線幼兒園教案
發(fā)表時間:2020-12-08初二數(shù)學(xué)知識點歸納:相交線。
學(xué)生們有一個生動有趣的課堂,離不開老師辛苦準備的教案,大家應(yīng)該開始寫教案課件了。認真做好教案課件的工作計劃,才能完成制定的工作目標!你們知道多少范文適合教案課件?小編特地為大家精心收集和整理了“初二數(shù)學(xué)知識點歸納:相交線”,但愿對您的學(xué)習(xí)工作帶來幫助。
初二數(shù)學(xué)知識點歸納:相交線
知識點總結(jié)
一、相交線:
性質(zhì):兩條直線相交,有且只有一個交點。
二、對頂角、鄰補角:
1.對頂角:如圖,直線AB和CD相交于點O,∠1與∠2有公共頂點O,它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
說明:兩個角是對頂角必需滿足兩個條件:(1)有公共頂點;(2)兩邊互為反向延長線。
2.鄰補角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長線,顯然它們互補。具有這種關(guān)系的兩個角叫做互為鄰補角。
3.性質(zhì):(1)對頂角相等;(2)互為鄰補角的兩個角的和等于。
三、有關(guān)垂線的概念和性質(zhì):1.概念:如果兩條直線相交所成的四個角中,有一角是直角,就說這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點叫做垂足。
說明:垂直是相交的一種特殊情況。JAB88.coM
2.點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
說明:垂線是直線,而垂線段是一條線段,點到直線的距離不是指垂線段,而是指垂線段的長度。
3.平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線間的距離。平行線間的距離處處相等。
4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個角都是直角;(2)過直線上一點或直線外一點畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點與直線上各點的所有線段中,垂線段最短。簡單地說:垂線段最短;(4)平行線間的距離處處相等。
四、同位角、內(nèi)錯角、同旁內(nèi)角:
如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個角,簡稱“三線八角”。
1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;
2.內(nèi)錯角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時又各在EF兩側(cè)。內(nèi)錯角呈“Z”形;
3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時又在EF同側(cè)。同旁內(nèi)角呈“U”形。
說明:(1)同位角、內(nèi)錯角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個角;
(2)這三類角都是由兩條直線被第三條直線所截形成的;
(3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;
(4)兩條直線被第三條直線所截成的八個角中,同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對。
常見考法
(1)對頂角、鄰補角、同位角、內(nèi)錯角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識一起考查;(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。
誤區(qū)提醒
(1)對頂角、鄰補角以及垂線的概念理解有誤;(2)在復(fù)雜圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角時產(chǎn)生遺漏或錯認。
【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個數(shù)是()個。
①點B到AC的垂線段是線段AB;
②線段AC是點C到AB的垂線段;
③線段AD是點D到BC的垂線段;
④線段BD是點B到AD的垂線段;
A.1B.2C.3D.4
【解析】③是錯誤的,其余的均是正確的,故本題選C
一、目標與要求
1.理解對頂角和鄰補角的概念,能在圖形中辨認;
2.掌握對頂角相等的性質(zhì)和它的推證過程;
3.通過在圖形中辨認對頂角和鄰補角,培養(yǎng)學(xué)生的識圖能力。
二、重點
在較復(fù)雜的圖形中準確辨認對頂角和鄰補角;
兩條直線互相垂直的概念、性質(zhì)和畫法;
同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別。
三、難點
在較復(fù)雜的圖形中準確辨認對頂角和鄰補角;
對點到直線的距離的概念的理解;
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);
能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。
四、知識框架
五、知識點、概念總結(jié)
1.鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.對頂角和鄰補角的關(guān)系
4.垂直:兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
5.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點叫做垂足。
7.垂線性質(zhì)
(1)在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直。
(2)連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
(3)點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
8.同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
9.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。
10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
11.命題:判斷一件事情的語句叫命題。
12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。
13.假命題:條件和結(jié)果相矛盾的命題是假命題。
14.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
15.對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
16.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
17.垂線的性質(zhì):
性質(zhì)1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
18.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
19.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。
20.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。充要條件。
延伸閱讀
初二數(shù)學(xué)知識點歸納:投影
初二數(shù)學(xué)知識點歸納:投影
知識點總結(jié)
一、投影:
1.平行投影:太陽光線可以看成平行光線,像這樣的光線所形成的投影稱為平行投影。
平行投影的特征:(1)點的投影仍是點;(2)直線的投影一般仍是直線;(3)一點在某直線上,則該點的投影一定在該直線的投影上;(4)直線上兩線段之比,等于其影長之比;
(5)兩直線平行,其投影平行或在同一直線上。
2.中心投影:燈光的光線可以看成是從同一點發(fā)出的(即為點光源),像這樣的光線所形成的投影稱為中心投影。
中心投影的特征:(1)對應(yīng)點連線都經(jīng)過一點,這一點就是光源的位置;(2)物體的投影的大小,是隨著光源距離物體的遠近而變化的,或者是隨物體離投影面的遠近而變化的;
(3)中心投影不能反映原物體的真實形狀和大小。
3.正投影:投影線垂直于投影面時產(chǎn)生的投影叫做正投影。
正投影的特征:(1)當平面圖形平行于投影面時,它的正投影是與它全等的平面幾何圖形(點的正投影仍是一個點);(2)當平面圖形垂直于投影面時,它的正投影是一條線段(線段垂直于投影面時的正投影是一個點);(3)當平面圖形位于投影面上時,它的正投影是它本身。
二、太陽光與影子:
物體在太陽光線照射的不同時刻,不僅影子的長短在變化,而且影子的方向也改變,根據(jù)不同時刻影長的變換規(guī)律,以及太陽東升西落的自然規(guī)律,可以判斷時間的先后順序。
三、燈光與影子:
在某確定燈光下固定物體的影子與方向是一定的,對燈而言,移動的物體離燈越近,影子越短,離燈越遠,影子越長。
四、視點、視線、盲區(qū):
眼睛的位置稱為視點,由視點發(fā)出的線稱為視線,看不到的區(qū)域稱為盲區(qū)。
常見考法
把投影與相似形、三角函數(shù)等知識結(jié)合,求物長或影長。
誤區(qū)提醒
誤認為中心投影下,兩個物體的高不可能同時與影長相等。
【典型例題】(2010年浙江杭州)四個直立在地面上的字母廣告牌在不同情況下,在地面上的投影(陰影部分)效果如圖.則在字母“L”、“K”、“C”的投影中,與字母“N”屬同一種投影的有()
A.“L”、“K”B.“C”C.“K”D.“L”、“K”、“C”
【解析】“L”、“K”是平行投影,C是正投影。故本題選A.
投影的產(chǎn)生:物體在光線的照射下,就會在地面或墻壁上出現(xiàn)物體的影子。投射線通過物體,向選定的面投射,并在該面上得到圖形的方法稱為投影法。
投影規(guī)律:
主視圖和俯視圖都反映物體的長度,且長對正。
主視圖和左視圖都反映物體的高度,且高平齊。
俯視圖和左視圖都反映物體的寬度,且寬一致。
練習(xí)
1.下面四幅圖是兩個物體不同時刻在太陽光下的影子,按照時間的先后順序正確的是()
(A)A→B→C→D(B)D→B→C→A(C)C→D→A→B(D)A→C→B→D
2.球的正投影是()
(A)圓面(B)橢圓面(C)點(D)圓環(huán)
3.在同一時刻,兩根長度不等的竿子置于陽光之下,但看到它們的影長相等,那么這兩根竿子的相對位置是()
(A)兩竿都垂直于地面(B)兩竿平行斜插在地上
(C)兩根竿子不平行(D)一根竿倒在地上
4.平行投影中的光線是()
(A)平行的(B)聚成一點的(C)不平行的(D)向四面發(fā)散的
5.兩個不同長度的的物體在同一時刻同一地點的太陽光下得到的投影是()
(A)相等(B)長的較長(C)短的較長(D)不能確定
初二數(shù)學(xué)知識點歸納:方差
初二數(shù)學(xué)知識點歸納:方差
方差的計算、知識點歸納
方差在考試中考察不是很難,記住基本公式往里帶就能解答正確,但是方差的概念讓不少同學(xué)為此很是頭痛。那方差到底是什么,怎樣計算呢,下面小編就為大家整理一些題型和解題方法技巧。
一、概念和公式
方差的概念與計算公式,例1兩人的5次測驗成績?nèi)缦拢篨:50,100,100,60,50E(X)=72;Y:73,70,75,72,70E(Y)=72。平均成績相同,但X不穩(wěn)定,對平均值的偏離大。方差描述隨機變量對于數(shù)學(xué)期望的偏離程度。單個偏離是消除符號影響方差即偏離平方的均值,記為D(X):直接計算公式分離散型和連續(xù)型,具體為:這里是一個數(shù)。推導(dǎo)另一種計算公式得到:“方差等于平方的均值減去均值的平方”。其中,分別為離散型和連續(xù)型計算公式。稱為標準差或均方差,方差描述波動程度。
基本定義:設(shè)X是一個隨機變量,若E{[X-E(X)]2}存在,則稱E{[X-E(X)]2}為X的方差,記為D(X),Var(X)或DX。即D(X)=E{[X-E(X)]2}稱為方差,而σ(X)=D(X)0.5(與X有相同的量綱)稱為標準差(或均方差)。即用來衡量一組數(shù)據(jù)的離散程度的統(tǒng)計量。方差刻畫了隨機變量的取值對于其數(shù)學(xué)期望的離散程度。(標準差、方差越大,離散程度越大。否則,反之)若X的取值比較集中,則方差D(X)較小,若X的取值比較分散,則方差D(X)較大。因此,D(X)是刻畫X取值分散程度的一個量,它是衡量取值分散程度的一個尺度。
當數(shù)據(jù)分布比較分散(即數(shù)據(jù)在平均數(shù)附近波動較大)時,各個數(shù)據(jù)與平均數(shù)的差的平方和較大,方差就較大;當數(shù)據(jù)分布比較集中時,各個數(shù)據(jù)與平均數(shù)的差的平方和較小。因此方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動就越小
二、計算方法和原理
若x1,x2,x3......xn的平均數(shù)為m則方差方差公式方差公式例1兩人的5次測驗成績?nèi)缦拢?br>
X:50,100,100,60,50E(X)=72;
Y:73,70,75,72,70E(Y)=72。
平均成績相同,但X不穩(wěn)定,對平均值的偏離大。方差描述隨機變量對于數(shù)學(xué)期望的偏離程度。
單個偏離是消除符號影響方差即偏離平方的均值,記為D(X):
直接計算公式分離散型和連續(xù)型,具體為:這里是一個數(shù)。推導(dǎo)另一種計算公式
得到:“方差等于平方的均值減去均值的平方”。
其中,分別為離散型和連續(xù)型的計算公式。稱為標準差或均方差,方差描述波動。
設(shè)一組數(shù)據(jù)x1,x2,x3……xn中,各組數(shù)據(jù)與它們的平均數(shù)x(拔)的差的平方分別是(x1-x拔)2,(x2-x拔)2……(xn-x拔)2,那么我們用他們的平均數(shù)來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差。
方差分析的基本原理是認為不同處理組的均數(shù)間的差別基本來源有兩個:
(1)隨機誤差,如測量誤差造成的差異或個體間的差異,稱為組內(nèi)差異,用變量在各組的均值與該組內(nèi)變量值之偏差平方和的總和表示,記作SSw,組內(nèi)自由度dfw。
(2)實驗條件,即不同的處理造成的差異,稱為組間差異。用變量在各組的均值與總均值之偏差平方和表示,記作SSb,組間自由度dfb。
總偏差平方和SSt=SSb+SSw。
組內(nèi)SSw、組間SSb除以各自的自由度(組內(nèi)dfw=n-m,組間dfb=m-1,其中n為樣本總數(shù),m為組數(shù)),得到其均方MSw和MSb,一種情況是處理沒有作用,即各組樣本均來自同一總體,MSb/MSw≈1。另一種情況是處理確實有作用,組間均方是由于誤差與不同處理共同導(dǎo)致的結(jié)果,即各樣本來自不同總體。那么,MSbMSw(遠遠大于)。
MSb/MSw比值構(gòu)成F分布。用F值與其臨界值比較,推斷各樣本是否來自相同的總體
三、計算和性質(zhì)
方差的計算公式D(X)=E(X)-[E(X)]
例題:隨機變量X的分布函數(shù)F(X)=﹛0,x0﹜,{x,0=x=1},{1,x1},求E(X),D(X).
步驟:E(X)=∫{-∞,+∞}xdF(x)=∫{0,1}3xdx=3/4,E(X)=∫{-∞,+∞}xdF(x)=∫{0,1}3x^4dx=3/5
D(X)=E(X)-[E(X)]=3/80
若x1,x2,x3......xn的平均數(shù)為m
則方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
方差即偏離平方的均值,稱為標準差或均方差,方差描述隨機變量x的波動程度。
計算時有些是采取1/n,有些是采取1/(n-1)。理解這個問題,首先要知道估計的無偏性,無偏性有什么好處作用。樣本估計量(如[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2])的數(shù)學(xué)期望等于整體方差,說明這個樣本估計量搜索是無偏的。從分析測試的觀點看,無偏性意味著測定的準確度。
方差反映了隨機變量取值的平均分散程度,D(X)=E[X-E(X)]~2,實質(zhì)上,方差也是一個數(shù)學(xué)期望,它是一個特殊隨機變量的數(shù)學(xué)期望。學(xué)習(xí)方法
性質(zhì):1、D(C)=0;
2、D(CX)=C~2*D(X);
3、D(X+C)=D(X);
4、若X與Y獨立,則D(X+或-Y)=D(X)+D(Y);
方差
方差是實際值與期望值之差平方的期望值,而標準差是方差算術(shù)平方根。在實際計算中,我們用以下公式計算方差。
方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個體,而s^2就表示方差。
而當用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計時,發(fā)現(xiàn)其數(shù)學(xué)期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學(xué)期望才是X的方差,用它作為X的方差的估計具有“無偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來估計X的方差,并且把它叫做“樣本方差”。
方差,通俗點講,就是和中心偏離的程度!用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。
定義設(shè)X是一個隨機變量,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]^2}稱為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標準差(或均方差)。即用來衡量一組數(shù)據(jù)的離散程度的統(tǒng)計量。
方差刻畫了隨機變量的取值對于其數(shù)學(xué)期望的離散程度。(標準差.方差越大,離散程度越大。否則,反之)
若X的取值比較集中,則方差D(X)較小
若X的取值比較分散,則方差D(X)較大。
因此,D(X)是刻畫X取值分散程度的一個量,它是衡量X取值分散程度的一個尺度。
計算由定義知,方差是隨機變量X的函數(shù)
g(X)=∑[X-E(X)]^2pi
數(shù)學(xué)期望。即:
由方差的定義可以得到以下常用計算公式:
D(X)=∑xipi-E(x)
D(X)=∑(xipi+E(X)pi-2xipiE(X))
=∑xipi+∑E(X)pi-2E(X)∑xipi
=∑xipi+E(X)-2E(X)
=∑xipi-E(x)
方差其實就是標準差的平方。
初二數(shù)學(xué)知識點歸納:倒數(shù)
初二數(shù)學(xué)知識點歸納:倒數(shù)
倒數(shù)就是指數(shù)學(xué)上設(shè)一個數(shù)x與其相乘的積為1的數(shù),記為1/x或x。
倒數(shù)
1.求一個分數(shù)的倒數(shù),例如3/4,我們只須把3/4這個分數(shù)的分子和分母交換位置,即得3/4的倒數(shù)為4/3。
2.求一個整數(shù)的倒數(shù),只須把這個整數(shù)看成是分母為1的分數(shù),然后再按求分數(shù)倒數(shù)的方法即可得到。
如12,即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把分子做分母,分母做分子,則有1/12。
即12倒數(shù)是1/12。
說明:倒數(shù)是本身的數(shù)是1和-1。(0沒有倒數(shù))
把0.25化成分數(shù),即1/4
再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子.則是4/1
再把4/1化成整數(shù),即4
所以0.25是4的倒數(shù)。也可以說4是0.25的倒數(shù)
也可以用1去除以這個數(shù),例如0.25
1/0.25等于4
所以0.25的倒數(shù)4.
因為乘積是1的兩個數(shù)互為倒數(shù)。
分數(shù)、整數(shù)也都使用這種規(guī)律。
求倒數(shù)的約分問題在求倒數(shù)過程中,當然要約分,如14/35
約分以后成2/5
最后按照求倒數(shù)的方法求出14/35的倒數(shù)。
數(shù)論倒數(shù)
而在數(shù)論中,還有數(shù)論倒數(shù)的概念,如果兩個數(shù)a和b,它們的乘積關(guān)于模m余1,那么我們稱它們互為關(guān)于模m的數(shù)論倒數(shù)。比如2*3=1(mod5),所以3是2關(guān)于5的數(shù)論倒數(shù)。數(shù)論倒數(shù)在中國剩余定理中非常重要。而輾轉(zhuǎn)相除法提供了計算數(shù)論倒數(shù)的方法。
群論中的倒數(shù)
近世代數(shù)中有群,域,環(huán)等概念,其中定義了抽象的乘法運算和單位元。同樣的,關(guān)于其乘法如果有乘法逆,同樣可以看成是倒數(shù)。
倒數(shù)的特點
倒數(shù)的特點:一個正實數(shù)(1除外)加上它的倒數(shù)一定大于2。理由:a/b,b/a為倒數(shù)當ab時a/b一定大于1,可寫為1+(a-b)/b因為b/a+(a-b)/a=b*b/a*b+(a*b-b*b)/ab=(a*a-b*b+b*b)/ab=a*a/a*b,又因為ab,所以a*aa*b,所以a*a/a*b1,所以1+(a-b)/b+a*a/a*b2,所以一個正實數(shù)加上它的倒數(shù)一定大于2。
當ba時也一樣。
同理可證,一個負實數(shù)(-1除外)加上它的倒數(shù)一定小于-2。
在四則混合運算中,有時會用到倒數(shù)來解題,正規(guī)解起來很麻煩。