高中必修一函數(shù)教案
發(fā)表時(shí)間:2021-08-16高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(一)。
高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(一)
教學(xué)目標(biāo):
1.在初中學(xué)習(xí)一次函數(shù)、二次函數(shù)的性質(zhì)的基礎(chǔ)上,進(jìn)一步感知函數(shù)的單調(diào)性,并能結(jié)合圖形,認(rèn)識(shí)函數(shù)的單調(diào)性;
2.通過(guò)函數(shù)的單調(diào)性的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,并對(duì)學(xué)生進(jìn)行初步的辯證唯物論的教育;
3.通過(guò)函數(shù)的單調(diào)性的教學(xué),讓學(xué)生學(xué)會(huì)理性地認(rèn)識(shí)與描述生活中的增長(zhǎng)、遞減等現(xiàn)象.
教學(xué)重點(diǎn):
用圖象直觀地認(rèn)識(shí)函數(shù)的單調(diào)性,并利用函數(shù)的單調(diào)性求函數(shù)的值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
如圖(課本37頁(yè)圖2-2-1),是氣溫關(guān)于時(shí)間t的函數(shù),記為=f (t),觀察這個(gè)函數(shù)的圖象,說(shuō)出氣溫在哪些時(shí)間段內(nèi)是逐漸升高的或是下降的?
問(wèn)題:怎樣用數(shù)學(xué)語(yǔ)言刻畫(huà)上述時(shí)間段內(nèi)“隨時(shí)間的增大氣溫逐漸升高”這一特征?
二、學(xué)生活動(dòng)
1.結(jié)合圖2―2―1,說(shuō)出該市一天氣溫的變化情況;[勵(lì)志的句子 wwW.dJZ525.com]
2.回憶初中所學(xué)的有關(guān)函數(shù)的性質(zhì),并畫(huà)圖予以說(shuō)明;
3.結(jié)合右側(cè)四幅圖,解釋函數(shù)的單調(diào)性.
三、數(shù)學(xué)建構(gòu)
1.增函數(shù)與減函數(shù):
一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.
如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)y=f(x)在區(qū)間I是單調(diào)增函數(shù),區(qū)間I稱為y=f(x)的單調(diào)增區(qū)間.
如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)>f(x2),那么就說(shuō)y=f(x)在區(qū)間I是單調(diào)減函數(shù),區(qū)間I稱為y=f(x)的單調(diào)減區(qū)間.
2.函數(shù)的單調(diào)性與單調(diào)區(qū)間:
如果函數(shù)y=f(x)在區(qū)間I是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說(shuō)函數(shù)y=f(x)在區(qū)間I上具有單調(diào)性.
單調(diào)增區(qū)間與單調(diào)減區(qū)間統(tǒng)稱為單調(diào)區(qū)間.
注:一般所說(shuō)的函數(shù)的單調(diào)性,就是要指出函數(shù)的單調(diào)區(qū)間,并說(shuō)明在區(qū)間上是單調(diào)增函數(shù)還是單調(diào)減函數(shù).
四、數(shù)學(xué)運(yùn)用
例1 畫(huà)出下列函數(shù)的圖象,結(jié)合圖象說(shuō)出函數(shù)的單調(diào)性.
擴(kuò)展閱讀
高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(三)
高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(三)
教學(xué)目標(biāo):
1.進(jìn)一步認(rèn)識(shí)函數(shù)的性質(zhì),從形與數(shù)兩個(gè)方面引導(dǎo)學(xué)生理解掌握函數(shù)奇偶性的概念,能準(zhǔn)確地判斷所給函數(shù)的奇偶性;
2.通過(guò)函數(shù)的奇偶性概念的教學(xué),揭示函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,培養(yǎng)學(xué)生從特殊到一般的概括能力,并滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法;
3.引導(dǎo)學(xué)生從生活中的對(duì)稱聯(lián)想到數(shù)學(xué)中的對(duì)稱,師生共同探討、研究,從代數(shù)的角度給予嚴(yán)密的代數(shù)形式表達(dá)、推理,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、認(rèn)真、科學(xué)的探究精神.
教學(xué)重點(diǎn):
函數(shù)奇偶性的概念及函數(shù)奇偶性的判斷.
教學(xué)難點(diǎn):
函數(shù)奇偶性的概念的理解與證明.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
復(fù)習(xí)函數(shù)的單調(diào)性的概念及運(yùn)用.
教師小結(jié):函數(shù)的單調(diào)性從代數(shù)的角度嚴(yán)謹(jǐn)?shù)乜坍?huà)了函數(shù)的圖象在某范圍內(nèi)的變化情況,便于我們正確地畫(huà)出相關(guān)函數(shù)的圖象,以便我們進(jìn)一步地從整體的角度,直觀而又形象地反映出函數(shù)的性質(zhì).在畫(huà)函數(shù)的圖象的時(shí)候,我們有時(shí)還要注意一個(gè)問(wèn)題,就是對(duì)稱(見(jiàn)P41).
2.問(wèn)題.
MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0
觀察函數(shù)y=x2和y=x(1)(x≠0)的圖象,從對(duì)稱的角度你發(fā)現(xiàn)了什么?
二、學(xué)生活動(dòng)
1.畫(huà)出函數(shù)y=x2和y=x(1)(x≠0)的圖象
2.利用折紙的方法驗(yàn)證函數(shù)y=x2圖象的對(duì)稱性
3.理解函數(shù)奇偶性的概念及性質(zhì).
三、數(shù)學(xué)建構(gòu)
1.奇、偶函數(shù)的定義:
一般地,如果對(duì)于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=f(x),那么稱函數(shù)y=f(x)是偶函數(shù);
如果對(duì)于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=-f(x),那么稱函數(shù)y=f(x)是奇函數(shù);
2.函數(shù)的奇偶性:
如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),我們就說(shuō)函數(shù)f(x)具有奇偶性,而如果一個(gè)函數(shù)既不是奇函數(shù),也不是偶函數(shù)(常說(shuō)該函數(shù)是非奇非偶函數(shù)),則說(shuō)該函數(shù)不具有奇偶性.
3.奇、偶函數(shù)的性質(zhì):
偶函數(shù)的圖象關(guān)于y軸對(duì)稱,奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
四、數(shù)學(xué)運(yùn)用
(一)例題
例1 判斷函數(shù)f(x)=x3+5x的奇偶性.
例2 判定下列函數(shù)是否為偶函數(shù)或奇函數(shù):
(1)f(x)=x2-1;?。?)f(x)=2x;
(3)f(x)=2|x|; (4)f(x)=(x-1)2.
小結(jié):1.判斷函數(shù)是否為偶函數(shù)或奇函數(shù),首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,如函數(shù)f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定義.
2.判定函數(shù)是否具有奇偶性,一定要對(duì)定義域內(nèi)的任意的一個(gè)x進(jìn)行討論,而不是某一特定的值.如函數(shù)f(x)=x2-x-1,有f(1)=-1,f(-1)=1,顯然有f(-1)=-f(1),但函數(shù)f(x)=x2-x-1不具有奇偶性,再如函數(shù)f(x)=x3-x2-x+2,有f(-1)=f(1)=1,同樣函數(shù)f(x)=x3-x2-x+2也不具有奇偶性.
小結(jié):判斷分段函數(shù)是否為具有奇偶性,應(yīng)先畫(huà)出函數(shù)的圖象,獲取直觀的印象,再利用定義分段討論.
(二)練習(xí)
1.判斷下列函數(shù)的奇偶性:
2.已知奇函數(shù)f(x)在y軸右邊的圖象如圖所示,試畫(huà)出函數(shù)f(x)在y軸左邊的圖象.
3.已知函數(shù)f(x+1)是偶函數(shù),則函數(shù)f(x)的對(duì)稱軸是 .
4.對(duì)于定義在R上的函數(shù)f(x),下列判斷是否正確:
(1)若f(2)=f(-2),則f(x)是偶函數(shù);
(2)若f(2)≠f(-2),則f(x)不是偶函數(shù);
(3)若f(2)=f(-2),則f(x)不是奇函數(shù).
五、回顧小結(jié)
1.奇、偶函數(shù)的定義及函數(shù)的奇偶性的定義.
2.奇、偶函數(shù)的性質(zhì)及函數(shù)的奇偶性的判斷.
六、作業(yè)
課堂作業(yè):課本44頁(yè)5,6題.
高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(二)
高一數(shù)學(xué)教案:《函數(shù)的簡(jiǎn)單性質(zhì)》教學(xué)設(shè)計(jì)(二)
教學(xué)目標(biāo):
1.進(jìn)一步理解函數(shù)的單調(diào)性,能利用函數(shù)的單調(diào)性結(jié)合函數(shù)的圖象,求出有關(guān)函數(shù)的最小值與最大值,并能準(zhǔn)確地表示有關(guān)函數(shù)的值域;
2.通過(guò)函數(shù)的單調(diào)性的教學(xué),讓學(xué)生在感性認(rèn)知的基礎(chǔ)上學(xué)會(huì)理性地認(rèn)識(shí)與描述生活中的增長(zhǎng)、遞減等現(xiàn)象.
教學(xué)重點(diǎn):
利用函數(shù)的單調(diào)性求函數(shù)的值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
(1)復(fù)述函數(shù)的單調(diào)性定義;
(2)表述常見(jiàn)函數(shù)的單調(diào)性.
2.問(wèn)題.
結(jié)合函數(shù)的圖象說(shuō)出該天的氣溫變化范圍.
二、學(xué)生活動(dòng)
1.研究函數(shù)的最值;
2.利用函數(shù)的單調(diào)性的改變,找出函數(shù)取最值的情況;
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的值域與函數(shù)的最大值、最小值:
一般地,設(shè)y=f(x)的定義域?yàn)锳.若存在x0A,使得對(duì)任意xA, f(x)≤
f(x0)恒成立,則稱f(x0)為y=f(x)的最大值,記為ymax=f(x0).
若存在定值x0A,使得對(duì)任意xA,f(x)≥f(x0)恒成立,則稱f(x0)為y=f(x)的最小值,記為ymin= f(x0).
注:(1)函數(shù)的最大值、最小值分別對(duì)應(yīng)函數(shù)圖象上的最高點(diǎn)和最低點(diǎn),典型的例子就是二次函數(shù)y=ax2+bx-c(a≠0),當(dāng)a>0時(shí),函數(shù)有最小值;當(dāng)a<0時(shí),函數(shù)有最大值.
(2)利用函數(shù)的單調(diào)性,并結(jié)合函數(shù)的圖象求函數(shù)的值域或函數(shù)的最值是求函數(shù)的值域或函數(shù)的最值的常用方法.
2.函數(shù)的最值與單調(diào)性之間的關(guān)系:
已知函數(shù)y=f(x)的定義域是[a,b],a<c<b.當(dāng)x[a,c]時(shí),f(x)是單調(diào)增函數(shù);當(dāng)x[c,b] 時(shí),f(x)是單調(diào)減函數(shù).則f(x)在x=c時(shí)取得最大值.反之,當(dāng)x[a,c]時(shí),f(x)是單調(diào)減函數(shù);當(dāng)x[c,b] 時(shí),f(x)是單調(diào)增函數(shù).則f(x)在x=c時(shí)取得最小值.
四、數(shù)學(xué)運(yùn)用
函數(shù)的簡(jiǎn)單性質(zhì)
§2.1.3函數(shù)的簡(jiǎn)單性質(zhì)(一)
——函數(shù)的單調(diào)性(1)
【學(xué)習(xí)目標(biāo)】:
理解函數(shù)單調(diào)性的概念,能正確地判定和討論函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。
【教學(xué)過(guò)程】:
一、復(fù)習(xí)引入:
1.畫(huà)出的圖象,觀察(1)x∈;(2)x∈;(3)x∈(-∞,+∞)
當(dāng)x的值增大時(shí),y值的變化情況。
2.觀察實(shí)例:課本P34的實(shí)例,怎樣用數(shù)學(xué)語(yǔ)言刻畫(huà)上述時(shí)間段內(nèi)“隨著時(shí)間的推移氣溫逐漸升高”這一特征?
二、新課講授:
1.增函數(shù):設(shè)函數(shù)的定義域?yàn)锳,區(qū)間,若對(duì)于區(qū)間內(nèi)的,當(dāng)時(shí),
都有,則稱函數(shù)在是單調(diào)增函數(shù),為
圖象示例:
2.減函數(shù):設(shè)函數(shù)的定義域?yàn)锳,區(qū)間,若對(duì)于區(qū)間內(nèi)的,當(dāng)時(shí),
都有,則稱函數(shù)在是單調(diào)減函數(shù),為
圖象示例:
3.單調(diào)性:函數(shù)在上是,則稱在具有單調(diào)性
4.單調(diào)區(qū)間:
三、典例欣賞:
例1.證明:(1)函數(shù)在上是增函數(shù).
(2)函數(shù)在上是減函數(shù).
變題:(1)判斷函數(shù)在(0,1)的單調(diào)性。
(2)若函數(shù)在區(qū)間(,1)上是增函數(shù),試求的取值范圍。
例2.(1)如圖,已知函數(shù)y=f(x),y=g(x)的圖象(包括端點(diǎn)),根據(jù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一個(gè)區(qū)間上,函數(shù)是增函數(shù)還是減函數(shù)。
(2)函數(shù)的單調(diào)遞增區(qū)間;單調(diào)遞減區(qū)間。
變題1:作出函數(shù)的圖象,并寫(xiě)出函數(shù)的單調(diào)區(qū)間。
變題2:函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍.
變題3:函數(shù)在上是增函數(shù),在上是減函數(shù),求函數(shù)的解析表達(dá)式。
例3.(1)函數(shù)f(x)在(0,+∞)上是減函數(shù),比較f(a2-a+1)與f(34)的大小關(guān)系。
(2)已知在上是減函數(shù),且則的取值范圍是_____________。
變題:已知在定義域上是減函數(shù),且則的取值范圍是_____________。
【反思小結(jié)】:
【針對(duì)訓(xùn)練】:班級(jí)姓名學(xué)號(hào)
1.在區(qū)間上是減函數(shù)的是________________.
(1)(2)(3)(4)
2.若函數(shù)是實(shí)數(shù)集R上的增函數(shù),a是實(shí)數(shù),則下面不等式中正確的是_________.
(1)(2)(3)(4)
3.已知函數(shù)f(x)=x2-2x+2,那么f(1),f(-1),f()之間的大小關(guān)系為.
4、函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),則______
5.已知函數(shù)f(x)=x2-2ax+a2+1在區(qū)間(-∞,1)上是減函數(shù),則a的取值范圍是。
6.函數(shù)的單調(diào)遞增區(qū)間為
7.已知,指出的單調(diào)區(qū)間.
8.在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是____.
9.函數(shù)的遞增區(qū)間是,則的遞增區(qū)間是
10.求證:(1)函數(shù)f(x)=x2+1在上是減函數(shù).
(2)函數(shù)f(x)=1-在上是增函數(shù).
(3)函數(shù)在是減函數(shù).
10.函數(shù)在上是增函數(shù),求實(shí)數(shù)a的取值范圍.
11.已知函數(shù)在區(qū)間上是增函數(shù),試求的取值范圍。
12.判斷函數(shù)內(nèi)的單調(diào)性.
13.已知函數(shù)
(1)當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性;
(2)若函數(shù)在區(qū)間上是增函數(shù),試求的取值范圍。
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會(huì)求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對(duì)應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識(shí)和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).
(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類函數(shù)的定義域.
2.通過(guò)函數(shù)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.
學(xué)過(guò)什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過(guò)的函數(shù)例子)
學(xué)生舉出如 等,待學(xué)生說(shuō)完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問(wèn)學(xué)生.
提問(wèn)1. 是函數(shù)嗎?
(由學(xué)生討論, 發(fā)表各自的意見(jiàn),有的認(rèn)為它不是函數(shù),理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做 .)
教師由此指出我們爭(zhēng)論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.
二、新課
現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50 頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))
提問(wèn)2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.
學(xué)生的回答往往是把書(shū)上的定義念一遍,教師可以板書(shū)的形式寫(xiě)出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書(shū))2.2函數(shù)
一、函數(shù)的概念