小學(xué)一年級(jí)數(shù)學(xué)的教案
發(fā)表時(shí)間:2020-12-01八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納:勾股定理的逆定理。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納:勾股定理的逆定理
知識(shí)點(diǎn)總結(jié)
一、勾股定理:
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2.勾股定理的證明:
勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4.勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1.逆定理的內(nèi)容:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說(shuō)明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說(shuō)明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱(chēng)為勾股數(shù).
四、一個(gè)重要結(jié)論:
由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問(wèn)題、航海問(wèn)題,折疊問(wèn)題、梯子下滑問(wèn)題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
常見(jiàn)考法
(1)直接考查勾股定理及其逆定理;(2)應(yīng)用勾股定理建立方程;(3)實(shí)際問(wèn)題中應(yīng)用勾股定理及其逆定理。
誤區(qū)提醒
(1)忽略勾股定理的適用范圍;(2)誤以為直角三角形中的一定是斜邊。
【典型例題】(2010湖北孝感)
[問(wèn)題情境]
勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。
[定理表述]
請(qǐng)你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號(hào)語(yǔ)言敘述);
[嘗試證明]
以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請(qǐng)你利用圖2,驗(yàn)證勾股定理;
[知識(shí)拓展]
一、選擇題(共10小題,每小題4分,滿分40分)
1.△ABC的三邊分別為下列各組值,其中不是直角三角形三邊的是()
A.a=41,b=40,c=9B.a=1.2,b=1.6,c=2
C.a=12,b=13,c=14D.a=35,b=45,c=1
2.以下列數(shù)組為三角形的邊長(zhǎng):(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能構(gòu)成直角三角形的有()
A.4組B.3組C.2組D.1組
3.五根小木棒,其長(zhǎng)度分別為7,15,20,24,25,現(xiàn)將它們擺成兩個(gè)直角三角形,如圖,其中正確的是()
A.
B.
C.
D.
4.下列命題中,真命題是()
A.如果三角形三個(gè)角的度數(shù)比是3:4:5,那么這個(gè)三角形是直角三角形;
B.如果直角三角形兩直角邊的長(zhǎng)分別為a和b,那么斜邊的長(zhǎng)為a2+b2;
C.若三角形三邊長(zhǎng)的比為1:2:3,則這個(gè)三角形是直角三角形;
D.如果直角三角形兩直角邊分別為a和b,斜邊為c,那么斜邊上的高h(yuǎn)的長(zhǎng)為abc顯示解析5.下列命題的逆命題是真命題的是()
A.若a=b,則a2=b2
B.全等三角形的周長(zhǎng)相等
C.若a=0,則ab=0
D.有兩邊相等的三角形是等腰三角形
顯示解析6.△ABC中∠A、∠B、∠C的對(duì)邊分別是a、b、c,下列命題中的假命題是()
A.如果∠C-∠B=∠A,則△ABC是直角三角形
B.如果c2=b2-a2,則△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c-a)=b2,則△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,則△ABC是直角三角形
7.下列四條線段不能組成直角三角形的是()
A.a=8,b=15,c=17B.a=9,b=12,c=15
C.a=5,b=3,c=2
D.a:b:c=2:3:4
8.以下面每組中的三條線段為邊的三角形中,是直角三角形的是()
A.5cm,12cm,13cmB.5cm,8cm,11cm
C.5cm,13cm,11cmD.8cm,13cm,11cm
9.△ABC中,如果三邊滿足關(guān)系BC2=AB2+AC2,則△ABC的直角是()
A.∠CB.∠AC.∠BD.不能確定
10.三角形的三邊長(zhǎng)為a,b,c,且滿足(a+b)2=c2+2ab,則這個(gè)三角形是()
A.等邊三角形B.鈍角三角形C.直角三角形D.銳角三角形
二、填空題(共16小題,滿分40分)
11.已知△ABC的三邊長(zhǎng)a,b,c分別為6,8,10,則△ABC(請(qǐng)?zhí)睢笆恰被颉安皇恰?直角三角形.顯示解析12.△ABC中,AB=7,AC=24,BC=25,則∠A=度.顯示解析13.△ABC中,BC=n2-1,AC=2n,AB=n2+1(n1),則這個(gè)三角形是三角形.顯示解析14.如果三角形的三邊長(zhǎng)為1.5,2,2.5,那么這個(gè)三角形最短的高為.顯示解析15.已知一個(gè)三角形的三邊長(zhǎng)分別為k+1,k+2,k+3,那么當(dāng)k=時(shí),此三角形是直角三角形.☆☆☆☆☆顯示解析16.在△ABC中,若a2+b2=25,a2-b2=7,c=5,則最大邊上的高為.顯示解析17.若一個(gè)三角形的三邊之比為5:12:13,且周長(zhǎng)為60cm,則它的面積為cm2.★☆☆☆☆顯示解析18.三角形的兩邊長(zhǎng)為5和4,要使它成為直角三角形,則第三邊的平方為.顯示解析19.如果一個(gè)三角形一邊上的中線等于這邊的一半,那么這條邊所對(duì)的角等于度.☆☆☆☆☆顯示解析三、解答題(共8小題,滿分0分)
27.如圖所示,四邊形ABCD中,BA⊥DA,AB=2,AD=23,CD=3,BC=5,則∠ADC=度.顯示解析
28.如圖所示,在△ABC中,AB:BC:CA=3:4:5,且周長(zhǎng)為36cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B點(diǎn)以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng),如果同時(shí)出發(fā),則過(guò)3秒時(shí),△BPQ的面積為cm2.☆☆☆☆☆顯示解析
29.已知:如圖,四邊形ABCD,AB=1,BC=34,CD=134,AD=3,且AB⊥BC.則四邊形ABCD的面積為.顯示解析
30.如圖,小明的爸爸在魚(yú)池邊開(kāi)了一塊四邊形土地種了一些蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算一下產(chǎn)量.小明找了一卷米尺,測(cè)得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90度.那么這塊土地的面積為平方米.顯示解析
31.如圖,在操場(chǎng)上豎直立著一根長(zhǎng)為2米的測(cè)影竿,早晨測(cè)得它的影長(zhǎng)為4米,中午測(cè)得它的影長(zhǎng)為1米,則A、B、C三點(diǎn)構(gòu)成直角三角形(請(qǐng)?zhí)睢澳堋被颉安荒堋?顯示解析32.如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截.已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,則甲巡邏艇的航向?yàn)楸逼珫|度.
33.能夠成為直角三角形三邊長(zhǎng)的三個(gè)正整數(shù),我們稱(chēng)之為一組勾股數(shù),觀察下列表格所給出的三個(gè)數(shù)a,b,c,a
(1)試找出它們的共同點(diǎn),并證明你的結(jié)論;
(2)寫(xiě)出當(dāng)a=17時(shí),b,c的值.3,4,532+42=52
5,12,13,52+122=132
7,24,2572+242=252
9,40,4192+402=412……17,b,c172+b2=c2
34.已知:在△ABC中,CD⊥AB于D,且CD2=ADBD.
求證:△ABC總是直角三角形.
延伸閱讀
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納:勾股定理的逆定理
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納:勾股定理的逆定理
知識(shí)點(diǎn)總結(jié)
一、勾股定理:
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2.勾股定理的證明:
勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4.勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1.逆定理的內(nèi)容:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說(shuō)明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說(shuō)明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱(chēng)為勾股數(shù).
四、一個(gè)重要結(jié)論:
由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問(wèn)題、航海問(wèn)題,折疊問(wèn)題、梯子下滑問(wèn)題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
常見(jiàn)考法
(1)直接考查勾股定理及其逆定理;(2)應(yīng)用勾股定理建立方程;(3)實(shí)際問(wèn)題中應(yīng)用勾股定理及其逆定理。
誤區(qū)提醒
(1)忽略勾股定理的適用范圍;(2)誤以為直角三角形中的一定是斜邊。
【典型例題】(2010湖北孝感)
[問(wèn)題情境]
勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。
[定理表述]
請(qǐng)你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號(hào)語(yǔ)言敘述);
[嘗試證明]
以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請(qǐng)你利用圖2,驗(yàn)證勾股定理;
[知識(shí)拓展]
勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系
區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;
聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。
規(guī)律方法指導(dǎo)
1.勾股定理的證明實(shí)際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。
2.勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。
3.勾股定理在應(yīng)用時(shí)一定要注意弄清誰(shuí)是斜邊誰(shuí)直角邊,這是這個(gè)知識(shí)在應(yīng)用過(guò)程中易犯的主要錯(cuò)誤。
4.勾股定理的逆定理:如果三角形的三條邊長(zhǎng)a,b,c有下列關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形;該逆定理給出判定一個(gè)三角形是否是直角三角形的判定方法.
5.應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形的過(guò)程主要是進(jìn)行代數(shù)運(yùn)算,通過(guò)學(xué)習(xí)加深對(duì)“數(shù)形結(jié)合”的理解.
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):勾股定理
老師工作中的一部分是寫(xiě)教案課件,大家應(yīng)該要寫(xiě)教案課件了。只有制定教案課件工作計(jì)劃,可以更好完成工作任務(wù)!你們到底知道多少優(yōu)秀的教案課件呢?小編特地為您收集整理“八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):勾股定理”,歡迎閱讀,希望您能夠喜歡并分享!
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):勾股定理
一、勾股定理:
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2.勾股定理的證明:
勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4.勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1.逆定理的內(nèi)容:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說(shuō)明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說(shuō)明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱(chēng)為勾股數(shù).
四、一個(gè)重要結(jié)論:
由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問(wèn)題、航海問(wèn)題,折疊問(wèn)題、梯子下滑問(wèn)題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
常見(jiàn)考法
(1)直接考查勾股定理及其逆定理;(2)應(yīng)用勾股定理建立方程;(3)實(shí)際問(wèn)題中應(yīng)用勾股定理及其逆定理。
誤區(qū)提醒
(1)忽略勾股定理的適用范圍;(2)誤以為直角三角形中的一定是斜邊。
【典型例題】(2010湖北孝感)
[問(wèn)題情境]
勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。
[定理表述]
請(qǐng)你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號(hào)語(yǔ)言敘述);
[嘗試證明]
以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請(qǐng)你利用圖2,驗(yàn)證勾股定理;
[知識(shí)拓展]
勾股定理
一、勾股定理概述
直角三角形中,兩直邊的平方和等于斜邊的平方。
即令直角三角形ABC中,其中角C=90°,直邊BC的長(zhǎng)度為a,AC的長(zhǎng)度為b,斜邊AB的長(zhǎng)度為c,則有a+b=c
①勾股定理應(yīng)用的前提是這個(gè)三角函數(shù)必須是直角三角形,解題時(shí),只能是同一直角三角形中時(shí),才能利用它求第三邊邊長(zhǎng)
②在式子a+b=c中,a、b代表直角三角形的兩條直角邊,c代表斜邊,它們之間的關(guān)系不能弄錯(cuò)
③遇到直角三角形中線段求值問(wèn)題(知識(shí)點(diǎn)詳解見(jiàn)解直角三角形),要首先向到勾股定理,勾股定理把“數(shù)”與“形”有機(jī)結(jié)合起來(lái),把直角三角形這一“形”與三邊關(guān)系這一“數(shù)”結(jié)合起來(lái),是屬性結(jié)合思想方法的典型。
④勾股定理的變式
在Rt△ABC中,其中角C=90°,直邊BC的長(zhǎng)度為a,AC的長(zhǎng)度為b,斜邊AB的長(zhǎng)度為c,則
c=a+b
a=c-b=(c-b)(c+b)
b=c-a=(c-a)(c=a)
c=根號(hào)下(a+b)
a=根號(hào)下(c-b)
b=根號(hào)下(c-a)
二、勾股定理證明方法
1.面積法
一個(gè)直角梯形由2個(gè)直角邊分別為a、b,斜邊為c的直角三角形和1個(gè)直角邊為c的等腰直角三角形拼成。因?yàn)槿齻€(gè)直角三角形的面積之和等于梯形的面積,所以可以列出等式
1/2c2+2*1/2ab=(a+b)(b+a)/2,化簡(jiǎn)c2=a2+b2
2.趙爽證明法
以a、b為直角邊(ba),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于1/2ab.把這四個(gè)直角三角形拼成如圖所示形狀.
∵RtΔDAH≌RtΔABE,
∴∠HDA=∠EAB.
∵∠HAD+∠HAD=90,
∴∠EAB+∠HAD=90,
∴ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于c2.
∵EF=FG=GH=HE=b―a,∠HEF=90.
∴EFGH是一個(gè)邊長(zhǎng)為b―a的正方形,它的面積等于(b-a)2.
∴4*1/2ab+(b-a)2=c2
∴a2+b2=c2
三、勾股定理的逆定理
如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形。最長(zhǎng)邊所對(duì)的角為直角。
勾股定理的逆定理是識(shí)別一個(gè)三角形是直角三角形的一種理論依據(jù),它通過(guò)數(shù)形結(jié)合來(lái)確定三角形的形狀,在運(yùn)用這一定理時(shí),可以用兩短邊的平方和a+b與較長(zhǎng)邊的平方c做比較,如果a+b=c,則此三角形為直角三角形,若a+b>c,此三角形為銳角三角形,若a+b<c,則此三角形為鈍角三角形
八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理的逆定理》說(shuō)課稿
一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,大家在用心的考慮自己的教案課件。只有寫(xiě)好教案課件計(jì)劃,才能促進(jìn)我們的工作進(jìn)一步發(fā)展!你們會(huì)寫(xiě)教案課件的范文嗎?急您所急,小編為朋友們了收集和編輯了“八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理的逆定理》說(shuō)課稿”,但愿對(duì)您的學(xué)習(xí)工作帶來(lái)幫助。
八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理的逆定理》說(shuō)課稿
尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:
我叫李朝紅,是第十四中學(xué)的一名教師。我今天說(shuō)課的題目《勾股定理的逆定理》,選自人教課標(biāo)實(shí)驗(yàn)版教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章第二節(jié),本節(jié)課共分兩個(gè)課時(shí),我今天分析的是第一個(gè)課時(shí),下面我將從教材、教法學(xué)法、教學(xué)過(guò)程、教學(xué)反思四個(gè)方面進(jìn)行闡述。
一、教材分析
1.教材的地位和作用:
在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識(shí),為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識(shí),而且為后面利用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形等相關(guān)知識(shí)的學(xué)習(xí)做好了鋪墊。
2.教學(xué)目標(biāo)
教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo)
知識(shí)與技能:掌握勾股定理的逆定理,會(huì)用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形。
過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成
過(guò)程,體會(huì)數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
情感、態(tài)度、價(jià)值觀:在探究勾股定理的逆定理的活動(dòng)中,滲透與他人交流、合作的意識(shí)和探究精神.
3.重點(diǎn)難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)
重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。
難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。
二、教法學(xué)法分析
八年級(jí)學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見(jiàn)解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動(dòng)手操作,動(dòng)腦思考,動(dòng)口表達(dá),積極參與到本節(jié)課的教學(xué)過(guò)程中來(lái),在鍛煉學(xué)生思考、觀察、實(shí)踐能力的同時(shí),使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。
教法學(xué)法分析完畢,我再來(lái)分析一下教學(xué)過(guò)程,這是我本次說(shuō)課的重點(diǎn)。
三、教學(xué)過(guò)程分析:
(一)創(chuàng)設(shè)情景,引入新課
1、展示圖片:古埃及人制作直角的方法
2、讓學(xué)生試一試用一根繩子確定直角
設(shè)計(jì)意圖:通過(guò)古埃及人制作直角的方法,提出讓學(xué)生動(dòng)手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,同時(shí)也使學(xué)生感受到幾何來(lái)源于生活,服務(wù)于生活的道理,體會(huì)數(shù)學(xué)的價(jià)值。
(二)動(dòng)手檢測(cè),提出假設(shè)
在本環(huán)節(jié)中通過(guò)情境中的問(wèn)題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm(2)5cm、12cm、13cm(3)3.5cm、12cm、12.5cm
上面三組線段為邊畫(huà)出三角形,猜測(cè)驗(yàn)證出其形狀。
再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動(dòng)中歸納思考:如果一個(gè)三角形的三邊a,b,c滿足a2+b2=c2,那這個(gè)三角形是直角三角形嗎?在整個(gè)過(guò)程的活動(dòng)中,盡量給學(xué)生足夠的時(shí)間和空間,以平等身份參與到學(xué)生活動(dòng)中來(lái),對(duì)其實(shí)踐活動(dòng)予以指導(dǎo)。讓學(xué)生通過(guò)作圖、測(cè)量等實(shí)踐活動(dòng),給出合理的假設(shè)與猜測(cè)。整個(gè)環(huán)節(jié)通過(guò)設(shè)置的問(wèn)題串,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測(cè)能力,嚴(yán)密的邏輯思維能力和靈活的動(dòng)手實(shí)踐能力。
(三)探索歸納,證明假設(shè):
勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵。如果直接將問(wèn)題拋給學(xué)生證明,他們定會(huì)無(wú)從下手,所以為了解決這一問(wèn)題,突破這個(gè)難點(diǎn),我先
1、讓學(xué)生畫(huà)了一個(gè)三邊長(zhǎng)度為3cm,4cm,5cm的三角形和一個(gè)以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個(gè)三角形上看出現(xiàn)了什么情況?并請(qǐng)學(xué)生簡(jiǎn)單說(shuō)明理由。通過(guò)操作驗(yàn)證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,
2、然后在黑板上畫(huà)一個(gè)三邊長(zhǎng)為a、b、c,且滿足a2+b2=c2的△ABC,與一個(gè)以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說(shuō)明理由。通過(guò)推理證明得出勾股定理的逆定理。
在這個(gè)過(guò)程中,首先讓學(xué)生從特殊的實(shí)例中動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長(zhǎng)為a、b、c,且滿足a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。
設(shè)計(jì)意圖:讓學(xué)生從特殊的實(shí)例動(dòng)手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個(gè)過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了“操作——觀察——猜測(cè)——探索——論證”的過(guò)程,體驗(yàn)了“特殊到一般,個(gè)性到共性”的偉大數(shù)學(xué)思想在實(shí)際中的應(yīng)用。
這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
(四)學(xué)以致用、鞏固提升
本著由淺入深的原則,安排了三個(gè)題。第一題比較簡(jiǎn)單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15b=8c=17(2)a=13b=15c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書(shū)寫(xiě)格式。并說(shuō)明像15,8,17能夠成為直角三角形的三條邊長(zhǎng)的正整數(shù),我們稱(chēng)為勾股數(shù)。第二題我改變題的形式,把一些符合a?+b?=c?的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來(lái)說(shuō)明理由。第三題是求一個(gè)不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個(gè)直角三角形和一個(gè)非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。
設(shè)計(jì)意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實(shí)際問(wèn)題的能力,達(dá)到鞏固知識(shí),學(xué)以致用的目的
(五)回顧總結(jié),強(qiáng)化認(rèn)知
課堂小結(jié)以填空體的形式檢測(cè)、歸納總結(jié)
設(shè)計(jì)意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測(cè)的目的,而且?guī)椭鷮W(xué)生理清知識(shí)脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。
(六)作業(yè)布置
教材33頁(yè)練習(xí)
設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個(gè)題型。
教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過(guò)啟發(fā)與誘導(dǎo),使學(xué)生動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),讓學(xué)生在實(shí)踐與探究中發(fā)揮自我,充分調(diào)動(dòng)了學(xué)生的自主性與積極性,整個(gè)過(guò)程注重了學(xué)生課上知識(shí)的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)??傊竟?jié)課的知識(shí)目標(biāo)基本達(dá)成,能力目標(biāo)基本實(shí)現(xiàn),情感目標(biāo)基本落實(shí)。
以上是我對(duì)本節(jié)課的理解,還望各位老師指正。