88教案網(wǎng)
初三教案數(shù)學(xué)二次函數(shù)
初三教案數(shù)學(xué)二次函數(shù)(精選六篇)。
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,編寫教學(xué)設(shè)計(jì)是必不可少的,借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。我們?cè)撛趺慈懡虒W(xué)設(shè)計(jì)呢?以下是小編收集整理的初三數(shù)學(xué)二次函數(shù)的教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。
初三教案數(shù)學(xué)二次函數(shù) 篇1
在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)?lái)初三數(shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、 重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、 重視每一個(gè)學(xué)生 學(xué)生是課堂的主體,離開(kāi)學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無(wú)法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通,學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽(tīng)進(jìn)一點(diǎn)
四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
2二次函數(shù)教學(xué)方法一
一、 立足教材,夯實(shí)雙基:進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要.并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問(wèn)題時(shí),能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過(guò)對(duì)題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過(guò)程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過(guò)程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過(guò)程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.
3二次函數(shù)教學(xué)方法二
1.質(zhì)疑問(wèn)難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問(wèn)難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問(wèn)、爭(zhēng)辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問(wèn)、質(zhì)疑問(wèn)難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)。現(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問(wèn)題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問(wèn)題。
4二次函數(shù)教學(xué)方法三
1.教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說(shuō)明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過(guò)程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
3.教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問(wèn)題的、多角度描述的經(jīng)過(guò)研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
初三教案數(shù)學(xué)二次函數(shù) 篇2
教學(xué)目標(biāo)
1、能列出實(shí)際問(wèn)題中的二次函數(shù)關(guān)系式;
2、理解二次函數(shù)概念;
3、能判斷所給的函數(shù)關(guān)系式是否二次函數(shù)關(guān)系式;
4、掌握二次函數(shù)解析式的幾種常見(jiàn)形式.
從實(shí)際問(wèn)題中感悟變量間的二次函數(shù)關(guān)系,揭示二次函數(shù)概念.學(xué)生經(jīng)歷觀察、思考、交流、歸納、辨析、實(shí)踐運(yùn)用等過(guò)程,體會(huì)函數(shù)中的常量與變量,深刻領(lǐng)悟二次函數(shù)意義.
情感態(tài)度
使學(xué)生進(jìn)一步體驗(yàn)函數(shù)是描述變量間對(duì)應(yīng)關(guān)系的重要數(shù)學(xué)模型,培養(yǎng)學(xué)生合作交流意識(shí)和探索能力。
教學(xué)重點(diǎn)
理解二次函數(shù)的意義,能列出實(shí)際問(wèn)題中二次函數(shù)解析式
教學(xué)難點(diǎn)
能列出實(shí)際問(wèn)題中二次函數(shù)解析式
教學(xué)過(guò)程設(shè)計(jì)
一、情境引入
播放實(shí)際生活中的有關(guān)拋物線的圖片,概括性的介紹本章.
二、探究新知
㈠、用函數(shù)關(guān)系式表示下列問(wèn)題中變量之間的關(guān)系:
1.正方體的棱長(zhǎng)是x,表面積是y,寫出y關(guān)于x的函數(shù)關(guān)系式;
2.n邊形的對(duì)角線條數(shù)d與邊數(shù)n有什么關(guān)系?
3.某工廠一種產(chǎn)品現(xiàn)在的年產(chǎn)量是20件,計(jì)劃今后兩年增加產(chǎn)量,如果每年都必上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計(jì)劃所定的x的`值而確定,y與x之間的關(guān)系應(yīng)怎樣表示?
㈡觀察所列函數(shù)關(guān)系式,看看有何共同特點(diǎn)?
㈢類比一次函數(shù)和反比例函數(shù)概念揭示二次函數(shù)概念:
一般地,形如
初三教案數(shù)學(xué)二次函數(shù) 篇3
一、說(shuō)課內(nèi)容:
蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。
(2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程
2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程
3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程
四、教學(xué)過(guò)程:
(一)復(fù)習(xí)提問(wèn)
1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究?jī)蓚€(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對(duì)二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。
(1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。
4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表?yè)P(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
初三教案數(shù)學(xué)二次函數(shù) 篇4
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認(rèn)識(shí)、理解和掌握其性質(zhì).
2.體會(huì)數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題.
【過(guò)程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過(guò)動(dòng)手畫圖,同學(xué)之間交流討論,達(dá)到對(duì)二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對(duì)數(shù)學(xué)的興趣,調(diào)動(dòng)學(xué)生的積極性.
【教學(xué)重點(diǎn)】
1.會(huì)畫y=ax2(a>0)的圖象.
2.理解,掌握?qǐng)D象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象及性質(zhì)探究過(guò)程和方法的體會(huì)教學(xué)過(guò)程.
一、情境導(dǎo)入,初步認(rèn)識(shí)
問(wèn)題1 請(qǐng)同學(xué)們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問(wèn)題2 如何用描點(diǎn)法畫一個(gè)函數(shù)圖象呢?
【教學(xué)說(shuō)明】
①略;
②列表、描點(diǎn)、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學(xué)說(shuō)明】
①要求同學(xué)們?nèi)巳藙?dòng)手,按“列表、描點(diǎn)、連線”的步驟畫圖y=x2的圖象,同學(xué)們畫好后相互交流、展示,表?yè)P(yáng)畫得比較規(guī)范的同學(xué).
②從列表和描點(diǎn)中,體會(huì)圖象關(guān)于y軸對(duì)稱的特征.
③強(qiáng)調(diào)畫拋物線的三個(gè)誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢(shì).
誤區(qū)二:并非對(duì)稱點(diǎn),存在漏點(diǎn)現(xiàn)象,導(dǎo)致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點(diǎn)的同時(shí),還需要向兩旁無(wú)限延伸,而并非到某些點(diǎn)停止.
初三教案數(shù)學(xué)二次函數(shù) 篇5
教學(xué)目標(biāo)
1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過(guò)程,體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn)
2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問(wèn)題
3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用三種方式表示變量之間二次函數(shù)關(guān)系
難點(diǎn):根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究
教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
這節(jié)課,我們來(lái)學(xué)習(xí)二次函數(shù)的三種表達(dá)方式。
二、師生共同研究形成概念
1、用函數(shù)表達(dá)式表示
☆做一做書本P56矩形的周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系
鼓勵(lì)學(xué)生間的互相交流,一定要讓學(xué)生理解周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系。
比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系
2、用表格表示
☆做一做書本P56填表
由于運(yùn)算量比較大,學(xué)生的運(yùn)算能力又一般,因此,建議把這個(gè)表格的一部分?jǐn)?shù)據(jù)先給出來(lái),讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系
3、用圖象表示
☆議一議書本P56議一議
關(guān)于自變量的問(wèn)題,學(xué)生往往比較難理解,講解時(shí),可適當(dāng)多花時(shí)間講解。
可以直觀地表示出函數(shù)的變化過(guò)程和變化趨勢(shì)
☆做一做書本P57
4、三種方法對(duì)比
☆議一議書本P58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過(guò)程和變化趨勢(shì);函數(shù)的表達(dá)式可以比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點(diǎn),它們服務(wù)于不同的需要。
在對(duì)三種表示方式進(jìn)行比較時(shí),學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵(lì)。
初三教案數(shù)學(xué)二次函數(shù) 篇6
目標(biāo):
1.使學(xué)生掌握用待定系數(shù)法由已知圖象上一個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)y=ax2的關(guān)系式。
2. 使學(xué)生掌握用待定系數(shù)法由已知圖象上三個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)的關(guān)系式。
3.讓學(xué)生體驗(yàn)二次函數(shù)的函數(shù)關(guān)系式的應(yīng)用,提高學(xué)生用數(shù)學(xué)意識(shí)。
重點(diǎn)難點(diǎn):
重點(diǎn):已知二次函數(shù)圖象上一個(gè)點(diǎn)的坐標(biāo)或三個(gè)點(diǎn)的坐標(biāo),分別求二次函數(shù)y=ax2、y=ax2+bx+c的關(guān)系式是的重點(diǎn)。
難點(diǎn):已知圖象上三個(gè)點(diǎn)坐標(biāo)求二次函數(shù)的關(guān)系式是教學(xué)的難點(diǎn)。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)問(wèn)題情境
如圖,某建筑的屋頂設(shè)計(jì)成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?
分析:為了畫出符合要求的模板,通常要先建立適當(dāng)?shù)闹苯亲鴺?biāo)系,再寫出函數(shù)關(guān)系式,然后根據(jù)這個(gè)關(guān)系式進(jìn)行計(jì)算,放樣畫圖。
如圖所示,以AB的垂直平分線為y軸,以過(guò)點(diǎn)O的y軸的垂線為x軸,建立直角坐標(biāo)系。這時(shí),屋頂?shù)臋M截面所成拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開(kāi)口向下,所以可設(shè)它的函數(shù)關(guān)系式為: y=ax2 (a<0) (1)
因?yàn)閥軸垂直平分AB,并交AB于點(diǎn)C,所以CB=AB2 =2(cm),又CO=0.8m,所以點(diǎn)B的坐標(biāo)為(2,-0.8)。
因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函數(shù)關(guān)系式是y=-0.2x2。
請(qǐng)同學(xué)們根據(jù)這個(gè)函數(shù)關(guān)系式,畫出模板的輪廓線。
二、引申拓展
問(wèn)題1:能不能以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過(guò)點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系?
讓學(xué)生了解建立直角坐標(biāo)系的方法不是唯一的,以A點(diǎn)為原點(diǎn),AB所在的直線為x軸,過(guò)點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系也是可行的。
問(wèn)題2,若以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過(guò)點(diǎn)A的x軸的垂直為y軸,建立直角坐標(biāo)系,你能求出其函數(shù)關(guān)系式嗎?
分析:按此方法建立直角坐標(biāo)系,則A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0),OC所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,O點(diǎn)坐標(biāo)為(2;0.8)。即把問(wèn)題轉(zhuǎn)化為:已知拋物線過(guò)(0,0)、(4,0);(2,0.8)三點(diǎn),求這個(gè)二次函數(shù)的關(guān)系式。
二次函數(shù)的一般形式是y=ax2+bx+c,求這個(gè)二次函數(shù)的關(guān)系式,跟以前學(xué)過(guò)求一次函數(shù)的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點(diǎn)在拋物線上,所以它的坐標(biāo)必須適合所求的函數(shù)關(guān)系式;可列出三個(gè)方程,解此方程組,求出三個(gè)待定系數(shù)。
解:設(shè)所求的二次函數(shù)關(guān)系式為y=ax2+bx+c。
因?yàn)镺C所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,
所以O(shè)點(diǎn)坐標(biāo)為(2,0.8),A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0)。
由已知,函數(shù)的圖象過(guò)(0,0),可得c=0,又由于其圖象過(guò)(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個(gè)方程組,得a=-15b=45 所以,所求的二次函數(shù)的關(guān)系式為y=-15x2+45x。
問(wèn)題3:根據(jù)這個(gè)函數(shù)關(guān)系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?
問(wèn)題4:比較兩種建立直角坐標(biāo)系的方式,你認(rèn)為哪種建立直角坐標(biāo)系方式能使解決問(wèn)題來(lái)得更簡(jiǎn)便?為什么?
(第一種建立直角坐標(biāo)系能使解決問(wèn)題來(lái)得更簡(jiǎn)便,這是因?yàn)樗O(shè)函數(shù)關(guān)系式待定系數(shù)少,所求出的函數(shù)關(guān)系式簡(jiǎn)單,相應(yīng)地作圖象也容易)
請(qǐng)同學(xué)們閱瀆P18例7。
三、課堂練習(xí): P18練習(xí)1.(1)、(3)2。
四、綜合運(yùn)用
例1.如圖所示,求二次函數(shù)的關(guān)系式。
分析:觀察圖象可知,A點(diǎn)坐標(biāo)是(8,0),C點(diǎn)坐標(biāo)為(0,4)。從圖中可知對(duì)稱軸是直線x=3,由于拋物線是關(guān)于對(duì)稱軸的軸對(duì)稱圖形,所以此拋物線在x軸上的另一交點(diǎn)B的坐標(biāo)是(-2,0),問(wèn)題轉(zhuǎn)化為已知三點(diǎn)求函數(shù)關(guān)系式。
解:觀察圖象可知,A、C兩點(diǎn)的坐標(biāo)分別是(8,0)、(0,4),對(duì)稱軸是直線x=3。因?yàn)閷?duì)稱軸是直線x=3,所以B點(diǎn)坐標(biāo)為(-2,0)。
設(shè)所求二次函數(shù)為y=ax2+bx+c,由已知,這個(gè)圖象經(jīng)過(guò)點(diǎn)(0,4),可以得到c=4,又由于其圖象過(guò)(8,0)、(-2,0)兩點(diǎn),可以得到64a+8b=-44a-2b=-4 解這個(gè)方程組,得a=-14b=32
所以,所求二次函數(shù)的關(guān)系式是y=-14x2+32x+4
練習(xí): 一條拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(0,0)與(12,0),最高點(diǎn)的縱坐標(biāo)是3,求這條拋物線的解析式。
五、小結(jié):
二次函數(shù)的關(guān)系式有幾種形式,函數(shù)的關(guān)系式y(tǒng)=ax2+bx+c就是其中一種常見(jiàn)的形式。二次函數(shù)關(guān)系式的確定,關(guān)鍵在于求出三個(gè)待定系數(shù)a、b、c,由于已知三點(diǎn)坐標(biāo)必須適合所求的函數(shù)關(guān)系式,故可列出三個(gè)方程,求出三個(gè)待定系數(shù)。
六、作業(yè)
1.P19習(xí)題 26.2 4.(1)、(3)、5。
2.選用課時(shí)作業(yè)優(yōu)化設(shè)計(jì),
文章來(lái)源://www.lvshijia.net/j/185182.html
二次函數(shù)教案相關(guān)推薦
更多>-
中考數(shù)學(xué)二次函數(shù)1復(fù)習(xí) 每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,大家在認(rèn)真寫教案課件了。只有寫好教案課件計(jì)劃,未來(lái)工作才會(huì)更有干勁!你們會(huì)寫一段優(yōu)秀的教案課件嗎?小編特地為大家精心收集和整理了“中考數(shù)學(xué)二次函數(shù)1復(fù)習(xí)”,歡迎您參考,希望對(duì)您有所助益!章節(jié)第三章課題課型復(fù)習(xí)課教法講練結(jié)合教學(xué)目標(biāo)1.理解二次函數(shù)的概念;掌握二次...
-
高一數(shù)學(xué)二次函數(shù)教案25 一名優(yōu)秀的教師在教學(xué)方面無(wú)論做什么事都有計(jì)劃和準(zhǔn)備,教師要準(zhǔn)備好教案,這是教師工作中的一部分。教案可以讓學(xué)生們有一個(gè)良好的課堂環(huán)境,幫助教師提高自己的教學(xué)質(zhì)量。那么如何寫好我們的教案呢?以下是小編為大家收集的“高一數(shù)學(xué)二次函數(shù)教案25”希望對(duì)您的工作和生活有所幫助。第二課時(shí)二次函數(shù)、二次方程教學(xué)進(jìn)程...
- 高一數(shù)學(xué)二次函數(shù)教學(xué)設(shè)計(jì)2407-25
- 數(shù)學(xué)二次根式教案優(yōu)選08-16
- 二次函數(shù)學(xué)案01-25
- 九年級(jí)數(shù)學(xué)二次函數(shù)的應(yīng)用04-06
- 二次函數(shù)教案6篇08-20
- 二次函數(shù)教案05-06
- 二次函數(shù)09-27
- 二次函數(shù)復(fù)習(xí)教案02-15
清明節(jié)網(wǎng)上祭祀文案57句10-03
- 太平天國(guó)的教案5篇10-03
- 初二語(yǔ)文下冊(cè)教學(xué)設(shè)計(jì)(匯集七篇)10-03
- 踏春小學(xué)作文五篇10-03
- 個(gè)人思想?yún)R報(bào)800字左右(分享十篇)10-03
- 重陽(yáng)節(jié)班會(huì)內(nèi)容圖片內(nèi)容(經(jīng)典13篇)10-03
- 2024年預(yù)備黨員第四季度思想?yún)R報(bào)(匯集十三篇)10-03
- 劍與遠(yuǎn)征20-30怎么過(guò) 20-30通關(guān)陣容搭配及站位詳解02-16
- 小班小扇子教案10-03
- 2024臘月日記50字10-03
- 初三教案數(shù)學(xué)二次函數(shù)(精選六篇)10-03
- 二次函數(shù)教案6篇08-20
- 二次函數(shù)教案內(nèi)容02-23
- 二次函數(shù)說(shuō)課稿范例12-11
- 二次函數(shù)教案2000字12-04
- 數(shù)學(xué)二次根式教案優(yōu)選08-16
- 值得收藏!初中數(shù)學(xué)二次根式教案范例140字04-27
- 初中數(shù)學(xué)《二次根式》教案12-01
- 二次根式12-17
- 二次根式教案04-08
- 二次函數(shù)09-27
- 二次函數(shù)教學(xué)反思簡(jiǎn)短9篇04-29
- 認(rèn)識(shí)二次函數(shù)04-06
- 二次函數(shù)教案05-06
- 二次函數(shù)的概念04-08