的探索過程,豐富我們從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)與體驗(yàn),感受數(shù)學(xué)思考過程的條理性及解決問題策略的多樣性.
4.情感態(tài)度
(1)在觀察、分析過程中發(fā)展我們主動(dòng)探索、質(zhì)疑和獨(dú)立思考的習(xí)慣.
(2)經(jīng)歷合作探究的過程,培養(yǎng)我們合作交流意識(shí)和探索精神.
【學(xué)習(xí)重難點(diǎn)】
1.教學(xué)重點(diǎn):理解和掌握三角形中位線定理,并能熟練運(yùn)用.
2.教學(xué)難點(diǎn):利用平行四邊形的性質(zhì)與判定證明三角形的中位線定理,以及復(fù)雜圖形中通過作輔助線應(yīng)用三角形中位線定理.
課前延伸
各人準(zhǔn)備一張三角形紙片,記作△ABC,分別取AB、AC邊中點(diǎn)D、E,用直尺分別測量DE、BC的長,比較DE、BC的大小關(guān)系,并猜想DE、BC之間存在怎樣的數(shù)量關(guān)系.還能借助量角器測量有關(guān)角的大小,并猜想出DE、BC之間的位置關(guān)系嗎?
課內(nèi)探究
一.上面猜想進(jìn)行理論證明.
已知:D、E分別平分AB、AC,
求證:_______________________
二.總結(jié)歸納.
三角形的中位線定義:
三角形的中位線定理:
三.三角形的中位線和中線區(qū)別:
三角形中位線定理的符號(hào)語言:
四.隨堂練習(xí)、鞏固深化
1.D、E分別平分AB、AC,若BC=10cm,則DE=______;
若DE=cm,則BC=______.
2.已知中,,且cm,D、E、F分別是AB、BC、CA的中點(diǎn),則的周長是_________cm.
3.如圖,內(nèi)有一點(diǎn)P,EF是的中位線,MN是的中位線,
求證:四邊形MNFE是平行四邊形.
4.判斷任意一個(gè)四邊形各邊中點(diǎn)連接所形成四邊形的形狀,并證明你的結(jié)論.
已知:E、F、G、H分別為四邊形ABCD中點(diǎn),
求證:四邊形EFGH為平行四邊形.
5.實(shí)際應(yīng)用:
想知道一池塘邊緣寬度AB,且AB不可直接測量,怎么辦?
提醒:池塘旁取一點(diǎn)C,C與A、B之間可以直接到達(dá).
五.當(dāng)場訓(xùn)練反饋:
1.如圖,任意四邊形ABCD各邊中點(diǎn)分別為E、F、G、H,若對角線AC、BD的長都為10cm,則四邊形EFGH的周長是()
A.40cmB.20cmC.10cmD.5cm
2.以三角形的三個(gè)頂點(diǎn)及三邊中點(diǎn)為頂點(diǎn)的平行四邊形共有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
課后提升
1.已知一個(gè)三角形的周長為a,它的三條中線組成的第二個(gè)三角形周長為_________,
第二個(gè)三角形的三條中線又組成第三個(gè)三角形,其周長為_________,以此類推,
第2010個(gè)三角形的周長為_________.
2.如圖,已知△ABC的中線BD、CE相交于點(diǎn)O,F(xiàn)、G分別是BO、CO的中點(diǎn),
試猜想EF、DG之間的關(guān)系,并證明你的結(jié)論.
三角形的中位線的
一、設(shè)計(jì)思路
(一)教材分析
本課時(shí)所要探究的三角形中位線定理是學(xué)生以前從未接觸過的內(nèi)容。因此,在教學(xué)中通過創(chuàng)設(shè)有趣的情境問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,注重新舊知識(shí)的聯(lián)系,強(qiáng)調(diào)直觀與抽象的結(jié)合,鼓勵(lì)學(xué)生大膽猜想,大膽探索新穎獨(dú)特的證明方法和思路,讓學(xué)生充分經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”這一過程,體會(huì)合情推理與演繹推理在獲得結(jié)論的過程中發(fā)揮的作用,同時(shí)滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。通過本節(jié)課的學(xué)習(xí),應(yīng)使學(xué)生理解三角形中位線定理不僅指出了三角形的中位線與第三邊的位置關(guān)系和數(shù)量關(guān)系,而且為證明線段之間的位置關(guān)系和數(shù)量關(guān)系(倍分關(guān)系)提供了新的思路,從而提高學(xué)生分析問題、解決問題的能力。
(二)學(xué)情分析
本班學(xué)生基礎(chǔ)知識(shí)比較扎實(shí),接受新知識(shí)的意識(shí)較強(qiáng),對于本章有關(guān)平行四邊形的性質(zhì)和判定的內(nèi)容掌握較好,但知識(shí)遷移能力較差,數(shù)學(xué)思想方法運(yùn)用不夠靈活。因此,本節(jié)課著眼于基礎(chǔ),注重能力的培養(yǎng),積極引導(dǎo)學(xué)生首先通過實(shí)際操作獲得結(jié)論,然后借助于平行四邊形的有關(guān)知識(shí)進(jìn)行探索和證明。在此過程中注重知識(shí)的遷移同時(shí)重點(diǎn)滲透轉(zhuǎn)化、類比、歸納的數(shù)學(xué)思想方法,使學(xué)生的優(yōu)勢得以發(fā)揮,劣勢得以改進(jìn),從而提高學(xué)生的整體水平。
三)教學(xué)目標(biāo)
1.知識(shí)目標(biāo)
1)了解三角形中位線的概念。
2)掌握三角形中位線定理的證明和有關(guān)應(yīng)用。
2.能力目標(biāo)
1)經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過程,進(jìn)一步發(fā)展推理論證能力。
2)能夠用多種方法證明三角形的中位線定理,體會(huì)在證明過程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3)能夠應(yīng)用三角形的中位線定理進(jìn)行有關(guān)的論證和計(jì)算,逐步提高學(xué)生分析問題和解決問題的能力。
3.情感目標(biāo)
通過學(xué)生動(dòng)手操作、觀察、實(shí)驗(yàn)、推理、猜想、論證等自主探索與合作交流的過程,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生真正體驗(yàn)知識(shí)的發(fā)生和發(fā)展過程,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
(四)教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):三角形中位線的概念與三角形中位線定理的證明.
教學(xué)難點(diǎn):三角形中位線定理的多種證明。
(五)教學(xué)方法與學(xué)法指導(dǎo)
對于三角形中位線定理的引入采用發(fā)現(xiàn)法,在教師的引導(dǎo)下,學(xué)生通過探索、猜測等自主探究的方法先獲得結(jié)論再去證明。在此過程中,注重對證明思路的啟發(fā)和數(shù)學(xué)思想方法的滲透,提倡證明方法的多樣性,而對于定理的證明過程,則運(yùn)用多媒體演示。
(六)教具和學(xué)具的準(zhǔn)備
教具:多媒體、投影儀、三角形紙片、剪刀、常用畫圖工具。
學(xué)具:三角形紙片、剪刀、刻度尺、量角器。
二、教學(xué)過程
1.一道趣題——課堂因你而和諧
問題:你能將任意一個(gè)三角形分成四個(gè)全等的三角形嗎?這四個(gè)全等三角形能拼湊成一個(gè)平行四邊形嗎?(板書)
(這一問題激發(fā)了學(xué)生的學(xué)習(xí)興趣,學(xué)生積極主動(dòng)地加入到課堂教學(xué)中,課堂氣氛變得較為和諧,課堂也鮮活起來了。)
學(xué)生想出了這樣的方法:順次連接三角形每兩邊的中點(diǎn),看上去就得到了四個(gè)全等的三角形.
如圖中,將ADE繞E點(diǎn)沿順(逆)時(shí)針方向旋轉(zhuǎn)180°可得平行四邊形ADFE。
問題:你有辦法驗(yàn)證嗎?
2.一種實(shí)驗(yàn)——課堂因你而生動(dòng)
學(xué)生的驗(yàn)證方法較多,其中較為典型的方法如下:
生1:沿DE、DF、EF將畫在紙上的ABC剪開,看四個(gè)三角形能否重合。
生2:分別測量四個(gè)三角形的三邊長度,判斷是否可利用“SSS”來判定三角形全等。
生3:分別測量四個(gè)三角形對應(yīng)的邊及角,判斷是否可用“SAS、ASA或AAS”判定全等。
引導(dǎo):上述同學(xué)都采用了實(shí)驗(yàn)法,存在誤差,那么如何利用推理論證的方法驗(yàn)證呢?
3.一種探索——課堂因你而鮮活
師:把連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.(板書)
問題:三角形的中位線與第三邊有怎樣的關(guān)系呢?在前面圖1中你能發(fā)現(xiàn)什么結(jié)論呢?
(學(xué)生的思維開始活躍起來,同學(xué)之間開始互相討論,積極發(fā)言)
學(xué)生的結(jié)果如下:DEBC,DFAC,EFAB,AE=EC,BF=FC,BD=AD,
ADEDBFEFCDEF,DE=BC,DF=AC,EF=AB……
猜想:三角形的中位線平行于第三邊,且等于第三邊的一半。(板書)
師:如何證明這個(gè)猜想的命題呢?
生:先將文字問題轉(zhuǎn)化為幾何問題然后證明。
已知:DE是ABC的中位線,求證:DE//BC、DE=BC。
學(xué)生思考后教師啟發(fā):要證明兩條直線平行,可以利用“三線八角”的有關(guān)內(nèi)容進(jìn)行轉(zhuǎn)化,而要證明一條線段的長等于另一條線段長度的一半,可采用將較短的線段延長一倍,或者截取較長線段的一半等方法進(jìn)行轉(zhuǎn)化歸納。
(學(xué)生積極討論,得出幾種常用方法,大致思路如下)
生1:延長DE到F使EF=DE,連接CF
由ADECFE(SAS)
得ADFC從而BDFC
所以,四邊形DBCF為平行四邊形
得DFBC
可得DEBC(板書)
生2:將ADE繞E點(diǎn)沿順(逆)時(shí)針方向旋轉(zhuǎn)180°,使得點(diǎn)A與點(diǎn)C重合,
即ADECFE,
可得BDCF,
得平行四邊形DBCF
得DFBC可得DEBC
生3:延長DE到F使DE=EF,連接AF、CF、CD,可得ADCF
得DBCF
得DFBC
可得DEBC
生4:利用ADEABC且相似比為1:2
即
可得DEBC
師:還有其它不同方法嗎?
(學(xué)生面面相覷,學(xué)生5舉手發(fā)言)4.一種創(chuàng)新——課堂因你而美麗
生5:過點(diǎn)D作DF//BC交AC于點(diǎn)F
則ADFABC
可得
又E是AC中點(diǎn)
可得
因此AE=AF
即E點(diǎn)與F點(diǎn)重合
所以DE//BC且DE=BC
(筆者事先只局限于思考利用平行四邊形及三角形相似的性質(zhì)解決問題,沒想到學(xué)生的發(fā)言如此精彩,為整個(gè)課堂添加了不少亮色。)
師:很好,好極了!這種證法在數(shù)學(xué)中叫做同一法,連老師也沒想到。太棒了,大家要向生5學(xué)習(xí),用變化的、動(dòng)態(tài)的、創(chuàng)新的觀點(diǎn)來看問題,努力去尋找更好更簡捷的方法。
5.一種思考——課堂因你而添彩
問題:三角形的中位線與中線有什么區(qū)別與聯(lián)系呢?
容易得出如下事實(shí):都是三角形內(nèi)部與邊的中點(diǎn)有關(guān)的線段.但中位線平行于第三邊,且等于第三邊的一半,三角形的一條中位線與第三邊上的中線互相平分.(學(xué)生交流、探索、思考、驗(yàn)證)
6.一種照應(yīng)——課堂因你而完整
問題:你能利用三角形中位線定理說明本節(jié)課開始提出的趣題的合理性嗎?(學(xué)生爭先恐后回答,課堂氣氛活躍)
7.一種應(yīng)用——課堂因你而升華
做一做:任意一個(gè)四邊形,將其四邊的中點(diǎn)依次連接起來所得新四邊形的形狀有什么特征?
(學(xué)生積極思考發(fā)言,師生共同完成此題目的最常見解法。)
已知:四邊形ABCD,點(diǎn)E、F、G、H
分別是四邊的中點(diǎn),求證:四邊形EFGH是平行四邊形。
證明:連結(jié)AC
E、F分別是AB、BC的中點(diǎn),
∴EF是ABC的中位線,
∴EFAC且EF=AC,
同理可得:GHAC且GH=AC,
∴EFGH,
∴四邊形EFGH為平行四邊形。(板書)
其它解法由學(xué)生口述完成。
8.一種引申——課堂因你而讓人回味無窮
問題:如果將上例中的“任意四邊形”改為“平行四邊形、矩形、菱形、正方形”,結(jié)論又會(huì)怎么樣呢?(學(xué)生作為作業(yè)完成。)
9.一句總結(jié)——課堂因你而彰顯無窮魅力
學(xué)生總結(jié)本節(jié)內(nèi)容:三角形的中位線和三角形中位線定理。(另附作業(yè))
三、板書設(shè)計(jì)
三角形的中位線
1.問題
2.三角形中位線定義
3.三角形中位線定理證明
4.做一做
5.練習(xí)
6.小結(jié)
四、課后反思
本節(jié)課以“如何將一個(gè)任意三角形分為四個(gè)全等的三角形”這一問題為出發(fā)點(diǎn),以平行四邊形的性質(zhì)定理和判定定理為橋梁,探究了三角形中位線的基本性質(zhì)和應(yīng)用。在本節(jié)課中,學(xué)生親身經(jīng)歷了“探索—發(fā)現(xiàn)—猜想—證明”的探究過程,體會(huì)了證明的必要性和證明方法的多樣性。在此過程中,筆者注重新舊知識(shí)的聯(lián)系,同時(shí)強(qiáng)調(diào)轉(zhuǎn)化、類比、歸納等數(shù)學(xué)思想方法的恰當(dāng)應(yīng)用,達(dá)到了預(yù)期的目的。
三角形中位線(華師大版)
教案課件是每個(gè)老師工作中上課需要準(zhǔn)備的東西,大家在細(xì)心籌備教案課件中。必須要寫好了教案課件計(jì)劃,新的工作才會(huì)如魚得水!你們知道多少范文適合教案課件?為了讓您在使用時(shí)更加簡單方便,下面是小編整理的“三角形中位線(華師大版)”,希望能對您有所幫助,請收藏。
24.4.1三角形的中位線
從化三中初三備課組
一、教學(xué)目標(biāo):
1.知識(shí)技能目標(biāo):
(1)探索并掌握三角形的中位線的概念性質(zhì);
(2)會(huì)用三角形中位線的性質(zhì)解決有關(guān)問題;
2.過程方法目標(biāo):
經(jīng)歷探索三角形的中位線性質(zhì)的過程,體會(huì)轉(zhuǎn)化的思想方法;
3.情感態(tài)度目標(biāo):
通過變式練習(xí),小組討論、交流等活動(dòng),培養(yǎng)良好的學(xué)習(xí)態(tài)度以及自主意識(shí)和合作精神.
二、教學(xué)過程:
(一)問題引入(5分鐘)
1、如圖△ABC中,DE∥BC,AD:AB=1:3,AE=2則AC=
學(xué)生活動(dòng):根據(jù)相似三角形的判定方法判定ADE△∽△ABC,再由相似三角形的性質(zhì)對應(yīng)邊成比例求出AC的長。
2、問題延伸
△ABC中,DE∥BC,當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),AE:AC=
學(xué)生活動(dòng):AE:AC=1:2,即AE=AC
教師活動(dòng):當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),DE∥BC,我們可以得到點(diǎn)E也是AC中點(diǎn)。通過上面的問題我們可以看到線段DE實(shí)質(zhì)上就是三角形兩邊中點(diǎn)的連線,我們給這樣特殊的線段起個(gè)名稱叫做三角形的中位線這就是我們這節(jié)課所要探討的問題(板書:三角形的中位線)
(二)新課探討
1、中位線定義
C
B
A
E
D
我們把連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線。2、探索中位線的性質(zhì)
試一試:任意畫一個(gè)△ABC,并畫出它的中位線。你能畫幾條?
學(xué)生活動(dòng):動(dòng)手畫圖,與同伴交流,得出三角形的中位線有三條。
猜一猜:DE與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系?
學(xué)生猜想:DE∥BC,
(學(xué)生可借助直尺和量角器通過測量來得到)
教師提問:你能證明你所猜想的結(jié)論嗎?
學(xué)生活動(dòng):動(dòng)手證明,并與同伴交流。
思路點(diǎn)撥:
(1)弄清楚已知條件是什么?結(jié)論是什么?
(已知條件:在△ABC中,點(diǎn)D、E分別是AB與AC的中點(diǎn)。求證:DE∥BC,)
(2)引導(dǎo)學(xué)生先證ADE△∽△ABC,得對應(yīng)角相等和對應(yīng)邊成比例,可得證。
證明:如圖,△ABC中,點(diǎn)D、E分別是AB與AC的中點(diǎn),
∴.
∵∠A=∠A,
∴△ADE∽△ABC(如果一個(gè)三角形的兩條邊與另一個(gè)三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似),
∴∠ADE=∠ABC,(相似三角形的對應(yīng)角相等,對應(yīng)邊成比例),
∴DE∥BC且
3、三角形中位線定理
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半.
用符號(hào)語言表示:
∵DE是△ABC的中位線
∴DE∥BC,
(三)靈活運(yùn)用,鞏固新知
1、已知:如果,點(diǎn)D、E、F分別是△ABC的三邊的中點(diǎn).
(1)若AB=8cm,則EF=.;
(2)若DE=5cm,則BC=.
(3)若增加M、N分別BD、BF的中點(diǎn),問MN與AC有什么關(guān)系?為什么?
2、例:已知:如圖所示,在△ABC中,AD=DB,BE=EC,AF=FC.
(1)四邊形ADEF是什么形狀的四邊形?并加以證明。
(2)AE與DF有什么關(guān)系?
解:四邊形ADEF是平得四邊形。
因?yàn)锳D=DB,BE=EC
所以DE∥AC(三角形的中位線平行于第三邊并且等于第三邊的一半)
同理EF∥AB
所以四邊形ADEF是平行四邊形
因此AE、DF互相平分(平行四邊形的對角線互相平分)
(四)課堂小結(jié)
1.三角形中位線是三角形中一種重要的線段,它與三角形中線不同。
2.三角形的中位線定理是三角形的一個(gè)重要性質(zhì)定理。注意定理的條件、結(jié)論,結(jié)論有兩個(gè),具體應(yīng)用時(shí),可視具體情況,選用其中一個(gè)關(guān)系或用兩個(gè)關(guān)系。熟悉三角形中位線所在的圖形的結(jié)構(gòu),適當(dāng)?shù)貥?gòu)造三角形中位線定理的條件是用好定理的關(guān)鍵。
(五)課后作業(yè)
1、練一練
(1)若△ABC三邊AB、AC、BC的長分別為8、6、4,它的三條中位線圍成的△DEF的周長_____。
(2)若△ABC的三條中位線圍成的三角形周長為15cm,△ABC的周長是____。
(3)若△ABC的三條中位線長分別為3、4、5,則△ABC的周長為面積為。
A
B
C
D
E
F
H
G
2已知:如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).求證:四邊形EFGH是平行四邊形.A
B
C
D
E
F
H
G
A
B
C
D
E
F
H
G