小學(xué)數(shù)學(xué)復(fù)習(xí)教案
發(fā)表時間:2021-05-06中考數(shù)學(xué)開放探索問題復(fù)習(xí)導(dǎo)學(xué)案。
教案課件是老師需要精心準(zhǔn)備的,到寫教案課件的時候了。在寫好了教案課件計劃后,才能夠使以后的工作更有目標(biāo)性!有沒有好的范文是適合教案課件?以下是小編收集整理的“中考數(shù)學(xué)開放探索問題復(fù)習(xí)導(dǎo)學(xué)案”,希望能為您提供更多的參考。
第5課開放探索問題
第一部分講解部分
一、專題詮釋
開放探究型問題,可分為開放型問題和探究型問題兩類.
開放型問題是相對于有明確條件和明確結(jié)論的封閉型問題而言的,它是條件或結(jié)論給定不完全、答案不唯一的一類問題.這類試題已成為近年中考的熱點,重在考查同學(xué)們分析、探索能力以及思維的發(fā)散性,但難度適中.根據(jù)其特征大致可分為:條件開放型、結(jié)論開放型、方法開放型和編制開放型等四類.
探究型問題是指命題中缺少一定的條件或無明確的結(jié)論,需要經(jīng)過推斷,補充并加以證明的一類問題.根據(jù)其特征大致可分為:條件探究型、結(jié)論探究型、規(guī)律探究型和存在性探究型等四類.
二、解題策略與解法精講
由于開放探究型試題的知識覆蓋面較大,綜合性較強,靈活選擇方法的要求較高,再加上題意新穎,構(gòu)思精巧,具有相當(dāng)?shù)纳疃群碗y度,所以要求同學(xué)們在復(fù)習(xí)時,首先對于基礎(chǔ)知識一定要復(fù)習(xí)全面,并力求扎實牢靠;其次是要加強對解答這類試題的練習(xí),注意各知識點之間的因果聯(lián)系,選擇合適的解題途徑完成最后的解答.由于題型新穎、綜合性強、結(jié)構(gòu)獨特等,此類問題的一般解題思路并無固定模式或套路,但是可以從以下幾個角度考慮:
1.利用特殊值(特殊點、特殊數(shù)量、特殊線段、特殊位置等)進(jìn)行歸納、概括,從特殊到一般,從而得出規(guī)律.
2.反演推理法(反證法),即假設(shè)結(jié)論成立,根據(jù)假設(shè)進(jìn)行推理,看是推導(dǎo)出矛盾還是能與已知條件一致.
3.分類討論法.當(dāng)命題的題設(shè)和結(jié)論不惟一確定,難以統(tǒng)一解答時,則需要按可能出現(xiàn)的情況做到既不重復(fù)也不遺漏,分門別類加以討論求解,將不同結(jié)論綜合歸納得出正確結(jié)果.
4.類比猜想法.即由一個問題的結(jié)論或解決方法類比猜想出另一個類似問題的結(jié)論或解決方法,并加以嚴(yán)密的論證.
以上所述并不能全面概括此類命題的解題策略,因而具體操作時,應(yīng)更注重數(shù)學(xué)思想方法的綜合運用.
三、考點精講
(一)開放型問題
考點一:條件開放型:
條件開放題是指結(jié)論給定,條件未知或不全,需探求與結(jié)論相對應(yīng)的條件.解這種開放問題的一般思路是:由已知的結(jié)論反思題目應(yīng)具備怎樣的條件,即從題目的結(jié)論出發(fā),逆向追索,逐步探求.
例1:(2011江蘇淮安)在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是.(寫出一種即可)
分析:已知兩組對邊相等,如果其對角線相等可得到△ABD≌△ABC≌ADC≌△BCD,進(jìn)而得到,∠A=∠B=∠C=∠D=90°,使四邊形ABCD是矩形.
解:若四邊形ABCD的對角線相等,
則由AB=DC,AD=BC可得.
△ABD≌△ABC≌ADC≌△BCD,
所以四邊形ABCD的四個內(nèi)角相等分別等于90°即直角,
所以四邊形ABCD是矩形,
故答案為:對角線相等.
評注:此題屬開放型題,考查的是矩形的判定,根據(jù)矩形的判定,關(guān)鍵是是要得到四個內(nèi)角相等即直角.
考點二:結(jié)論開放型:
給出問題的條件,讓解題者根據(jù)條件探索相應(yīng)的結(jié)論并且符合條件的結(jié)論往往呈現(xiàn)多樣性,這些問題都是結(jié)論開放問題.這類問題的解題思路是:充分利用已知條件或圖形特征,進(jìn)行猜想、類比、聯(lián)想、歸納,透徹分析出給定條件下可能存在的結(jié)論,然后經(jīng)過論證作出取舍.
例2:(2011天津)已知一次函數(shù)的圖象經(jīng)過點(0,1),且滿足y隨x的增大而增大,則該一次函數(shù)的解析式可以為.
分析:先設(shè)出一次函數(shù)的解析式,再根據(jù)一次函數(shù)的圖象經(jīng)過點(0,1)可確定出b的值,再根據(jù)y隨x的增大而增大確定出k的符號即可.
解:設(shè)一次函數(shù)的解析式為:y=kx+b(k≠0),
∵一次函數(shù)的圖象經(jīng)過點(0,1),
∴b=1,
∵y隨x的增大而增大,
∴k>0,
故答案為y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函數(shù)).
評注:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,k>0,y隨x的增大而增大,與y軸交于(0,b),當(dāng)b>0時,(0,b)在y軸的正半軸上.
考點三:條件和結(jié)論都開放的問題:
此類問題沒有明確的條件和結(jié)論,并且符合條件的結(jié)論具有多樣性,因此必須認(rèn)真觀察與思考,將已知的信息集中分析,挖掘問題成立的條件或特定條件下的結(jié)論,多方面、多角度、多層次探索條件和結(jié)論,并進(jìn)行證明或判斷.
例3:(2010玉溪)如圖,在平行四邊形ABCD中,E是AD的中點,請?zhí)砑舆m當(dāng)條件后,構(gòu)造出一對全等的三角形,并說明理由.
分析:先連接BE,再過D作DF∥BE交BC于F,可構(gòu)造全等三角形△ABE和△CDF.利用ABCD是平行四邊形,可得出兩個條件,再結(jié)合DE∥BF,BE∥DF,又可得一個平行四邊形,那么利用其性質(zhì),可得DE=BF,結(jié)合AD=BC,等量減等量差相等,可證AE=CF,利用SAS可證三角形全等.
解:添加的條件是連接BE,過D作DF∥BE交BC于點F,構(gòu)造的全等三角形是△ABE與△CDF.理由:∵平行四邊形ABCD,AE=ED,
∴在△ABE與△CDF中,
AB=CD,
∠EAB=∠FCD,
又∵DE∥BF,DF∥BE,
∴四邊形BFDE是平行四邊形,
∴DE=BF,
又AD=BC,
∴AD﹣DE=BC﹣BF,
即AE=CF,
∴△ABE≌△CDF.(答案不唯一,也可增加其它條件)
評注:本題利用了平行四邊形的性質(zhì)和判定、全等三角形的判定、以及等量減等量差相等等知識.
考點四:編制開放型:
此類問題是指條件、結(jié)論、解題方法都不全或未知,而僅提供一種問題情境,需要我們補充條件,設(shè)計結(jié)論,尋求解法的一類題,它更具有開放性.
例4:(2010年江蘇鹽城中考題)某校九年級兩個班各為玉樹地震災(zāi)區(qū)捐款1800元.已知2班比1班人均捐款多4元,2班的人數(shù)比1班的人數(shù)少10%.請你根據(jù)上述信息,就這兩個班級的“人數(shù)”或“人均捐款”提出一個用分式方程解決的問題,并寫出解題過程.
分析:本題的等量關(guān)系是:兩班捐款數(shù)之和為1800元;2班捐款數(shù)-1班捐款數(shù)=4元;1班人數(shù)=2班人數(shù)×90%,從而提問解答即可.
解:解法一:求兩個班人均捐款各多少元?
設(shè)1班人均捐款x元,則2班人均捐款(x+4)元,根據(jù)題意得
1800x90%=1800x+4
解得x=36經(jīng)檢驗x=36是原方程的根
∴x+4=40
答:1班人均捐36元,2班人均捐40元
解法二:求兩個班人數(shù)各多少人?
設(shè)1班有x人,則根據(jù)題意得
1800x+4=180090x%
解得x=50,經(jīng)檢驗x=50是原方程的根
∴90x%=45
答:1班有50人,2班有45人.
評注:對于此類編制開放型問題,是一類新型的開放型問題,它要求學(xué)生的思維較發(fā)散,寫出符合題意的正確答案即可,難度要求不大,但學(xué)生容易犯想當(dāng)然的錯誤,敘述不夠準(zhǔn)確,如單位的問題、符合實際等要求,在解題中應(yīng)該注意防范.
(二)探究型問題
考點五:動態(tài)探索型:
此類問題結(jié)論明確,而需探究發(fā)現(xiàn)使結(jié)論成立的條件的題目.
例5:(2011臨沂)如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點E與正方形ABCD的頂點A重合,三角扳的一邊交CD于點F.另一邊交CB的延長線于點G.
(1)求證:EF=EG;
(2)如圖2,移動三角板,使頂點E始終在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:
(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點B,其他條件不變,若AB=a、BC=b,求的值.
分析:(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性質(zhì),可利用SAS證得Rt△FED≌Rt△GEB,則問題得證;
(2)首先點E分別作BC、CD的垂線,垂足分別為H、I,然后利用SAS證得Rt△FEI≌Rt△GEH,則問題得證;
(3)首先過點E分別作BC、CD的垂線,垂足分別為M、N,易證得EM∥AB,EN∥AD,則可證得△CEN∽△CAD,△CEM∽△CAB,又由有兩角對應(yīng)相等的三角形相似,證得△GME∽△FNE,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得答案.
解:(1)證明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
證明:如圖,過點E分別作BC、CD的垂線,垂足分別為H、I,
則EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如圖,過點E分別作BC、CD的垂線,垂足分別為M、N,
則∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴,
∴,即,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴,
∴.
評注:此題考查了正方形,矩形的性質(zhì),以及全等三角形與相似三角形的判定與性質(zhì).此題綜合性較強,注意數(shù)形結(jié)合思想的應(yīng)用.
考點六:結(jié)論探究型:
此類問題給定條件但無明確結(jié)論或結(jié)論不惟一,而需探索發(fā)現(xiàn)與之相應(yīng)的結(jié)論的題目.
例6:(2011福建省三明市)在矩形ABCD中,點P在AD上,AB=2,AP=1.將直角尺的頂點放在P處,直角尺的兩邊分別交AB,BC于點E,F(xiàn),連接EF(如圖①).
(1)當(dāng)點E與點B重合時,點F恰好與點C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點P順時針旋轉(zhuǎn),當(dāng)點E和點A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點經(jīng)過的路線長.
分析:(1)由勾股定理求PB,利用互余關(guān)系證明△APB∽△DCP,利用相似比求PC;
(2)tan∠PEF的值不變.過F作FG⊥AD,垂足為G,同(1)的方法證明△APB∽△DCP,得相似比==2,再利用銳角三角函數(shù)的定義求值;
(3)如圖3,畫出起始位置和終點位置時,線段EF的中點O1,O2,連接O1O2,線段O1O2即為線段EF的中點經(jīng)過的路線長,也就是△BPC的中位線.
解:(1)在矩形ABCD中,∠A=∠D=90°,
AP=1,CD=AB=2,則PB=,
∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴即,
∴PC=2;
(2)tan∠PEF的值不變.
理由:過F作FG⊥AD,垂足為G,
則四邊形ABFG是矩形,
∴∠A=∠PFG=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GPF,
∴==2,
∴Rt△EPF中,tan∠PEF==2,
∴tan∠PEF的值不變;
(3)線段EF的中點經(jīng)過的路線長為.
評注:本題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),解直角三角形.關(guān)鍵是利用互余關(guān)系證明相似三角形.
考點七:規(guī)律探究型:
規(guī)律探索問題是指由幾個具體結(jié)論通過類比、猜想、推理等一系列的數(shù)學(xué)思維過程,來探求一般性結(jié)論的問題,解決這類問題的一般思路是通過對所給的具體的結(jié)論進(jìn)行全面、細(xì)致的觀察、分析、比較,從中發(fā)現(xiàn)其變化的規(guī)律,并猜想出一般性的結(jié)論,然后再給出合理的證明或加以運用.
例7:(2011四川成都)設(shè),,,…,
設(shè),則S=_________(用含n的代數(shù)式表示,其中n為正整數(shù)).
分析:由
,求,得出一般規(guī)律.
解:
故答案為:
評注:本題考查了二次根式的化簡求值.關(guān)鍵是由Sn變形,得出一般規(guī)律,尋找抵消規(guī)律.
考點八:存在探索型:
此類問題在一定的條件下,需探究發(fā)現(xiàn)某種數(shù)學(xué)關(guān)系是否存在的題目.
例8:(2011遼寧大連)如圖15,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,對稱軸與拋物線相交于點P、與直線BC相交于點M,連接PB.
(1)求該拋物線的解析式;
(2)拋物線上是否存在一點Q,使△QMB與△PMB的面積相等,若存在,求點Q的坐標(biāo);若不存在,說明理由;
(3)在第一象限、對稱軸右側(cè)的拋物線上是否存在一點R,使△RPM與△RMB的面積相等,若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.
分析:(1)利用待定系數(shù)法求解;(2)若想求Q點坐標(biāo),Q到MB的距離應(yīng)該等于P到MB的距離,所以Q點應(yīng)該在經(jīng)過P點且平行于BM的直線上,或者在這條直線關(guān)于BM對稱的直線上,因此,求出這兩條直線的解析式,其與拋物線的交點即為所求Q點;(3)設(shè)出R點坐標(biāo),分別用其橫坐標(biāo)表示出△RPM與△RMB的面積,利用相等列出方程即可求出R點坐標(biāo).
解:(1)
(2)∵∴P(1,4)
BC:,M(1,2)P(1,4);PB:,
當(dāng)PQ∥BC時:
設(shè)PQ1:
∵P(1,4)在直線PQ上;
∴PQ1:
解得,
∴:(2,3);
將PQ向下平移4個單位得到
解得,
∴:(,);:(,)
(3)存在,設(shè)R的坐標(biāo)為(,)
∵P(1,4),M(1,2)
∴
∵解得,(舍)
∴當(dāng)時,
∴R(,2)
評注:求面積相等問題通常是利用過頂點的平行線完成;在表示面積問題時,對于邊不在特殊線上的通常要分割.
四、真題演練
1.(2011山東濰坊)一個y關(guān)于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當(dāng)時.y隨x的增大而減小,這個函數(shù)解析式為_______________(寫出一個即可)
2.(2011山西)如圖,四邊形ABCD是平行四邊形,添加一個條件:___________
_______________________,可使它成為矩形.
3.(2011泰州)“一根彈簧原長10cm,在彈性限度內(nèi)最多可掛質(zhì)量為5kg的物體,掛上物體后彈簧伸長的長度與所掛物體的質(zhì)量成正比,,則彈簧的總長度y(cm)與所掛物體質(zhì)量x(kg)之間的函數(shù)關(guān)系式為y=10+0.5x(0≤x≤5).”
王剛同學(xué)在閱讀上面材料時發(fā)現(xiàn)部分內(nèi)容被墨跡污染,被污染的部分是確定函數(shù)關(guān)系式的一個條件,你認(rèn)為該條件可以是:(只需寫出1個).
3.(
4.(2011廣西百色)已知矩形ABCD的對角線相交于點O,M、N分別是OD、OC上異于O、C、D的點.
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認(rèn)為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是.
(2)添加條件后,請證明四邊形ABNM是等腰梯形.
第二部分練習(xí)部分
1.(2011賀州)寫出一個正比例函數(shù),使其圖象經(jīng)過第二、四象限:y=﹣x(答案不唯一).
分析:先設(shè)出此正比例函數(shù)的解析式,再根據(jù)正比例函數(shù)的圖象經(jīng)過二、四象限確定出k的符號,再寫出符合條件的正比例函數(shù)即可.
解答:解:
2.(2011湖南張家界)在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,要使△ABC與△DEF相似,則需添加的一個條件是(寫出一種情況即可).
分析:
解答:解:則需添加的一個條件是:BC:EF=2:1.
∵在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,
∴AB:DE=2:1,AC:DF=2:1,
∵BC:EF=2:1.
∴△ABC∽△DEF.
故答案為:.
3.(2010江蘇連云港中考題)若關(guān)于x的方程x2-mx+3=0有實數(shù)根,則m的值可以為___________.(任意給出一個符合條件的值即可)
4.(2011廣東湛江)如圖,點B,C,F(xiàn),E在同直線上,∠1=∠2,BC=EF,∠1_______(填“是”或“不是”)∠2的對頂角,要使△ABC≌△DEF,還需添加一個條件,可以是_______(只需寫出一個)
5.(2011福建省漳州市,19,8分)如圖,∠B=∠D,請在不增加輔助線的情況下,添加一個適當(dāng)?shù)臈l件,使△ABC≌△ADE,并證明.
(1)添加的條件是;
(2)證明:
6.(2010浙江杭州中考題)給出下列命題:
命題1.點(1,1)是直線y=x與雙曲線y=的一個交點;
命題2.點(2,4)是直線y=2x與雙曲線y=的一個交點;
命題3.點(3,9)是直線y=3x與雙曲線y=的一個交點;
…….
(1)請觀察上面命題,猜想出命題(是正整數(shù));
(2)證明你猜想的命題n是正確的.
7.(2011德州)●觀察計算
當(dāng)a=5,b=3時,與的大小關(guān)系是>.
當(dāng)a=4,b=4時,與的大小關(guān)系是=.
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出與的大小關(guān)系是:≥.
●實踐應(yīng)用
要制作面積為1平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.
8.(2011浙江紹興)數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況探索結(jié)論
當(dāng)點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AE=DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE=DB(填“>”,“<”或“=”).理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
★“真題演練”參考答案★
1.【分析】本題的函數(shù)沒有指定是什么具體的函數(shù),可以從一次函數(shù),反比例函數(shù),二次函數(shù)三方面考慮,只要符合條件①②即可.
【答案】符合題意的函數(shù)解析式可以是y=,y=-x+3,y=-x2+5等,(本題答案不唯一)
故答案為:y=,y=-x+3,y=-x2+5等.
2.【分析】:由有一個角是直角的平行四邊形是矩形.想到添加∠ABC=90°;由對角線相等的平行四邊形是矩形.想到添加AC=BD.
【答案】∠ABC=90°(或AC=BD等)
3.解:根據(jù)彈簧的總長度y(cm)與所掛物體質(zhì)量x(kg)之間的函數(shù)關(guān)系式為y=10+0.5x(0≤x≤5)可以得到:
當(dāng)x=1時,彈簧總長為10.5cm,
當(dāng)x=2時,彈簧總長為11cm,…
∴每增加1千克重物彈簧伸長0.5cm,
故答案為:每增加1千克重物彈簧伸長0.5cm.
4.解:(1)選擇①DM=CN;
(2)證明:∵AD=BC,∠ADM=∠BCN,DM=CN
∴△AND≌△BCN,
∴AM=BN,由OD=OC知OM=ON,
∴
∴MN∥CD∥AB,且MN≠AB
∴四邊形ABNM是等腰梯形.
★“練習(xí)部分”參考答案★
1.【分析】設(shè)此正比例函數(shù)的解析式為y=kx(k≠0),
∵此正比例函數(shù)的圖象經(jīng)過二、四象限,
∴k<0,
∴符合條件的正比例函數(shù)解析式可以為:y=﹣x(答案不唯一).
【答案】故答案為:y=﹣x(答案不唯一).
2.【分析】因為兩三角形三邊對應(yīng)成比例,那么這兩個三角形就相似,從題目知道有兩組個對應(yīng)邊的比為2:1,所以第三組也滿足這個比例即可.jaB88.coM
【答案】BC:EF=2:1
3.【分析】由于這個方程有實數(shù)根,因此⊿=≥0,即m2≥12.
【答案】答案不唯一,所填寫的數(shù)值只要滿足m2≥12即可,如4等
4.【分析】根據(jù)對頂角的意義可判斷∠1不是∠2的對頂角.要使△ABC≌△DEF,已知∠1=∠2,BC=EF,則只需補充AC=FD或∠BAC=∠FED都可,答案不唯一.
【答案】解:根據(jù)對頂角的意義可判斷∠1不是∠2的對頂角
故填:不是.
添加AC=FD或∠BAC=∠FED后可分別根據(jù)SAS、AAS判定△ABC≌△DEF,
故答案為:AC=FD,答案不唯一.5.解:(1)添加的條件是:AB=AD,答案不唯一;
(2)證明:在△ABC和△ADE中,
∠B=∠D,
AB=AD,
∠A=∠A,
∴△ABC≌△ADE.
6.(1)命題n;點(n,n2)是直線y=nx與雙曲線y=的一個交點(是正整數(shù)).
(2)把代入y=nx,左邊=n2,右邊=nn=n2,
∵左邊=右邊,∴點(n,n2)在直線上.
同理可證:點(n,n2)在雙曲線上,
∴點(n,n2)是直線y=nx與雙曲線y=的一個交點,命題正確.
7.解:●觀察計算:>,=.
●探究證明:
(1)∵AB=AD+BD=2OC,
∴OC=.
∵AB為⊙O直徑,
∴∠ACB=90°.
∵∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD.
∴△ACD∽△CBD.(4分)
∴.
即CD2=ADBD=ab,
∴CD=.(5分)
(2)當(dāng)a=b時,OC=CD,=;
a≠b時,OC>CD,>.
●結(jié)論歸納:≥.
●實踐應(yīng)用
設(shè)長方形一邊長為x米,則另一邊長為米,設(shè)鏡框周長為l米,則=4.
當(dāng)x=,即x=1(米)時,鏡框周長最小.
此時四邊形為正方形時,周長最小為4米.
8.解:(1)故答案為:=.
(2)故答案為:=.
證明:在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠AFE=60°=∠BAC,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED=60°,
∠ACB=∠ECB+∠FCE=60°,
∵ED=EC,
∴∠EDB=∠ECB,
∴∠BED=∠FCE,
∴△DBE≌△EFC,
∴DB=EF,
∴AE=BD.
(3)答:CD的長是1或3.
相關(guān)閱讀
中考數(shù)學(xué)規(guī)律探索性問題復(fù)習(xí)導(dǎo)學(xué)案
一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,大家在認(rèn)真準(zhǔn)備自己的教案課件了吧。只有制定教案課件工作計劃,可以更好完成工作任務(wù)!你們了解多少教案課件范文呢?為滿足您的需求,小編特地編輯了“中考數(shù)學(xué)規(guī)律探索性問題復(fù)習(xí)導(dǎo)學(xué)案”,供大家參考,希望能幫助到有需要的朋友。
中考二輪專題復(fù)習(xí):第4課時規(guī)律探索性問題
第一部分講解部分
一.專題詮釋
規(guī)律探索型題是根據(jù)已知條件或題干所提供的若干特例,通過觀察、類比、歸納,發(fā)現(xiàn)題目所蘊含的數(shù)字或圖形的本質(zhì)規(guī)律與特征的一類探索性問題。這類問題在素材的選取、文字的表述、題型的設(shè)計等方面都比較新穎新。其目的是考查學(xué)生收集、分析數(shù)據(jù),處理信息的能力。所以規(guī)律探索型問題備受命題專家的青睞,逐漸成為中考數(shù)學(xué)的熱門考題。
二.解題策略和解法精講
規(guī)律探索型問題是指在一定條件下,探索發(fā)現(xiàn)有關(guān)數(shù)學(xué)對象所具有的規(guī)律性或不變性的問題,它往往給出了一組變化了的數(shù)、式子、圖形或條件,要求學(xué)生通過閱讀、觀察、分析、猜想來探索規(guī)律.它體現(xiàn)了“特殊到一般”的數(shù)學(xué)思想方法,考察了學(xué)生的分析、解決問題能力,觀察、聯(lián)想、歸納能力,以及探究能力和創(chuàng)新能力.題型可涉及填空、選擇或解答.。
三.考點精講
考點一:數(shù)與式變化規(guī)律
通常根據(jù)給定一列數(shù)字、代數(shù)式、等式或者不等式,然后寫出其中蘊含的一般規(guī)律,一般解法是先寫出數(shù)式的基本結(jié)構(gòu),然后通過比較各式子中相同的部分和不同的部分,找出各部分的特征,改寫成要求的規(guī)律的形式。
例1.有一組數(shù):,請觀察它們的構(gòu)成規(guī)律,用你發(fā)現(xiàn)的規(guī)律寫出第n(n為正整數(shù))個數(shù)為.
分析:觀察式子發(fā)現(xiàn)分子變化是奇數(shù),分母是數(shù)的平方加1.根據(jù)規(guī)律求解即可.
解答:解:
;
;
;
;
;…;
∴第n(n為正整數(shù))個數(shù)為.
點評:對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.此題的規(guī)律為:分子變化是奇數(shù),分母是數(shù)的平方加1.
例2(2010廣東汕頭)閱讀下列材料:
1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),
3×4=(3×4×5-2×3×4),
由以上三個等式相加,可得1×2+2×3+3×4=×3×4×5=20.
讀完以上材料,請你計算下列各題:
1.1×2+2×3+3×4++10×11(寫出過程);
2.1×2+2×3+3×4++n×(n+1)=______________;
3.1×2×3+2×3×4+3×4×5++7×8×9=______________.
分析:仔細(xì)閱讀提供的材料,可以發(fā)現(xiàn)求連續(xù)兩個正整數(shù)積的和可以轉(zhuǎn)化為裂項相消法進(jìn)行簡化計算,從而得到公式
;照此方法,同樣有公式:
.
解:(1)∵1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),
3×4=(3×4×5-2×3×4),…
10×11=(10×11×12-9×10×11),
∴1×2+2×3+3×4++10×11=×10×11×12=440.
(2).(3)1260.
點評:本題通過材料來探索有規(guī)律的數(shù)列求和公式,并應(yīng)用此公式進(jìn)行相關(guān)計算.本題系初、高中知識銜接的過渡題,對考查學(xué)生的探究學(xué)習(xí)、創(chuàng)新能力及綜合運用知識的能力都有較高的要求.如果學(xué)生不掌握這些數(shù)列求和的公式,直接硬做,既耽誤了考試時間,又容易出錯.而這些數(shù)列的求和公式的探索,需要認(rèn)真閱讀材料,尋找材料中提供的解題方法與技巧,從而較為輕松地解決問題.
例3(2010山東日照,19,8分)我們知道不等式的兩邊加(或減)同一個數(shù)(或式子)不等號的方向不變.不等式組是否也具有類似的性質(zhì)?完成下列填空:
已知用“”或“”填空
5+23+1
-3-1-5-2
1-24+1
一般地,如果那么a+cb+d.(用“”或“”填空)
你能應(yīng)用不等式的性質(zhì)證明上述關(guān)系式嗎?
分析:可以用不等式的基本性質(zhì)和不等式的傳遞性進(jìn)行證明。
解答:>,>,<,>;
證明:∵a>b,∴a+c>b+c.
又∵c>d,∴b+c>b+d,
∴a+c>b+d.
點評:本題是一個考查不等式性質(zhì)的探索規(guī)律題,屬于中等題.要求學(xué)生具有熟練應(yīng)用不等式的基本性質(zhì)和傳遞性進(jìn)行解題的能力.區(qū)分度較好.
考點二:點陣變化規(guī)律
在這類有關(guān)點陣規(guī)律中,我們需要根據(jù)點的個數(shù),確定下一個圖中哪些部分發(fā)生了變化,變化的的規(guī)律是什么,通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點.
例1:如圖,在一個三角點陣中,從上向下數(shù)有無數(shù)多行,其中各行點數(shù)依次為2,4,6,…,2n,…,請你探究出前n行的點數(shù)和所滿足的規(guī)律、若前n行點數(shù)和為930,則n=()
A.29B.30C.31D.32
分析:有圖個可以看出以后每行的點數(shù)增加2,前n行點數(shù)和也就是前n個偶數(shù)的和。
解答:解:設(shè)前n行的點數(shù)和為s.
則s=2+4+6+…+2n==n(n+1).
若s=930,則n(n+1)=930.
∴(n+31)(n﹣30)=0.
∴n=﹣31或30.故選B.
點評:主要考查了學(xué)生通過特例,分析從而歸納總結(jié)出一般結(jié)論的能力.
例2觀察圖給出的四個點陣,s表示每個點陣中的點的個數(shù),按照圖形中的點的個數(shù)變化規(guī)律,猜想第n個點陣中的點的個數(shù)s為()
A.3n﹣2B.3n﹣1C.4n+1D.4n﹣3
考點:規(guī)律型:圖形的變化類。
專題:規(guī)律型。
分析:根據(jù)所給的數(shù)據(jù),不難發(fā)現(xiàn):第一個數(shù)是1,后邊是依次加4,則第n個點陣中的點的個數(shù)是1+4(n﹣1)=4n﹣3.
解答:解:第n個點陣中的點的個數(shù)是1+4(n﹣1)=4n﹣3.故選D.
點評:此題注意根據(jù)所給數(shù)據(jù)發(fā)現(xiàn)規(guī)律,進(jìn)一步整理計算.
考點三:循環(huán)排列規(guī)律
循環(huán)排列規(guī)律是運動著的規(guī)律,我們只要根據(jù)題目的已知部分分析出圖案或數(shù)據(jù)每隔幾個圖暗就會循環(huán)出現(xiàn),看看最后所求的與循環(huán)的第幾個一致即可。
例1:(2007廣東佛山)觀察下列圖形,并判斷照此規(guī)律從左向右第2007個圖形是()
A.B.C.D.
考點:規(guī)律型:圖形的變化類.
專題:規(guī)律型.
分析:本題的關(guān)鍵是要找出4個圖形一循環(huán),然后再求2007被4整除后余數(shù)是3,從而確定是第3個圖形.
解答:解:根據(jù)題意可知笑臉是1,2,3,4即4個一循環(huán).所以2007÷4=501…3.所以是第3個圖形.故選C.
點評:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.
例2:下列一串梅花圖案是按一定規(guī)律排列的,請你仔細(xì)觀察,在前2012個梅花圖案中,共有個“”圖案.
考點:規(guī)律型:圖形的變化類.
專題:規(guī)律型.
分析:注意觀察圖形中循環(huán)的規(guī)律,然后進(jìn)行計算.
解答:解:觀察圖形可以發(fā)現(xiàn):依次是向上、右、下、左4個一循環(huán).所以2013÷4=503余1,則共有503+1=504個.
考點四:圖形生長變化規(guī)律
探索圖形生長的變化規(guī)律的題目常受到中考命題人的青睞,其原因是簡單、直觀、易懂.從一些基本圖形開始,按照生長的規(guī)律,變化出一系列有趣而美麗的圖形.因此也引起了應(yīng)試人的興趣,努力揭示內(nèi)在的奧秘,從而使問題規(guī)律清晰,易于找出它的一般性結(jié)論.
例1(2010四川樂川)勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊含著豐富的科學(xué)知識和人文價值.如圖所示,是一棵由正方形和含30°角的直角三角形按一定規(guī)律長成的勾股樹,樹主干自下而上第一個正方形和第一個直角三角形的面積之和為S1,第二個正方形和第二個直角三角形的面積之和為S2,…,第n個正方形和第n個直角三角形的面積之和為Sn.設(shè)第一個正方形的邊長為1.
請解答下列問題:
(1)S1=;
(2)通過探究,用含n的代數(shù)式表示Sn,則Sn=.
分析:根據(jù)正方形的面積公式求出面積,再根據(jù)直角三角形三條邊的關(guān)系運用勾股定理求出三角形的直角邊,求出S1,然后利用正方形與三角形面積擴大與縮小的規(guī)律推導(dǎo)出公式.
解答:解:(1)∵第一個正方形的邊長為1,
∴正方形的面積為1,
又∵直角三角形一個角為30°,
∴三角形的一條直角邊為,另一條直角邊就是=,
∴三角形的面積為×÷2=,
∴S1=1+;
(2)∵第二個正方形的邊長為,它的面積就是,也就是第一個正方形面積的,
同理,第二個三角形的面積也是第一個三角形的面積的,
∴S2=(1+),依此類推,S3═(1+),即S3═(1+),
Sn=(n為整數(shù)).
點評:本題重點考查了勾股定理的運用.
例2(2011重慶江津區(qū))如圖,四邊形ABCD中,AC=a,BD=b,且AC丄BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2…,如此進(jìn)行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的有()
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是
④四邊形AnBnCnDn的面積是.
A、①②B、②③C、②③④D、①②③④
分析:首先根據(jù)題意,找出變化后的四邊形的邊長與四邊形ABCD中各邊長的長度關(guān)系規(guī)律,然后對以下選項作出分析與判斷:
①根據(jù)矩形的判定與性質(zhì)作出判斷;
②根據(jù)菱形的判定與性質(zhì)作出判斷;
③由四邊形的周長公式:周長=邊長之和,來計算四邊形A5B5C5D5的周長;
④根據(jù)四邊形AnBnCnDn的面積與四邊形ABCD的面積間的數(shù)量關(guān)系來求其面積.
解答:解:①連接A1C1,B1D1.
∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四邊形ABCD是平行四邊形;
∴B1D1=A1C1(平行四邊形的兩條對角線相等);
∴A2D2=C2D2=C2B2=B2A2(中位線定理),
∴四邊形A2B2C2D2是菱形;
故本選項錯誤;
②由①知,四邊形A2B2C2D2是菱形;
∴根據(jù)中位線定理知,四邊形A4B4C4D4是菱形;故本選項正確;
③根據(jù)中位線的性質(zhì)易知,A5B5=A3B3=×A1B1=××AB,B5C5=B3C3=×B1C1=××BC,
∴四邊形A5B5C5D5的周長是2×(a+b)=;故本選項正確;
④∵四邊形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四邊形ABCD=ab;
由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话耄?/p>
四邊形AnBnCnDn的面積是;
故本選項錯誤;
綜上所述,②③④正確;
故選C.
點評:本題主要考查了菱形的判定與性質(zhì)、矩形的判定與性質(zhì)及三角形的中位線定理(三角形的中位線平行于第三邊且等于第三邊的一半).解答此題時,需理清菱形、矩形與平行四邊形的關(guān)系.
例3:(2009錦州)圖中的圓與正方形各邊都相切,設(shè)這個圓的面積為S1;圖2中的四個圓的半徑相等,并依次外切,且與正方形的邊相切,設(shè)這四個圓的面積之和為S2;圖3中的九個圓半徑相等,并依次外切,且與正方形的各邊相切,設(shè)這九個圓的面積之和為S3,…依此規(guī)律,當(dāng)正方形邊長為2時,第n個圖中所有圓的面積之和Sn=.
分析:先從圖中找出每個圖中圓的面積,從中找出規(guī)律,再計算面積和.
解答:根據(jù)圖形發(fā)現(xiàn):第一個圖中,共一個愿,圓的半徑是正方形邊長的一半,為1,S1=πr2=π;第二個圖中,共4個圓,圓的半徑等于正方形邊長的,為×2=;S2=4πr2=4π()2=π,依次類推,則第n個圖中,共有n2個圓,所有圓的面積之和Sn=n2πr2=n2π()2=π,即都與第一個圖中的圓的面積都相等,即為π.
點評:觀察圖形,即可發(fā)現(xiàn)這些圖中,每一個圖中的所有的圓面積和都相等.
考點五:與坐標(biāo)有關(guān)規(guī)律
這類問題把點的坐標(biāo)與數(shù)字規(guī)律有機的聯(lián)系在一起,加大了找規(guī)律的難度,點的坐標(biāo)不僅要考慮數(shù)值的大小,還要考慮不同象限的坐標(biāo)的符號。最后用n把第n個點的坐標(biāo)表示出來。
例1:如圖,已知Al(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),….則點A2012的坐標(biāo)為______.
分析:根據(jù)(A1除外)各個點分別位于四個象限的角平分線上,逐步探索出下標(biāo)和個點坐標(biāo)之間的關(guān)系,總結(jié)出規(guī)律,根據(jù)規(guī)律推理點A2007的坐標(biāo).
解答:由圖形以及敘述可知各個點(除A1點外)分別位于四個象限的角平分線上,
第一象限角平分線的點對應(yīng)的字母的下標(biāo)是2,6,10,14,即4n-2(n是自然數(shù),n是點的橫坐標(biāo)的絕對值);點的坐標(biāo)為(n,n).
同理第二象限內(nèi)點的下標(biāo)是4n-1(n是自然數(shù),n是點的橫坐標(biāo)的絕對值);點的坐標(biāo)為(-n,n).
第三象限是4n(n是自然數(shù),n是點的橫坐標(biāo)的絕對值);點的坐標(biāo)為(-n,-n).
第四象限是1+4n(n是自然數(shù),n是點的橫坐標(biāo)的絕對值);點的坐標(biāo)為(n,-n).
2012=4n則n=503,當(dāng)2007等于4n+1或4n或4n-2時,不存在這樣的n的值.
故點A2007在第二象限的角平分線上,即坐標(biāo)為(-502,502).
故答案填(﹣503,﹣503).
點評:本題是一個探究規(guī)律的問題,正確對圖中的所按所在的象限進(jìn)行分類,找出每類的規(guī)律是解答此題的關(guān)鍵點.
例2:(2009湖北仙桃)如圖所示,直線y=x+1與y軸相交于點A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線y=x+1相交于點A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線y=x+1相交于點A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…,依此類推,則第n個正方形的邊長為_________.
分析:解題的關(guān)鍵是求出第一個正方體的邊長,然后依次計算n=1,n=2…總結(jié)出規(guī)律.
解答:根據(jù)題意不難得出第一個正方體的邊長=1,
那么:n=1時,第1個正方形的邊長為:1=20
n=2時,第2個正方形的邊長為:2=21
n=3時,第3個正方形的邊長為:4=22…
第n個正方形的邊長為:2n-1
點評:解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結(jié)論.
考點六:高中知識銜接型——數(shù)列求和
本題通過材料來探索有規(guī)律的數(shù)列求和公式,并應(yīng)用此公式進(jìn)行相關(guān)計算.本題系初、高中知識銜接的過渡題,對考查學(xué)生的探究學(xué)習(xí)、創(chuàng)新能力及綜合運用知識的能力都有較高的要求
例題:(2010廣東汕頭)閱讀下列材料:
1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),
3×4=(3×4×5-2×3×4),
由以上三個等式相加,可得
1×2+2×3+3×4=×3×4×5=20.
讀完以上材料,請你計算下列各題:
4.1×2+2×3+3×4++10×11(寫出過程);
5.1×2+2×3+3×4++n×(n+1)=______________;
6.1×2×3+2×3×4+3×4×5++7×8×9=______________.
分析:仔細(xì)閱讀提供的材料,可以發(fā)現(xiàn)求連續(xù)兩個正整數(shù)積的和可以轉(zhuǎn)化為裂項相消法進(jìn)行簡化計算,從而得到公式
;照此方法,同樣有公式:
.
解:(1)∵1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),
3×4=(3×4×5-2×3×4),
…
10×11=(10×11×12-9×10×11),
∴1×2+2×3+3×4++10×11=×10×11×12=440.
(2).
(3)1260.
點評:.如果學(xué)生不掌握這些數(shù)列求和的公式,直接硬做,既耽誤了考試時間,又容易出錯.而這些數(shù)列的求和公式的探索,需要認(rèn)真閱讀材料,尋找材料中提供的解題方法與技巧,從而較為輕松地解決問題.
四.真題演練
題目1.(2010福建三明大田縣)觀察分析下列數(shù)據(jù),尋找規(guī)律:0,,,3,2,,3,…那么第10個數(shù)據(jù)應(yīng)是.
題目2、(2011山東日照分)觀察圖中正方形四個頂點所標(biāo)的數(shù)字規(guī)律,可知數(shù)2011應(yīng)標(biāo)在()
A.第502個正方形的左下角B.第502個正方形的右下角
C.第503個正方形的左上角D.第503個正方形的右下角
題目3:(2011德州)圖1是一個邊長為1的等邊三角形和一個菱形的組合圖形,菱形邊長為等邊三角形邊長的一半,以此為基本單位,可以拼成一個形狀相同但尺寸更大的圖形(如圖2),依此規(guī)律繼續(xù)拼下去(如圖3),…,則第n個圖形的周長是()
A、2nB、4nC、2n+1D、2n+2
第二部分練習(xí)部分
練習(xí)
1、如圖是一組有規(guī)律的圖案,第1個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,…,第n(n是正整數(shù))個圖案中由3n+1個基礎(chǔ)圖形組成.
2、(2011山東日照)觀察圖中正方形四個頂點所標(biāo)的數(shù)字規(guī)律,可知數(shù)2011應(yīng)標(biāo)在()
A.第502個正方形的左下角B.第502個正方形的右下角
C.第503個正方形的左上角D.第503個正方形的右下角
3.如圖,已知△ABC的周長為1,連接△ABC三邊的中點構(gòu)成第二個三角形,再連接第二個三角形三邊的中點構(gòu)成第三個三角形,…,依此類推,則第10個三角形的周長為()
A.B.C.D.
4、(2006無錫)探索規(guī)律:根據(jù)下圖中箭頭指向的規(guī)律,從2004到2005再到2006,箭頭的方向是()
A.B.C.D.
5、(2010甘肅定西)下列是三種化合物的結(jié)構(gòu)式及分子式,請按其規(guī)律,寫出后一種化合物的分子式為.
6、(2006廣東梅州)如圖,已知△ABC的周長為m,分別連接AB,BC,CA的中點A1,B1,C1得△A1B1C1,再連接A1B1,B1C1,C1A1的中點A2,B2,C2得△A2B2C2,再連接A2B2,B2C2,C2A2的中點A3,B3,C3得△A3B3C3,…,這樣延續(xù)下去,最后得△AnBnCn.設(shè)△A1B1C1的周長為l1,△A2B2C2的周長為l2,△A3B3C3的周長為l3,…,△AnBnCn的周長為ln,則ln=.
7、用同樣規(guī)格的黑白兩種顏色的正方形瓷磚按下圖方式鋪地板,則第(3)個圖形中有黑色瓷磚塊,第n個圖形中需要黑色瓷磚塊(用含n的代數(shù)式表示).
8.已知一列數(shù):1,﹣2,3,﹣4,5,﹣6,7,…將這列數(shù)排成下列形式:中間用虛線圍的一列數(shù),從上至下依次為1,5,13,25…,按照上述規(guī)律排上去,那么虛線框中的第7個數(shù)是.
9.(2010恩施州)如圖,有一個形如六邊形的點陣,它的中心是一個點,作為第一層,第二層每邊有兩個點,第三層每邊有三個點,依次類推,如果n層六邊形點陣的總點數(shù)為331,則n等于.
10.(2010山東東營)觀察下表,可以發(fā)現(xiàn):第_________個圖形中的“△”的個數(shù)是“○”的個數(shù)的5倍.
11.(2010安徽,9,4分)下面兩個多位數(shù)1248624…、6248624…,都是按照如下方法得到的:將第一位數(shù)字乘以2,若積為一位數(shù),將其寫在第2位上,若積為兩位數(shù),則將其個位數(shù)字寫在第2位.對第2位數(shù)字再進(jìn)行如上操作得到第3位數(shù)字…,后面的每一位數(shù)字都是由前一位數(shù)字進(jìn)行如上操作得到的.當(dāng)?shù)?位數(shù)字是3時,仍按如上操作得到一個多位數(shù),則這個多位數(shù)前100位的所有數(shù)字之和是()
A.495B.497C.501D.503
12.(2010江漢區(qū))如圖,等腰Rt△ABC的直角邊長為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點C1,C1B1⊥AB于點B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點C2,C2B2⊥AB于點B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3=.
13.(2011廣西百色)相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個一個地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時,h(1)=1;
n=2時,小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成.即h(2)=3;
n=3時,小盤→3柱,中盤→2柱,小柱從3柱→2柱.
第二個圖案基礎(chǔ)圖形的個數(shù):3×2+1=7;
第三個圖案基礎(chǔ)圖形的個數(shù):3×3+1=10;…
第n個圖案基礎(chǔ)圖形的個數(shù)就應(yīng)該為:3n+1.
2.分析:觀察發(fā)現(xiàn):正方形的左下角是4的倍數(shù),左上角是4的倍數(shù)余3,右下角是4的倍數(shù)余1,右上角是4的倍數(shù)余2.
解答:解:通過觀察發(fā)現(xiàn):正方形的左下角是4的倍數(shù),左上角是4的倍數(shù)余3,右下角是4的倍數(shù)余1,右上角是4的倍數(shù)余2
∵2011÷4=502…3,
∴數(shù)2011應(yīng)標(biāo)在第503個正方形的左上角.
故選C.
3.分析:根據(jù)三角形的中位線定理建立周長之間的關(guān)系,按規(guī)律求解.
解答:解:根據(jù)三角形中位線定理可得第二個三角形的各邊長都等于最大三角形各邊的一半,那么第二個三角形的周長=△ABC的周長×=1×=,第三個三角形的周長為=△ABC的周長××=()2,第10個三角形的周長=()9,故選C.
4.分析:本題根據(jù)觀察圖形可知箭頭的方向每4次重復(fù)一遍,2004=4=501.因此2004所在的位置即為圖中的4所在的位置.
解答:解:依題意得:圖中周期為4,2004÷4=501為整數(shù).因此從2004到2005再到2006的箭頭方向為:故選A.
5.分析:由圖片可知,第2個化合物的結(jié)構(gòu)式比第一個多1個C和2個H,第三個化合物的結(jié)構(gòu)式比第二個也多出1個C和2個H,那么下一個化合物就應(yīng)該比第三個同樣多出1個C和2個H,即為C4H10.
解答:解:第四種化合物的分子式為C4H10.
點評:本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
6.分析:原來三角形的周長為m;第一個三角形的周長為m;第二個三角形的周長為()2m;第三個三角形的周長為()3m;那么第n個三角形的周長為()nm.
解答:解:已知△ABC的周長為m,每次連接作圖后,周長為原來的,故ln為原來△ABC的周長()n,即()nm.
點評:本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
7.解答:解:本題考查的是規(guī)律探究問題.從圖形觀察每增加一個圖形,黑色正方形瓷磚就增加3塊,第一個黑色瓷磚有3塊,則第3個圖形黑色瓷磚有10塊,第N個圖形瓷磚有4+3(n﹣1)=3n+1(塊).
點評:本題考查學(xué)生能夠在實際情景中有效的使用代數(shù)模型.
8.分析:分析可得,第n行第一個數(shù)的絕對值為,且奇數(shù)為正,偶數(shù)為負(fù);中間用虛線圍的一列數(shù),從上至下依次為1,5,13,25…,為奇數(shù),且每n個數(shù)比前一個大4(n﹣1);故第7個數(shù)是85.
解答:解:∵中間用虛線圍的一列數(shù),從上至下依次為1,5,13,25…,為奇數(shù),且每n個數(shù)比前一個大4(n﹣1),
∴第7個數(shù)是85.
點評:本題是一道找規(guī)律的題目,要求學(xué)生的通過觀察,分析.歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用規(guī)律解決問題.本題的規(guī)律為第n行第一個數(shù)的絕對值為,且奇數(shù)為正,偶數(shù)為負(fù);中間用虛線圍的一列數(shù),從上至下依次為1,5,13,25…,為奇數(shù),且每n個數(shù)比前一個大4(n﹣1).
9.分析:分析可知規(guī)律,每增加一層就增加六個點.
解答:解:第一層上的點數(shù)為1;
第二層上的點數(shù)為6=1×6;
第三層上的點數(shù)為6+6=2×6;
第四層上的點數(shù)為6+6+6=3×6;
…;
第n層上的點數(shù)為(n﹣1)×6.
所以n層六邊形點陣的總點數(shù)為
1+1×6+2×6+3×6+…+(n﹣1)×6
=1+6=1+6÷2
=1+6×
=1+3n(n﹣1)=331.
n(n﹣1)=110;
(n﹣11)(n+10)=0
n=11或﹣10.
故n=11.
點評:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.
10.分析:本題將規(guī)律探索題與方程思想結(jié)合在一起,是一道能力題,有的學(xué)生可能無法探尋“△”與“○”出現(xiàn)的規(guī)律,或者不知道通過列方程解答問題.
解答:解:觀察圖形可發(fā)現(xiàn)第1、2、3、…、n個圖形:“△”的個數(shù)規(guī)律為1、4、9、…、n2;“○”的個數(shù)規(guī)律是4、8、12、…、4n.由題意可得,
解之得,(不合題意,舍去).
點評:此題考查了平面圖形,主要培養(yǎng)學(xué)生的觀察能力和空間想象能力.
11.分析:多位數(shù)1248624…是怎么來的?當(dāng)?shù)?個數(shù)字是1時,將第1位數(shù)字乘以2得2,將2寫在第2位上,再將第2位數(shù)字2乘以2得4,將其寫在第3位上,將第3位數(shù)字4乘以2的8,將8寫在第4位上,將第4位數(shù)字8乘以2得16,將16的個位數(shù)字6寫在第5位上,將第5位數(shù)字6乘以2得12,將12的個位數(shù)字2寫在第6位上,再將第6位數(shù)字2乘以2得4,將其寫在第7位上,以此類推.根據(jù)此方法可得到第一位是3的多位數(shù)后再求和.
解答:解:當(dāng)?shù)?位數(shù)字是3時,按如上操作得到一個多位數(shù)362486248624862486….
仔細(xì)觀察362486248624862486…中的規(guī)律,這個多位數(shù)前100位中前兩個為36,接著出現(xiàn)248624862486…,所以362486248624862486…的前100位是36248624862486…24861486148624(因為98÷4=24余2,所以,這個多位數(shù)開頭兩個36中間有24個2486,最后兩個24),因此,這個多位數(shù)前100位的所有數(shù)字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.
故選A.
點評:本題,一個“數(shù)字游戲”而已,主要考查考生的閱讀能力和觀察能力,其解題的關(guān)鍵是:讀懂題目,理解題意.這是安徽省2010年中考數(shù)學(xué)第9題,在本卷中的10道選擇題中屬于難度偏大.而產(chǎn)生“難”的原因就是沒有“讀懂”題目.
12.分析:每一個陰影部分的面積都等于扇形的面積減去等腰直角三角形的面積.
此題的關(guān)鍵是求得AB2、AB3的長.根據(jù)等腰直角三角形的性質(zhì)即可求解.
解答:解:根據(jù)題意,得
AC1=AB=4.
所以AC2=AB1=2.
所以AC3=AB2=2.
所以AB3=.
所以陰影部分的面積S3==.
點評:此題綜合運用了等腰直角三角形的性質(zhì)和扇形的面積公式
13.分析:根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.
解答:解:根據(jù)題意,n=1時,h(1)=1,
n=2時,小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成,即h(2)=3=22﹣1;
n=3時,小盤→3柱,中盤→2柱,小柱從3柱→2柱,,
h(3)=h(2)×h(2)+1=3×2+1=7=23﹣1,
h(4)=h(3)×h(3)+1=7×2+1=15=24﹣1,
…
以此類推,h(n)=h(n﹣1)×h(n﹣1)+1=2n﹣1,
∴h(6)=26﹣1=64﹣1=63.
故選C.
點評:本題考查了圖形變化的規(guī)律問題,根據(jù)題目信息,得出移動次數(shù)分成兩段計數(shù),利用盤子少一個時的移動次數(shù)移動到2柱,把最大的盤子移動到3柱,然后再用同樣的次數(shù)從2柱移動到3柱,從而完成移動過程是解題的關(guān)鍵,本題對閱讀并理解題目信息的能力要求比較高.
中考數(shù)學(xué)開放性問題專題復(fù)習(xí)
一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,到寫教案課件的時候了。我們制定教案課件工作計劃,才能更好地安排接下來的工作!你們清楚教案課件的范文有哪些呢?下面是小編精心為您整理的“中考數(shù)學(xué)開放性問題專題復(fù)習(xí)”,僅供參考,歡迎大家閱讀。
初三第二輪復(fù)習(xí)專題一:開放性問題
【知識梳理】
1、條件開放型:指在結(jié)論不變的前提下,去探索添加必要的條件(不唯一)的題目.
2、結(jié)論開放型:即給出問題的條件,讓解題者根據(jù)條件探索相應(yīng)的結(jié)論,并且符合條件的結(jié)論往往呈現(xiàn)多樣性,或者相應(yīng)結(jié)論的“存在性”需要解題者進(jìn)行推斷,甚至要求解題者探求條件在變化中的結(jié)論.
3、策略開放型:一般指解題方法不唯一或解題途徑不明確的問題.
【課前預(yù)習(xí)】
1、如圖,已知AC⊥BD于點P,AP=CP,請增加一個條件,使得△ABP≌△CDP
(不能添加輔助線),你增加的條件是.
2、反比例函數(shù)與一次函數(shù)的圖象如圖所示,請寫出一條正確的結(jié)論:.
3、如果.
【例題精講】
例1、如圖,△ABC中,點O在邊AB上,過點O作BC的平行線交∠ABC的平分線于點D,過點B作BE⊥BD,交直線OD于點E。
(1)求證:OE=OD;
(2)當(dāng)點O在什么位置時,四邊形BDAE是矩形?說明理由;
(3)在滿足(2)的條件下,還需△ABC滿足什么條件時,四邊形
BDAE是正方形?寫出你確定的條件,并畫出圖形,不必證明。
例2、如圖,BC為⊙○的直徑,AD⊥BC,垂足為D,弧AD=弧AF,BF與AD交與點E,試判斷AE與BE的大小關(guān)系,并加以證明
例3、如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE.若存在,試求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
【鞏固練習(xí)】
1、寫出絕對值小于2的一個負(fù)數(shù):.
2、兩個不相等的無理數(shù),它們的乘積為有理數(shù),這兩個數(shù)可以是.
3.已知點P(x,y)位于第二象限,并且y≤x+4,x、y為整數(shù),符合上述條件的點P共有▲個.
4、如圖,正方形ABCD中,點E在邊AB上,點G在邊AD上,且∠ECG=45°,點F在邊AD的延長線上,且DF=BE.則下列結(jié)論:①∠ECB是銳角,;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的結(jié)論有(寫出全部正確結(jié)論).
5、如圖AB=AC,AD⊥BC于點D,AD=AE,AB平分∠DAE交DE于點F,請寫出圖中三對全等三角形,并選取其中一對加以證明.
【課后作業(yè)】班級姓名
一、必做題:
1、寫出一個開口向下的二次函數(shù)的表達(dá)式________.
2、在同一坐標(biāo)平面內(nèi),圖象不可能由函數(shù)y=3x2+1的圖象通過平移變換、軸對稱變換得到的二次函數(shù)的一個解析式是________.
3、拋物線y=-x2+bx+c的部分圖象如圖所示,請寫出與其關(guān)系式、圖象相關(guān)的2個正確結(jié)論:________,________.(對稱軸方程,圖象與x正半軸、y軸交點坐標(biāo)例外)
4、如圖所示,點B、F、C、E在同一條直線上,點A、D在直線BE的兩側(cè),AB∥DE,BF=CE,請?zhí)砑右粋€適當(dāng)?shù)臈l件______,使得AC=DF.
5、已知⊙O1、⊙O2的半徑分別是r1=2、r2=4,若兩圓相交,則圓心距O1O2可能取的值是.
6、如圖,在△ABC中,D是AB邊上一點,連接CD.要使△ADC與△ABC相似,應(yīng)添加的條件是.
7、如圖,已知AC=FE,BC=DE,點A、D、B、F在一條直線上,要使△ABC≌△FDE,還需添加一個條件,這個條件可以是________.
8、如圖所示,在Rt△ABC中,∠ACB=90°,∠BAC的平分線AD交BC于點D,DE∥AC,DE交AB于點E,M為BE的中點,連接DM.在不添加任何輔助線和字母的情況下,圖中的等腰三角形是________.(寫出一個即可)
9、如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
10、如圖,在和中,、交于點M.
(1)求證:≌;
(2)作交于點N,四邊形BNCM是什么四邊形?請證明你的結(jié)論.
二、選做題:
11、如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是.
12、如圖,正方形ABCD的邊長為2a,H是BC為直徑的半圓上的一點,過點H作一條直線與半圓相切交AB、CD分別于點E、F。
(1)當(dāng)點H在半圓上移動時,切線EF在AB、CD上的兩交點也分別在AB、CD上移動(E與A不重合,F(xiàn)與D不重合),試問四邊形AEFD的周長是否變化?證明你的結(jié)論。
(2)若∠BEF=,求四邊形BEFC的周長。
(3)若a=6,△BOE的面積為,△COF的面積為面積為,正方形ABCD的面積為s,若+=s,求BE、CF的長。
13、如圖1,已知拋物線的頂點為,且經(jīng)過原點,與軸的另一個交點為.
(1)求拋物線的解析式;
(2)若點在拋物線的對稱軸上,點在拋物線上,且以四點為頂點的四邊形為平行四邊形,求點的坐標(biāo);
(3)連接,如圖2,在軸下方的拋物線上是否存在點,使得與相似?若存在,求出點的坐標(biāo);若不存在,說明理由.
中考數(shù)學(xué)規(guī)律探索性問題復(fù)習(xí)
每個老師需要在上課前弄好自己的教案課件,是認(rèn)真規(guī)劃好自己教案課件的時候了。必須要寫好了教案課件計劃,未來的工作就會做得更好!究竟有沒有好的適合教案課件的范文?以下是小編收集整理的“中考數(shù)學(xué)規(guī)律探索性問題復(fù)習(xí)”,供您參考,希望能夠幫助到大家。
中考數(shù)學(xué)專題復(fù)習(xí)(一):規(guī)律探索性問題
一、課標(biāo)要求
1.利用特殊值(特殊點、特殊數(shù)量、特殊線段、特殊位置等)進(jìn)行歸納、概括,從特殊到一般,從而得出規(guī)律.
2.反演推理法(反證法),即假設(shè)結(jié)論成立,根據(jù)假設(shè)進(jìn)行推理,看是推導(dǎo)出矛盾還是能與已知條件一致.
二、課前熱身
1.觀察下列圖形,則第個圖形中三角形的個數(shù)是()
A.B.C.D.
2.把一張紙片剪成4塊,再從所得的紙片中任取若干塊,每塊又剪成4塊,像這樣依次地進(jìn)行下去,到剪完某一次為止。那么2007,2008,2009,2010這四個數(shù)中______________可能是剪出的紙片數(shù)。
3.有一列數(shù)…,那么第7個數(shù)是.
4.如圖,在△ABC中,∠A=.∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2;……;∠A2008BC與∠A2008CD的平分線相交于點A2009,得∠A2009.∠A2009=.
三.典型例題
例1.觀察算式:
;;;…………
則第(是正整數(shù))個等式為________.
例2.(2009年益陽市)如圖是一組有規(guī)律的圖案,第1個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第(n是正整數(shù))個圖案中由個基礎(chǔ)圖形組成.
-
例3.如圖,圖①是一塊邊長為1,周長記為P1的正三角形紙板,沿圖①的底邊剪去一塊邊長為的正三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪掉正三角形紙板邊長的)后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則Pn-Pn-1=.
四、練習(xí)
1.觀察下面的一列單項式:,,,,…根據(jù)你發(fā)現(xiàn)的規(guī)律,第7個單項式為;第個單項式為
2.觀察下列一組數(shù):,,,,……,它們是按一定規(guī)律排列的.那么這一組數(shù)的第k個數(shù)是.
4已知,記,,…,,則通過計算推測出的表達(dá)式=_______.(用含n的代數(shù)式表示)
五、課外作業(yè)
1.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第個圖形需要黑色棋子的個數(shù)是.
2.如圖,用黑白兩種顏色的正方形紙片,按黑色紙片數(shù)逐漸加1的規(guī)律拼成一列圖案:
⑴第4個圖案中有白色紙片___________張;⑵第n個圖案臺有白色紙片___________張.
3.如圖7-①,圖7-②,圖7-③,圖7-④,…,是用圍棋棋子按照某種規(guī)律擺成的一行“廣”字,按照這種規(guī)律,第5個“廣”字中的棋子個數(shù)是________,第個“廣”字中的棋子個數(shù)是________
4.一個叫巴爾末的中學(xué)教師成功地從光譜數(shù)據(jù),,,,…中得到巴爾末公式,從而打開了光譜奧秘的大門,請你按照這種規(guī)律,寫出第n(n≥1)個數(shù)據(jù)是___________.
5.(2009年撫順市)觀察下列圖形(每幅圖中最小的三角形都是全等的),請寫出第個圖中最小的三角形的個數(shù)有個.
6.(2009年梅州市)如圖,每一幅圖中有若干個大小不同的菱形,第1幅圖中有1個,第2幅圖中有3個,第3幅圖中有5個,則第4幅圖中有個,第n幅圖中共有個.
7.觀察圖中一列有規(guī)律的數(shù),然后在“?”處填上一個合適的數(shù),這個數(shù)是______________.
8.如圖,A1A2B是直角三角形,且A1A2=A2B=a,A2A3⊥A1B,垂足為A3,A3A4⊥A2B,垂足為A4,A4A5⊥A3B,垂足為A5,……,An+1An+2⊥AnB,垂足為An+2,則線段An+1An+2(n為自然數(shù))的長為().
(A)(B)
(C)(D)
9.如圖所示,直線y=x+1與y軸相交于點A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線y=x+1相交于點A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線y=x+1相交于點A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…依此類推,則第個正方形的邊長為________________.
10.學(xué)校植物園沿路護(hù)欄紋飾部分設(shè)計成若干個全等菱形圖案,每增加一個菱形圖案,紋飾長度就增加dcm,如圖所示.已知每個菱形圖案的邊長cm,其一個內(nèi)角為60°.
(1)若d=26,則該紋飾要231個菱形圖案,求紋飾的長度L;
(2)當(dāng)d=20時,若保持(1)中紋飾長度不變,則需要多少個這樣的菱形圖案?
11.如圖所示,已知:點,,
在內(nèi)依次作等邊三角形,使一邊在軸上,
另一個頂點在邊上,作出的等邊三角形分別是
第1個,第2個,第3個
,…,則第個等邊三角形的邊長等于.
12.如圖,AD是⊙O的直徑.
(1)如圖①,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是,∠B2的度數(shù)是;
(2)如圖②,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,分別求∠B1,∠B2,
∠B3的度數(shù);
(3)如圖③,垂直于AD的n條弦B1C1,B2C2,B3C3,…,BnCn把圓周2n等分,請你用含n的代數(shù)式表示∠Bn的度數(shù)(只需直接寫出答案).
13.如圖所示,在△ABC中,D、E分別是AB、AC上的點,DE∥BC,如圖①,然后將△ADE繞A點順時針旋轉(zhuǎn)一定角度,得到圖②,然后將BD、CE分別延長至M、N,使DM=BD,EN=CE,得到圖③,請解答下列問題:
(1)若AB=AC,請?zhí)骄肯铝袛?shù)量關(guān)系:
①在圖②中,BD與CE的數(shù)量關(guān)系是________________;
②在圖③中,猜想AM與AN的數(shù)量關(guān)系、∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想;
(2)若AB=kAC(k>1),按上述操作方法,得到圖④,請繼續(xù)探究:AM與AN的數(shù)量關(guān)系、∠MAN與∠BAC的數(shù)量關(guān)系,直接寫出你的猜想,不必證明.