高中必修一函數(shù)教案
發(fā)表時(shí)間:2020-04-03函數(shù)的概念和圖象(1)教案蘇教版必修1。
作為優(yōu)秀的教學(xué)工作者,在教學(xué)時(shí)能夠胸有成竹,教師要準(zhǔn)備好教案,這是教師的任務(wù)之一。教案可以讓學(xué)生更好的吸收課堂上所講的知識(shí)點(diǎn),幫助教師能夠更輕松的上課教學(xué)。教案的內(nèi)容具體要怎樣寫呢?以下是小編為大家精心整理的“函數(shù)的概念和圖象(1)教案蘇教版必修1”,供大家借鑒和使用,希望大家分享!
2.1.1函數(shù)的概念和圖象(1)
教學(xué)目標(biāo):
1.通過(guò)現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
3.通過(guò)教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
兩集合間用對(duì)應(yīng)來(lái)描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為,面積為.
2.問(wèn)題.
在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來(lái)描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見(jiàn)的函數(shù)模型有哪些?
如圖,A(-2,0),B(2,0),點(diǎn)C在直線y=2上移動(dòng).則△ABC的面積S與點(diǎn)C的橫坐標(biāo)x之間的變化關(guān)系如何表達(dá)?面積S是C的橫坐標(biāo)x的函數(shù)么?
二、學(xué)生活動(dòng)
1.復(fù)述初中所學(xué)函數(shù)的概念;
2.閱讀課本23頁(yè)的問(wèn)題(1)、(2)、(3),并分別說(shuō)出對(duì)其理解;
3.舉出生活中的實(shí)例,進(jìn)一步說(shuō)明函數(shù)的對(duì)應(yīng)本質(zhì).
三、數(shù)學(xué)建構(gòu)
1.用集合的語(yǔ)言分別闡述23頁(yè)的問(wèn)題(1)、(2)、(3);
問(wèn)題1某城市在某一天24小時(shí)內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問(wèn)題:
(1)這一變化過(guò)程中,有哪幾個(gè)變量?
(2)這幾個(gè)變量的范圍分別是多少?
問(wèn)題2略.
問(wèn)題3略(詳見(jiàn)23頁(yè)).
2.函數(shù):一般地,設(shè)A、B是兩個(gè)非空的數(shù)集,如果按某種對(duì)應(yīng)法則f,對(duì)于集合A中的每一個(gè)元素x,在集合B中都有惟一的元素y和它對(duì)應(yīng),這樣的對(duì)應(yīng)叫做從A到B的一個(gè)函數(shù),通常記為y=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)y=f(x)的定義域.
(1)函數(shù)作為一種數(shù)學(xué)模型,主要用于刻畫兩個(gè)變量之間的關(guān)系;
(2)函數(shù)的本質(zhì)是一種對(duì)應(yīng);
(3)對(duì)應(yīng)法則f可以是一個(gè)數(shù)學(xué)表達(dá)式,也可是一個(gè)圖形或是一個(gè)表格
(4)對(duì)應(yīng)是建立在A、B兩個(gè)非空的數(shù)集之間.可以是有限集,當(dāng)然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)y=f(x)的定義域:
(1)每一個(gè)函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
(2)給定函數(shù)時(shí)要指明函數(shù)的定義域,對(duì)于用解析式表示的集合,如果沒(méi)
有指明定義域,那么就認(rèn)為定義域?yàn)橐磺袑?shí)數(shù).
四、數(shù)學(xué)運(yùn)用
例1.判斷下列對(duì)應(yīng)是否為集合A到B的函數(shù):
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
(3)A={1,2,3,4,5},B=N,f:x→2x.
練習(xí):判斷下列對(duì)應(yīng)是否為函數(shù):
(1)x→2x,x≠0,x∈R;
(2)x→y,這里y2=x,x∈N,y∈R.
例2求下列函數(shù)的定義域:
(1)f(x)=x-1;(2)g(x)=x+1+1x.
例3下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
A.y=x與y=(x)2;B.y=x2與y=3x3;
C.y=2x-1(x∈R)與y=2t-1(t∈R);D.y=x+2x-2與y=x2-4
練習(xí):課本26頁(yè)練習(xí)1~4,6.
五、回顧小結(jié)
1.生活中兩個(gè)相關(guān)變量的刻畫→函數(shù)→對(duì)應(yīng)(A→B)
2.函數(shù)的對(duì)應(yīng)本質(zhì);
3.函數(shù)的對(duì)應(yīng)法則和定義域.
六、作業(yè):
課堂作業(yè):課本31頁(yè)習(xí)題2.1(1)第1,2兩題.
擴(kuò)展閱讀
2.1.1 函數(shù)的概念和圖象(2)
2.1.1函數(shù)的概念和圖象(2)
教學(xué)目標(biāo):
1.進(jìn)一步理解用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫的函數(shù)的概念,進(jìn)一步理解函數(shù)的本質(zhì)是數(shù)集之間的對(duì)應(yīng);
2.進(jìn)一步熟悉與理解函數(shù)的定義域、值域的定義,會(huì)利用函數(shù)的定義域與對(duì)應(yīng)法則判定有關(guān)函數(shù)是否為同一函數(shù);
3.通過(guò)教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
用對(duì)應(yīng)來(lái)進(jìn)一步刻畫函數(shù);求基本函數(shù)的定義域和值域.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
復(fù)述函數(shù)及函數(shù)的定義域的概念.
2.問(wèn)題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學(xué)生活動(dòng)
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡(jiǎn)單函數(shù)的值域;
3.探求簡(jiǎn)單的復(fù)合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的值域:
(1)按照對(duì)應(yīng)法則f,對(duì)于A中所有x的值的對(duì)應(yīng)輸出值組成的集合稱之
為函數(shù)的值域;
(2)值域是集合B的子集.
2.xg(x)f(x)f(g(x)),其中g(shù)(x)的值域即為f(g(x))的定義域;
四、數(shù)學(xué)運(yùn)用
(一)例題.
例1已知函數(shù)f(x)=x2+2x,求f(-2),f(-1),f(0),f(1).
例2根據(jù)不同條件,分別求函數(shù)f(x)=(x-1)2+1的值域.
(1)x∈{-1,0,1,2,3};
(2)x∈R;
(3)x∈[-1,3];
(4)x∈(-1,2];
(5)x∈(-1,1).
例3求下列函數(shù)的值域:
①y=;②y=.
例4已知函數(shù)f(x)與g(x)分別由下表給出:
x1234x1234
f(x)2341g(x)2143
分別求f(f(1)),f(g(2)),g(f(3)),g(g(4))的值.
(二)練習(xí).
(1)求下列函數(shù)的值域:
①y=2-x2;②y=3-|x|.
(2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
(4)已知函數(shù)y=f(x)的定義域?yàn)閇-1,2],求f(x)+f(-x)的定義域.
(5)已知f(x)的定義域?yàn)閇-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結(jié)
函數(shù)的對(duì)應(yīng)本質(zhì),函數(shù)的定義域與值域;
利用分解的思想研究復(fù)合函數(shù).
六、作業(yè)
課本P31-5,8,9.
函數(shù)的概念與圖象
§2.1.1函數(shù)的概念與圖象(1)
[自學(xué)目標(biāo)]
1.體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,理解函數(shù)的概念;
2.了解構(gòu)成函數(shù)的要素有定義域、值域與對(duì)應(yīng)法則;
[知識(shí)要點(diǎn)]
1.函數(shù)的定義:,.
2.函數(shù)概念的三要素:定義域、值域與對(duì)應(yīng)法則.
3.函數(shù)的相等.
[預(yù)習(xí)自測(cè)]
例1.判斷下列對(duì)應(yīng)是否為函數(shù):
(1)
(2)這里
補(bǔ)充:(1)︱,;
(2);
(3)︱,;
(4)≤≤≤≤
分析:判斷是否為函數(shù)應(yīng)從定義入手,其關(guān)鍵是是否為單值對(duì)應(yīng),單值對(duì)應(yīng)的關(guān)鍵是元素對(duì)應(yīng)的存在性和唯一性。
例2.下列各圖中表示函數(shù)的是------------------------------------------[]
ABCD
例3.在下列各組函數(shù)中,與表示同一函數(shù)的是------------------[]
A.=1,=B.與
C.與D.=∣∣,=
(≥)
例4已知函數(shù)求及
(),
[課內(nèi)練習(xí)]
1.下列圖象中表示函數(shù)y=f(x)關(guān)系的有--------------------------------()
A.(1)(2)(4)B.(1)(2)C.(2)(3)(4)D.(1)(4)
2.下列四組函數(shù)中,表示同一函數(shù)的是----------------------------------()
A.和B.和
C.和D.和
3.下列四個(gè)命題
(1)f(x)=有意義;
(2)表示的是含有的代數(shù)式
(3)函數(shù)y=2x(x)的圖象是一直線;
(4)函數(shù)y=的圖象是拋物線,其中正確的命題個(gè)數(shù)是()
A.1B.2C.3D.0
4.已知f(x)=,則f()=;
5.已知f滿足f(ab)=f(a)+f(b),且f(2)=,那么=
[歸納反思]
1.本課時(shí)的重點(diǎn)內(nèi)容是函數(shù)的定義與函數(shù)記號(hào)的意義,難點(diǎn)是函數(shù)概念的理解和正確應(yīng)用;
2.判斷兩個(gè)函數(shù)是否是同一函數(shù),是函數(shù)概念的一個(gè)重要應(yīng)用,要能緊扣函數(shù)定義的三要素進(jìn)行分析,從而正確地作出判斷.
[鞏固提高]
1.下列各圖中,可表示函數(shù)的圖象的只可能是--------------------[]
ABCD
2.下列各項(xiàng)中表示同一函數(shù)的是-----------------------------------------[]
A.與B.=,=
C.與D.21與
3.若(為常數(shù)),=3,則=------------------------[]
A.B.1C.2D.
4.設(shè),則等于--------------------------------[]
A.B.C.D.
5.已知=,則=,=
6.已知=,且,則的定義域是,
值域是
7.已知=,則
8.設(shè),求的值
9.已知函數(shù)求使的的取值范圍
10.若,,求,
對(duì)數(shù)函數(shù)的概念與圖象
2.2.2對(duì)數(shù)函數(shù)的概念與圖象
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對(duì)數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象形狀及畫法,其核心是對(duì)數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對(duì)數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對(duì)數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對(duì)數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對(duì)數(shù)函數(shù)的圖象,從而歸納出對(duì)數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對(duì)數(shù)函數(shù)的一般畫法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對(duì)數(shù)函數(shù)的概念;掌握對(duì)數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過(guò)具體實(shí)例,直觀感受對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過(guò)具體的函數(shù)圖象的畫法逐步認(rèn)識(shí)對(duì)數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問(wèn)題的素養(yǎng),提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
(二)解析:
1,理解對(duì)數(shù)函數(shù)的概念是來(lái)源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對(duì)數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù),能說(shuō)出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過(guò)具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過(guò)圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來(lái)研究對(duì)數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問(wèn)題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類比這一數(shù)學(xué)思想,即對(duì)相似的問(wèn)題可以借鑒之前問(wèn)題的研究方法來(lái)研究,有助于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
三、問(wèn)題診斷分析
本節(jié)課容易出現(xiàn)的問(wèn)題是:對(duì)數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對(duì)、歸納不全、有所偏差等情形。出現(xiàn)這一問(wèn)題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問(wèn)題,教師要通過(guò)讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過(guò)頭看看之前是怎么做的,考慮了哪些問(wèn)題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對(duì)于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u(píng)價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過(guò)程
問(wèn)題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一。現(xiàn)在學(xué)習(xí)的對(duì)數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對(duì)數(shù)函數(shù),那么什么樣的函數(shù)稱為對(duì)數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問(wèn)題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)
小問(wèn)題串
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對(duì)應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)……,如果要求這種細(xì)胞經(jīng)過(guò)多少次分裂,大約可以得到細(xì)胞1萬(wàn)個(gè),10萬(wàn)個(gè)……。怎么求?相應(yīng)的對(duì)應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請(qǐng)你類比指數(shù)函數(shù)的概念歸納對(duì)數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).
注意:○1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:,都不是對(duì)數(shù)函數(shù).○2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.
4.根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1(1)函數(shù)y=logax2的定義域是___________(其中a0,a≠1)
(2)函數(shù)y=loga(4-x)的定義域是___________(其中a0,a≠1)
說(shuō)明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問(wèn)題2.對(duì)數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過(guò)對(duì)稱變換直接從指數(shù)函數(shù)的圖象得到對(duì)數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對(duì)圖象的感覺(jué)是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過(guò)程而注重應(yīng)用的“功利”思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對(duì)數(shù)函數(shù)圖象的形成過(guò)程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問(wèn)題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受
小問(wèn)題串
1.(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
2.觀察對(duì)數(shù)函數(shù)、與、的圖象特征,看看它們有那些異同點(diǎn)。
3.利用計(jì)算器或計(jì)算機(jī),選取底數(shù),且的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
4.歸納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象,并說(shuō)明以后如何畫對(duì)數(shù)函數(shù)的簡(jiǎn)圖。
例題
1.課本P75A組第10題
2.求函數(shù)的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測(cè)
求下列函數(shù)的定義域
(1);
(2);
(3)
畫函數(shù)的圖象
函數(shù)y=asin(ωx+φ)的圖象教案(1)
§8函數(shù)y=Asin(ωx+φ)的圖象
一、教學(xué)目標(biāo):
1、知識(shí)與技能
(1)熟練掌握五點(diǎn)作圖法的實(shí)質(zhì);
(2)理解表達(dá)式y(tǒng)=Asin(ωx+φ),掌握A、φ、ωx+φ的含義;
(3)理解振幅變換和周期變換的規(guī)律,會(huì)對(duì)函數(shù)y=sinx進(jìn)行振幅和周期的變換;
(4)會(huì)利用平移、伸縮變換方法,作函數(shù)y=Asin(ωx+φ)的圖像;
(5)能利用相位變換畫出函數(shù)的圖像。
2、過(guò)程與方法
通過(guò)學(xué)生自己動(dòng)手畫圖像,使他們知道列表、描點(diǎn)、連線是作圖的基本要求;通過(guò)在同一個(gè)坐標(biāo)平面內(nèi)對(duì)比相關(guān)的幾個(gè)函數(shù)圖像,發(fā)現(xiàn)規(guī)律,總結(jié)提練,加以應(yīng)用;要求學(xué)生能利用五點(diǎn)作圖法,正確作出函數(shù)y=Asin(ωx+φ)的圖像;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),滲透數(shù)形結(jié)合的思想;樹(shù)立運(yùn)動(dòng)變化觀點(diǎn),學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物;通過(guò)學(xué)生的親身實(shí)踐,引發(fā)學(xué)生學(xué)習(xí)興趣;創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度;讓學(xué)生感受圖形的對(duì)稱美、運(yùn)動(dòng)美,培養(yǎng)學(xué)生對(duì)美的追求。
二、教學(xué)重、難點(diǎn)
重點(diǎn):相位變換的有關(guān)概念,五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖像
難點(diǎn):相位變換畫函數(shù)圖像,用圖像變換的方法畫y=Asin(ωx+φ)的圖像
三、學(xué)法與教學(xué)用具
在前面,我們知道精確度要求不高時(shí),可以用五點(diǎn)作圖法,是哪五個(gè)關(guān)鍵點(diǎn);首先請(qǐng)同學(xué)們回憶,然后通過(guò)物理學(xué)中的幾個(gè)情境引入課題;主要讓學(xué)生動(dòng)手實(shí)踐,兩節(jié)課盡可能多地讓他們畫圖,教師只是加以點(diǎn)撥;可以從幾個(gè)具體的、簡(jiǎn)單的例子開(kāi)始,在適當(dāng)?shù)臅r(shí)候加以推廣;先分解各個(gè)小知識(shí)點(diǎn),再綜合在一起,上升更高一層。
教學(xué)用具:投影機(jī)、三角板
第一課時(shí)y=sinx和y=Asinx的圖像,y=sinx和y=sin(x+φ)的圖像
一、教學(xué)思路
【創(chuàng)設(shè)情境,揭示課題】
在物理和工程技術(shù)的許多問(wèn)題中,經(jīng)常會(huì)遇到形如y=Asin(ωx+φ)的函數(shù),例如:在簡(jiǎn)諧振動(dòng)中位移與時(shí)間表的函數(shù)關(guān)系就是形如y=Asin(ωx+φ)的函數(shù)。正因?yàn)榇?,我們要研究它的圖像與性質(zhì),今天先來(lái)學(xué)習(xí)它的圖像。
【探究新知】
例一.畫出函數(shù)y=2sinxxR;y=sinxxR的圖象(簡(jiǎn)圖)。
解:由于周期T=2∴不妨在[0,2]上作圖,列表:
x02
sinx010-10
2sinx020-20
sinx00-0
配套練習(xí):函數(shù)y=sinx的圖像與函數(shù)y=sinx的圖像有什么關(guān)系?
引導(dǎo),觀察,啟發(fā):與y=sinx的圖象作比較,結(jié)論:
1.y=Asinx,xR(A0且A1)的圖象可以看作把正數(shù)曲線上的所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(A1)或縮短(0A1)到原來(lái)的A倍得到的。
2.若A0可先作y=-Asinx的圖象,再以x軸為對(duì)稱軸翻折。
性質(zhì)討論:不變的有定義域、奇偶性、單調(diào)區(qū)間與單調(diào)性、周期性變化的有值域、最值。
由上例和練習(xí)可以看出:在函數(shù)y=Asinx(A>0)中,A決定了函數(shù)的值域以及函數(shù)的最大值和最小值,通常稱A為振幅。
例二.畫出函數(shù)y=sin(x+)(xR)和y=sin(x)(xR)的圖像(簡(jiǎn)圖)。
解:由于周期T=2∴不妨在[0,2]上作圖,列表:
x+02
x
sin(x+)010-10
配套練習(xí):函數(shù)y=sin(x-)的圖像與函數(shù)y=sinx的圖像有什么關(guān)系?
引導(dǎo),觀察,啟發(fā):與y=sinx的圖象作比較,結(jié)論:
y=sin(x+φ),xR(φ0)的圖象可以看作把正數(shù)曲線上的所有點(diǎn)向左平移φ(φ0)個(gè)單位或向右平移-φ個(gè)單位(φ<0=得到的。
性質(zhì)討論:不變的有定義域、值域、最值、周期變化的有奇偶性、單調(diào)區(qū)間與單調(diào)性
由上例和練習(xí)可以看出:在函數(shù)y=sin(x+φ),xR(φ0)中,φ決定了x=0時(shí)的函數(shù),通常稱φ為初相,x+φ為相位。
【鞏固深化,發(fā)展思維】
課堂練習(xí):
二、歸納整理,整體認(rèn)識(shí)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
三、課后反思