高中函數(shù)的應(yīng)用教案
發(fā)表時(shí)間:2020-08-05函數(shù)的概念和圖象。
一名合格的教師要充分考慮學(xué)習(xí)的趣味性,作為教師就要根據(jù)教學(xué)內(nèi)容制定合適的教案。教案可以讓學(xué)生能夠在教學(xué)期間跟著互動(dòng)起來,幫助教師能夠更輕松的上課教學(xué)。那么一篇好的教案要怎么才能寫好呢?下面的內(nèi)容是小編為大家整理的函數(shù)的概念和圖象,歡迎閱讀,希望您能夠喜歡并分享!
§2.1.1函數(shù)的概念和圖象(2)
【學(xué)習(xí)目標(biāo)】:
理解函數(shù)圖象的概念,掌握一些簡(jiǎn)單函數(shù)的圖象的作法,并能利用圖象解決有關(guān)簡(jiǎn)單問題。
【教學(xué)過程】:
一、復(fù)習(xí)引入:
1.函數(shù)的的定義:
2.函數(shù)的概念涉及到哪幾個(gè)要素?
3.我們已學(xué)過函數(shù)的圖象,并能作出一次函數(shù)、反比例函數(shù)及二次函數(shù)的圖象。在社會(huì)生活中還有許多函數(shù)圖象的例子,如課本P25的例子。
二、新課講授:
1、函數(shù)圖象的概念:
練習(xí):作出下列函數(shù)的圖象:
(1),();(2),({0,1,2,3,4});
(3),(.(4)
思考:設(shè)函數(shù)的定義域?yàn)椋瑒t集合與
相等嗎?又設(shè),則中元素個(gè)數(shù)怎樣?
三、典例欣賞
例1.作出下列函數(shù)的圖象,根據(jù)圖象說出函數(shù)的值域,并指出最值及取最值時(shí)相應(yīng)的x的值
(1);(2),;(3).
變題:(1)(2)為正實(shí)數(shù)
例2.試畫出f(x)=x2+1圖象,并根據(jù)圖象回答問題:
(1)比較f(-2)、f(1)、f(3)的大??;
(2)若0x1x2,試比較的大小。
變題:在(2)中,
(1)如果把“0x1x2”改為“x1x20”,那么哪個(gè)大?
(2)如果把“0x1x2”改為“|x1||x2|”,那么哪個(gè)大?
例3.在同一直角坐標(biāo)系中作出函數(shù)的圖象,并指出它們之間的相互聯(lián)系。
歸納:
1.函數(shù)的圖象是由函數(shù)的圖象向平移個(gè)單位得到的。
2.函數(shù)的圖象是由函數(shù)的圖象向平移個(gè)單位得到的。
3.函數(shù)的圖象是由函數(shù)的圖象向平移個(gè)單位得到的。
4.函數(shù)的圖象是由函數(shù)的圖象向平移個(gè)單位得到的。
練習(xí):畫出下列函數(shù)的圖象
(1)(2)(3)y=(4)y=,
www.lvshijia.net
【反思小結(jié)】:
【針對(duì)訓(xùn)練】:班級(jí)姓名學(xué)號(hào)
1.已知函數(shù),則集合中元素的個(gè)數(shù)為
2.已知函數(shù)的值域?yàn)?,則
3.若函數(shù)的圖象經(jīng)過點(diǎn),則函數(shù)的圖象必經(jīng)過點(diǎn)
4.試寫出一個(gè)函數(shù)使其定義域分別為下列集合
1){x|x2,xR}2)(0,+)
3)4)[-1,3]
5.試寫出一個(gè)函數(shù)使其值域分別為下列集合
1)R2)
3)(-,0)(0,+)4)
6.若函數(shù)的值域是[3,10],則函數(shù)的值域是,函數(shù)的值域是,函數(shù)的值域是。
7.作出下列函數(shù)的圖象,并根據(jù)圖象說出函數(shù)的值域:
(1)(2)y=|x2+2x-3|
(3)(4)y=
【拓展提高】
8.求函數(shù)的定義域和值域。
9.方程在[-1,1]上有實(shí)根,求k的范圍。
10.m是什么實(shí)數(shù)時(shí),方程|x2-4x+3|=m有三個(gè)互不相等的實(shí)數(shù)解。
相關(guān)推薦
函數(shù)的概念與圖象
§2.1.1函數(shù)的概念與圖象(1)
[自學(xué)目標(biāo)]
1.體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,理解函數(shù)的概念;
2.了解構(gòu)成函數(shù)的要素有定義域、值域與對(duì)應(yīng)法則;
[知識(shí)要點(diǎn)]
1.函數(shù)的定義:,.
2.函數(shù)概念的三要素:定義域、值域與對(duì)應(yīng)法則.
3.函數(shù)的相等.
[預(yù)習(xí)自測(cè)]
例1.判斷下列對(duì)應(yīng)是否為函數(shù):
(1)
(2)這里
補(bǔ)充:(1)︱,;
(2);
(3)︱,;
(4)≤≤≤≤
分析:判斷是否為函數(shù)應(yīng)從定義入手,其關(guān)鍵是是否為單值對(duì)應(yīng),單值對(duì)應(yīng)的關(guān)鍵是元素對(duì)應(yīng)的存在性和唯一性。
例2.下列各圖中表示函數(shù)的是------------------------------------------[]
ABCD
例3.在下列各組函數(shù)中,與表示同一函數(shù)的是------------------[]
A.=1,=B.與
C.與D.=∣∣,=
(≥)
例4已知函數(shù)求及
(),
[課內(nèi)練習(xí)]
1.下列圖象中表示函數(shù)y=f(x)關(guān)系的有--------------------------------()
A.(1)(2)(4)B.(1)(2)C.(2)(3)(4)D.(1)(4)
2.下列四組函數(shù)中,表示同一函數(shù)的是----------------------------------()
A.和B.和
C.和D.和
3.下列四個(gè)命題
(1)f(x)=有意義;
(2)表示的是含有的代數(shù)式
(3)函數(shù)y=2x(x)的圖象是一直線;
(4)函數(shù)y=的圖象是拋物線,其中正確的命題個(gè)數(shù)是()
A.1B.2C.3D.0
4.已知f(x)=,則f()=;
5.已知f滿足f(ab)=f(a)+f(b),且f(2)=,那么=
[歸納反思]
1.本課時(shí)的重點(diǎn)內(nèi)容是函數(shù)的定義與函數(shù)記號(hào)的意義,難點(diǎn)是函數(shù)概念的理解和正確應(yīng)用;
2.判斷兩個(gè)函數(shù)是否是同一函數(shù),是函數(shù)概念的一個(gè)重要應(yīng)用,要能緊扣函數(shù)定義的三要素進(jìn)行分析,從而正確地作出判斷.
[鞏固提高]
1.下列各圖中,可表示函數(shù)的圖象的只可能是--------------------[]
ABCD
2.下列各項(xiàng)中表示同一函數(shù)的是-----------------------------------------[]
A.與B.=,=
C.與D.21與
3.若(為常數(shù)),=3,則=------------------------[]
A.B.1C.2D.
4.設(shè),則等于--------------------------------[]
A.B.C.D.
5.已知=,則=,=
6.已知=,且,則的定義域是,
值域是
7.已知=,則
8.設(shè),求的值
9.已知函數(shù)求使的的取值范圍
10.若,,求,
對(duì)數(shù)函數(shù)的概念與圖象
2.2.2對(duì)數(shù)函數(shù)的概念與圖象
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對(duì)數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象形狀及畫法,其核心是對(duì)數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對(duì)數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對(duì)數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對(duì)數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對(duì)數(shù)函數(shù)的圖象,從而歸納出對(duì)數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對(duì)數(shù)函數(shù)的一般畫法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對(duì)數(shù)函數(shù)的概念;掌握對(duì)數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過具體實(shí)例,直觀感受對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過具體的函數(shù)圖象的畫法逐步認(rèn)識(shí)對(duì)數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問題的素養(yǎng),提高學(xué)生分析問題、解決問題的能力。
(二)解析:
1,理解對(duì)數(shù)函數(shù)的概念是來源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對(duì)數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù),能說出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來研究對(duì)數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類比這一數(shù)學(xué)思想,即對(duì)相似的問題可以借鑒之前問題的研究方法來研究,有助于提高學(xué)生分析問題、解決問題的能力。
三、問題診斷分析
本節(jié)課容易出現(xiàn)的問題是:對(duì)數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對(duì)、歸納不全、有所偏差等情形。出現(xiàn)這一問題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問題,教師要通過讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過頭看看之前是怎么做的,考慮了哪些問題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對(duì)于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u(píng)價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過程
問題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一?,F(xiàn)在學(xué)習(xí)的對(duì)數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對(duì)數(shù)函數(shù),那么什么樣的函數(shù)稱為對(duì)數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)
小問題串
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對(duì)應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)……,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè)……。怎么求?相應(yīng)的對(duì)應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請(qǐng)你類比指數(shù)函數(shù)的概念歸納對(duì)數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).
注意:○1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:,都不是對(duì)數(shù)函數(shù).○2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.
4.根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1(1)函數(shù)y=logax2的定義域是___________(其中a0,a≠1)
(2)函數(shù)y=loga(4-x)的定義域是___________(其中a0,a≠1)
說明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問題2.對(duì)數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過對(duì)稱變換直接從指數(shù)函數(shù)的圖象得到對(duì)數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對(duì)圖象的感覺是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過程而注重應(yīng)用的“功利”思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對(duì)數(shù)函數(shù)圖象的形成過程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受
小問題串
1.(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
2.觀察對(duì)數(shù)函數(shù)、與、的圖象特征,看看它們有那些異同點(diǎn)。
3.利用計(jì)算器或計(jì)算機(jī),選取底數(shù),且的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
4.歸納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象,并說明以后如何畫對(duì)數(shù)函數(shù)的簡(jiǎn)圖。
例題
1.課本P75A組第10題
2.求函數(shù)的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測(cè)
求下列函數(shù)的定義域
(1);
(2);
(3)
畫函數(shù)的圖象
函數(shù)的概念和圖象(1)教案蘇教版必修1
作為優(yōu)秀的教學(xué)工作者,在教學(xué)時(shí)能夠胸有成竹,教師要準(zhǔn)備好教案,這是教師的任務(wù)之一。教案可以讓學(xué)生更好的吸收課堂上所講的知識(shí)點(diǎn),幫助教師能夠更輕松的上課教學(xué)。教案的內(nèi)容具體要怎樣寫呢?以下是小編為大家精心整理的“函數(shù)的概念和圖象(1)教案蘇教版必修1”,供大家借鑒和使用,希望大家分享!
2.1.1函數(shù)的概念和圖象(1)
教學(xué)目標(biāo):
1.通過現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
3.通過教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
兩集合間用對(duì)應(yīng)來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為,面積為.
2.問題.
在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見的函數(shù)模型有哪些?
如圖,A(-2,0),B(2,0),點(diǎn)C在直線y=2上移動(dòng).則△ABC的面積S與點(diǎn)C的橫坐標(biāo)x之間的變化關(guān)系如何表達(dá)?面積S是C的橫坐標(biāo)x的函數(shù)么?
二、學(xué)生活動(dòng)
1.復(fù)述初中所學(xué)函數(shù)的概念;
2.閱讀課本23頁的問題(1)、(2)、(3),并分別說出對(duì)其理解;
3.舉出生活中的實(shí)例,進(jìn)一步說明函數(shù)的對(duì)應(yīng)本質(zhì).
三、數(shù)學(xué)建構(gòu)
1.用集合的語言分別闡述23頁的問題(1)、(2)、(3);
問題1某城市在某一天24小時(shí)內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:
(1)這一變化過程中,有哪幾個(gè)變量?
(2)這幾個(gè)變量的范圍分別是多少?
問題2略.
問題3略(詳見23頁).
2.函數(shù):一般地,設(shè)A、B是兩個(gè)非空的數(shù)集,如果按某種對(duì)應(yīng)法則f,對(duì)于集合A中的每一個(gè)元素x,在集合B中都有惟一的元素y和它對(duì)應(yīng),這樣的對(duì)應(yīng)叫做從A到B的一個(gè)函數(shù),通常記為y=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)y=f(x)的定義域.
(1)函數(shù)作為一種數(shù)學(xué)模型,主要用于刻畫兩個(gè)變量之間的關(guān)系;
(2)函數(shù)的本質(zhì)是一種對(duì)應(yīng);
(3)對(duì)應(yīng)法則f可以是一個(gè)數(shù)學(xué)表達(dá)式,也可是一個(gè)圖形或是一個(gè)表格
(4)對(duì)應(yīng)是建立在A、B兩個(gè)非空的數(shù)集之間.可以是有限集,當(dāng)然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)y=f(x)的定義域:
(1)每一個(gè)函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
(2)給定函數(shù)時(shí)要指明函數(shù)的定義域,對(duì)于用解析式表示的集合,如果沒
有指明定義域,那么就認(rèn)為定義域?yàn)橐磺袑?shí)數(shù).
四、數(shù)學(xué)運(yùn)用
例1.判斷下列對(duì)應(yīng)是否為集合A到B的函數(shù):
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
(3)A={1,2,3,4,5},B=N,f:x→2x.
練習(xí):判斷下列對(duì)應(yīng)是否為函數(shù):
(1)x→2x,x≠0,x∈R;
(2)x→y,這里y2=x,x∈N,y∈R.
例2求下列函數(shù)的定義域:
(1)f(x)=x-1;(2)g(x)=x+1+1x.
例3下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
A.y=x與y=(x)2;B.y=x2與y=3x3;
C.y=2x-1(x∈R)與y=2t-1(t∈R);D.y=x+2x-2與y=x2-4
練習(xí):課本26頁練習(xí)1~4,6.
五、回顧小結(jié)
1.生活中兩個(gè)相關(guān)變量的刻畫→函數(shù)→對(duì)應(yīng)(A→B)
2.函數(shù)的對(duì)應(yīng)本質(zhì);
3.函數(shù)的對(duì)應(yīng)法則和定義域.
六、作業(yè):
課堂作業(yè):課本31頁習(xí)題2.1(1)第1,2兩題.
高一數(shù)學(xué)教案:《函數(shù)的概念和圖象》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《函數(shù)的概念和圖象》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1.通過現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
3.通過教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
兩集合間用對(duì)應(yīng)來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為 ,面積為 .
2.問題.
在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見的函數(shù)模型有哪些?