高中不等式教案
發(fā)表時間:2020-04-09七年級下冊數(shù)學知識點:不等式與不等式組。
七年級下冊數(shù)學知識點:不等式與不等式組
一、目標與要求
1.感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2.經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結合思想;
3.通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。
二、知識框架
三、重點
理解并掌握不等式的性質;
正確運用不等式的性質;
建立方程解決實際問題,會解ax+b=cx+d類型的一元一次方程;
尋找實際問題中的不等關系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
四、難點
一元一次不等式組解集的理解;(WwW.Zy185.COm 范文資源網(wǎng))
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識點、概念總結
1.不等式:用符號,,≤,≥表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)≥,≤連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)G(x)與不等式G(x)F(x)同解。
(2)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,那么不等式F(x)G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果xy,那么yy;(對稱性)
(2)如果xy,yz;那么xz;(傳遞性)
(3)如果xy,而z為任意實數(shù)或整式,那么x+zy+z;(加法則)
(4)如果xy,z0,那么xzyz;如果xy,z0,那么xz
(5)如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要條件)
(7)如果xy0,mn0,那么xmyn
(8)如果xy0,那么x的n次冪y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質2、3)
(2)去括號
(3)移項(運用不等式性質1)
(4)合并同類項
(5)將未知數(shù)的系數(shù)化為1(運用不等式性質2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成
了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
精選閱讀
不等式與不等式組導學案
老師會對課本中的主要教學內容整理到教案課件中,大家靜下心來寫教案課件了。只有規(guī)劃好了教案課件新的工作計劃,才能在以后有序的工作!有沒有好的范文是適合教案課件?下面是由小編為大家整理的“不等式與不等式組導學案”,歡迎大家閱讀,希望對大家有所幫助。
第六課時利用不等關系分析比賽
課型:新授
課時:1課時
主備人:初一數(shù)學組
學習目標:
1、了解部分體育比賽項目判定勝負的規(guī)則,復習并鞏固不等式的相關知識;
2、以體育比賽問題為載體,探究實際問題中的不等關系,進一步體會利用不等式解決問題的基本過程;
3、在利用不等關系分析比賽結果的過程中,提高分析問題、解決問題的能力,發(fā)展邏輯思維能力和有條理表達思維過程的能力;
4、感受數(shù)學的應用價值,培養(yǎng)用數(shù)學眼光看世界的意識,引導學生關注生活、關注社會。
學習重點:利用不等關系分析預測比賽結果
學習難點:在開放的問題情境中促使學生的思維從無序走向有序;在分析、解決問題的過程中發(fā)展學生用數(shù)學眼光看世界的主動性
學習過程
一.自主學習
1、什么叫一元一次不等式(組)?
2、怎樣求解一元一次不等式(組)?列一元一次不等式(組)解應用題的步驟是什么?
二、合作探究:
某射擊運動員在一次比賽中前6次射擊共中52環(huán),如果他要打破89環(huán)(10次射擊)的紀錄,第7次射擊不能少于多少環(huán)?
(1)如果第7次射擊成績?yōu)?環(huán),最后三次射擊中要有幾次命中10環(huán)才能破紀錄?
(2)如果第7次射擊成績?yōu)?0壞,最后三次射擊中是否必須至少有一次命中10環(huán)才能破紀錄?
三、鞏固運用:
有A,B,C,D,E五個隊分同一小組進行單循環(huán)賽足球比賽,爭奪出線權.比賽規(guī)則規(guī)定:勝一場得3分,平一場得1分,負一場得0分,小組中名次在前的兩個隊出線,小組賽結束后,A隊的積分為9分.你認為A隊能出線嗎?請說明理由。
(學生充分發(fā)表意見,在辯論中發(fā)現(xiàn)此問題不能一概而論,需要考慮其他隊的情況,于是形成問題假設:
(1)如果小組中有一個隊的戰(zhàn)績?yōu)槿珓伲珹隊能否出線?
(2)如果小組中有一個隊的積分為10分,A隊能否出線?
(3)如果小組中積分最高的隊積9分,A隊能否出線?)
四、反思總結:
五、達標檢測
1、足球比賽的計分規(guī)則為:勝一場得3分,平一場得1分,負一場得0分一個隊打14場比賽負5場共得19分.那么這個隊勝了幾場?
2、某次籃球聯(lián)賽中,火炬隊與月亮隊要爭出線權.火炬隊目前的戰(zhàn)績是17勝13負(其中有一場以4分之差負于月亮隊),后面還要比賽6場(其中包括再與月亮隊比賽1場);月亮隊目前的戰(zhàn)績是15勝16負,后面還要比賽5場.為確保出線,火炬隊在后面的比賽中至少要勝多少場?
(在分析解決前述問題的過程中,自然會引發(fā)一些爭論,提出一些問題假設,如:
(1)如果火炬隊在后面對月亮隊1場比賽中至少勝月亮隊5分,那么它在后面的其他比賽中至少勝幾場就一定能出線?
(2)如果月亮隊在后面的比賽中3勝(包括勝火炬隊1場)2負,那么火炬隊在后面的比賽中至少要勝幾場才能確保出線?
(3)如果火炬隊在后面的比賽中2勝4負,未能出線,那么月亮隊在后面的比賽中戰(zhàn)績如何幾
(4)如果火炬隊在后面的比賽中勝3場,那么什么情況下它一定出線?)
第七課時復習不等式與不等式組
課型:復習課
課時:2課時
主備人:初一數(shù)學組
一、知識點:
1、不等式和一元一次不等式的含義。
①如:-3﹥-5,b+1≤3,2x﹤y,-1﹤x≤3,x≠1等,含有的式子可稱作不等式;②如:y-3﹥-5,b+1≤2b-3,2x+1﹤4等,是不等式并只含有未知數(shù),同時未知數(shù)的次數(shù)是,則可稱為一元一次不等式。
2、不等式的解、解集、解不等式的概念。
舉例:判斷下列哪些是不等式x+4﹥7的解?哪些不是不等式的解?
-4,-3.5,1,2.3,3,0,17,4,7,11。
分析:由3+3=6可知:(1)當x﹥3時,不等式x+4﹥7成立;(2)當x﹤3或x=3時,不等式x+3﹥6不成立。也就是說,任何一個大于3的數(shù)都是不等式x+4﹥7的解(如題目中的x=7就是不等式x+4﹥7其中的1個解)。這樣的解有無數(shù)個,因此x﹥3表示了能使不等式成立的未知數(shù)“x”的取值范圍,我們把它叫做不等式x+4﹥7的解的集合,簡稱解集。
而求不等式的解或解集的過程叫做。
3、不等式的三個性質:(思考:與等式基本性質對比有何異同?)
不等式性質1:
不等式性質2:
不等式性質3:
4、不等式解集的數(shù)軸表示。舉例:(注意數(shù)軸看作由無數(shù)個點組成,每一個點都與一個數(shù)對應,注意空心點和實心點的用法。)
5、解一元一次不等式的一般步驟:(與解一元一次方程類似)
(1);(2);(3);(4);(5)(注意不等號開口的方向)。
6、由兩個一元一次不等式組成的不等式組的解集的四種情形:
不等式組(其中:﹤)
在數(shù)軸上表示不等式組的解集口訣
﹥
同大取大
﹤
同小取小
﹤﹤
大小小大中間找
無解大大小小是無解
解題的關鍵:不等式組中的兩個不等式的解集有無公共部分,且公共部分是什么。
7、列一元一次不等式(組)解應用題的步驟
(步驟與列一元一次方程解應用題類似,關鍵是設元和找出題目中各數(shù)量存在的不等關系。)
二、基礎訓練:
1.用恰當?shù)牟坏忍柋硎鞠铝嘘P系:
①x的3倍與8的和比y的2倍?。?br>
②老師的年齡a不小于你的年齡b?。?br>
2.已知ab用””或””連接下列各式;
(1)a-3----b-3,(2)2a-----2b,(3)-a3------b3(4)4a-3----4b-3(5)a-b---0
3.的與12的差不小于6,用不等式表示為__________________.
4.當_____時,代數(shù)式的值至少為1.
5.不等式6-12x0的解集是_________.
6.當x________時,代數(shù)式的值是非正數(shù).
7.不等式組的解為.
8.若方程的解是正數(shù),則的取值范圍是_________
9.若點P(1-m,m)在第二象限,則(m-1)x1-m的解集為_______________.
10.從小明家到學校的路程是2400米,如果小明早上7點離家,要在7點30分到40分之間到達學校,設步行速度為米/分,則可列不等式組為__________________,小明步行的速度范圍是_________.
三、典型例題:
【例1】下列不等式,那些總成立?那些總不成立?那些有時成立而有時不成立?
(1)-9.4﹤2,(2)3﹥0,(3)b+5﹤0,(4)︱x︱﹥0,(5)﹤0,(6)5+x﹥5-x。
分析:主要考慮未知數(shù)的取值,特別是正數(shù)、負數(shù)和零。
【例2】若﹤﹤0,則下列式子:①+1﹤+2,②﹥1,③+﹤,④﹤中,正確的有()。A、1個B、2個C、3個D、4個
分析由﹤﹤0得,、同為負數(shù)并且︱︱﹥︱︱。如取=-2,=-1代入式子中。
【例3】不等式2-7≤5的正整數(shù)解有()。A、7個B、6個C、5個D、4個
分析:先求出不等式的解:≤6,再從中找出符合條件的正整數(shù)。
【例4】如果的值是非正數(shù),則的取值范圍是()。
A、≤1B、≥1C、≤-1D、≥-1
分析:非正數(shù)也就是:0和負數(shù),即≤0。
【例5】不等式組的解集是()。A﹥-B﹤-C≤1D-﹤≤1
分析:先求出每一個不等式的解集,再看兩個解集的公共部分是什么。
解不等式①得:﹥-,解不等式②得:≤1;
解集在數(shù)軸表示如下:
∴原不等式組的解集為:-﹤≤1(大小小大中間找)。
【例6】不等式組無解,則的取值范圍是()。
A、=2B、﹥2C、≤2D、≥2
分析:根據(jù)大大小小是無解,可得是較大的數(shù),2是較小的數(shù)(但可以等于2)即:≥2。
【例7】不等式組的整數(shù)解是:__________________。
分析:先求出不等式組的解集-﹤≤1,再從中選出整數(shù):0和1。
四、鞏固運用:
1、下列式子:①-3﹤0,②4x+3y﹥0,③x=3,④,⑤x≠5,⑥x-3﹤y+2,其中是不等式的有()。A、5個B、4個C、3個D、2個
2、有理數(shù)、在數(shù)軸上位置如圖所示,用不等式表示:
①+____0,②____0,③︱︱____︱︱。
3、若﹥,則下列式子一定成立的是()。
A、+3﹥+5B、-9﹥-9C、-10﹥-10D、﹥
4、下列結論:①若﹤,則﹤;②若﹥,則﹥;③若﹥且若=,
則﹥;④若﹤,則﹤。正確的有()。A、4個B、3個C、2個D、1個
5、若0﹤﹤1,則下列四個不等式中正確的是()。
A、﹤1﹤,B、﹤﹤1,C、﹤﹤1,D、1﹤﹤。
6、如果不等式(+1)﹥(+1)的解為﹤1,則必須滿足________。
7、求下列不等式的解集,并把解集在數(shù)軸上表示出來。
(1)2-5﹥5-11(2)3-2(1-2)≥1
(3)4-7﹥3-1(4)2(-6)﹤3-
7、解不等式組
○1○2○3
8、關于的方程的解x滿足2x10,求的取值范圍
9、當關于、的二元一次方程組的解為正數(shù),為負數(shù),則求此時的取值范圍?
10、不等式的解集為,求的值。
11、某商品的進價為500元,標價為750元,商家要求利潤不低于5%的售價打折,至少可以打幾折?
12、學校計劃組織部分三好學生去某地參觀旅游,參觀旅游的人數(shù)估計為10--25人,甲、乙兩家旅行社的服務質量相同,且報價都是每人200元,經(jīng)過協(xié)商,兩家旅行社表示可給予每位游客七五折優(yōu)惠;乙旅行社表示可免去一位游客的旅游費用,其余游客八折優(yōu)惠。學校應怎樣選擇,使其支出的旅游總費用較少?
第九章不等式與不等式組檢測題
(滿分100分,時間60分鐘)
一、填空題(共10小題,每題3分,共30分)
1.“的一半與2的差不大于”所對應的不等式是.
2.不等號填空:若ab0,則;;.
3.若1,則0用“”“=”或“”號填空).
4.直接寫出下列不等式(組)的解集:①②③.
5.當時,代數(shù)式的值不大于零.
6.某種品牌的八寶粥,外包裝標明:凈含量為330g10g,表明了這罐八寶粥的凈含量的范圍是.
7.不等式1,的正整數(shù)解是.
8.不等式的最大整數(shù)解是.
9.不等式的解集為3則.
10.不等式組的解為.
二、選擇題(共4小題,每題4分,共16分)
11.不等式的解集在數(shù)軸上表示正確的是()
12.不等式的解集為()A.B.0C.0D.
13.不等式6的正整數(shù)解有()A.1個B.2個C.3個D.4個
14..已知關于的不等式組無解,則的取值范圍是()
A.B.C.D.
三、解答題(共54分)
15.解不等式(組)(4×6=24分)
16.(7分)代數(shù)式的值不大于的值,求的范圍
17.(7分)方程組的解為負數(shù),求的范圍.
18.(8分)某次數(shù)學測驗,共16個選擇題,評分標準為:;對一題給6分,錯一題扣2分,不答不給分.某個學生有1題未答,他想自己的分數(shù)不低于70分,他至少要對多少題?
19.(8分)國慶節(jié)期間,電器市場火爆.某商店需要購進一批電視機和洗衣機,根據(jù)市場調查,決定電視機進貨量不少于洗衣機的進貨量的一半.電視機與洗衣機的進價和售價如下表:
類別電視機洗衣機
進價(元/臺)18001500
售價(元/臺)20001600
計劃購進電視機和洗衣機共100臺,商店最多可籌集資金161800元.
(1)請你幫助商店算一算有多少種進貨方案?(不考慮除進價之外的其它費用)
(2)哪種進貨方案待商店銷售購進的電視機與洗衣機完畢后獲得利潤最多?并求出最多利潤.(利潤=售價-進價)
初一數(shù)學下冊《不等式與不等式組》知識點歸納
教案課件是老師工作中的一部分,大家在著手準備教案課件了。將教案課件的工作計劃制定好,這樣我們接下來的工作才會更加好!你們知道適合教案課件的范文有哪些呢?下面的內容是小編為大家整理的初一數(shù)學下冊《不等式與不等式組》知識點歸納,歡迎閱讀,希望您能夠喜歡并分享!
初一數(shù)學下冊《不等式與不等式組》知識點歸納
一、目標與要求
1.感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2.經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結合思想;
3.通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。
二、知識框架
三、重點
理解并掌握不等式的性質;
正確運用不等式的性質;
建立方程解決實際問題,會解ax+b=cx+d類型的一元一次方程;
尋找實際問題中的不等關系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
四、難點
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識點、概念總結
1.不等式:用符號,,≤,≥表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)≥,≤連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)G(x)與不等式G(x)F(x)同解。
(2)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,那么不等式F(x)G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果xy,那么yy;(對稱性)
(2)如果xy,yz;那么xz;(傳遞性)
(3)如果xy,而z為任意實數(shù)或整式,那么x+zy+z;(加法則)
(4)如果xy,z0,那么xzyz;如果xy,z0,那么xz
(5)如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要條件)
(7)如果xy0,mn0,那么xmyn
(8)如果xy0,那么x的n次冪y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質2、3)
(2)去括號
(3)移項(運用不等式性質1)
(4)合并同類項
(5)將未知數(shù)的系數(shù)化為1(運用不等式性質2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成
了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
13.解不等式的訣竅
(1)大于大于取大的(大大大);
例如:X-1,X2,不等式組的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式組的解集是X-6
(3)大于小于交叉取中間;
(4)無公共部分分開無解了;
14.解不等式組的口訣
(1)同大取大
例如,x2,x3,不等式組的解集是X3
(2)同小取小
例如,x2,x3,不等式組的解集是X2
(3)大小小大中間找
例如,x2,x1,不等式組的解集是1
(4)大大小小不用找
例如,x2,x3,不等式組無解
15.應用不等式組解決實際問題的步驟
(1)審清題意
(2)設未知數(shù),根據(jù)所設未知數(shù)列出不等式組
(3)解不等式組
(4)由不等式組的解確立實際問題的解
(5)作答
16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。
四、經(jīng)典例題
例1當x時,代數(shù)代2-3x的值是正數(shù)。
例2一元一次不等式組的解集是()
例3已知方程組的解為負數(shù),求k的取值范圍。
例4某種植物適宜生長在溫度為18℃~20℃的山區(qū),已知山區(qū)海拔每升高100米,氣溫下降0。5℃,現(xiàn)在測出山腳下的平均氣溫為22℃,問該植物種在山的哪一部分為宜?(假設山腳海拔為0米)
例5某園林的門票每張10元,一次使用,考慮到人們的不同需求,也為了吸引更多的游客,該園林除保留原來的售票方法外,還推出了一種“購買個人年票”的售票方法(個人年票從購買日起,可供持票者使用一年)。年票分A、B、C三類:A類年票每張120元,持票者進入園林時,無需再用門票;B類年票每張60元,持票者進入該園林時,需再購買門票,每次2元;C類年票每張40元,持票者進入該園林時,需再購買門票,每次3元。
(1)如果你只選擇一種購買門票的方式,并且你計劃在一年中用80元花在該園林的門票上,試通過計算,找出可進入該園林的次數(shù)最多的購票方式。
(2)求一年中進入該園林至少超過多少次時,購買A類年票比較合算。
不等式及不等式組
不等式及不等式組
知識網(wǎng)絡
一、不等式與不等式的性質
1、不等式:表示不等關系的式子。(表示不等關系的常用符號:≠,<,>)。
2、不等式的性質:
(l)不等式的兩邊都加上(或減去)同一個數(shù),不等號方向不改變,如a>b,c為實數(shù)a+c>b+c
(2)不等式兩邊都乘以(或除以)同一個正數(shù),不等號方向不變,如a>b,c>0ac>bc。
(3)不等式兩邊都乘以(或除以)同一個負數(shù),不等號方向改變,如a>b,c<0ac<bc.
二、不等式(組)的類型及解法
1、一元一次不等式:
(l)概念:含有一個未知數(shù)并且含未知數(shù)的項的次數(shù)是一次的不等式,叫做一元一次不等式。
對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解.對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集.
(2)一元一次不等式的解集用數(shù)軸表示有以下四種情況,如下圖所示:
(1)如圖中所示:
(2)如圖中所示:
(3)如圖中所示:
(4)如圖中所示:
用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:
大于向右畫,小于向左畫,有等號(,)畫實心點,無等號(,)畫空心圈.
(3)解一元一次不等式的一般步驟:
①去分母;②去括號;③移項;④合并同類項;⑤將項的系數(shù)化為1.
注意:解不等式時,上面的五個步驟不一定都能用到,并且不一定按照順序解,要根據(jù)不等式的形式靈活安排求解步驟.
2、一元一次不等式組:
(l)概念:含有相同未知數(shù)的幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組。
幾個一元一次不等式合在一起,就組成了一個一元一次不等式組.
幾個一元一次不等式的解集的公共部分,叫做由它們所組成的一元一次不等式組的解集.求不等式組的解集的過程,叫做解不等式組.
(2)解法:先求出各不等式的解集,再確定解集的公共部分。
注:求不等式組的解集一般借助數(shù)軸求解較方便。
不等式組解集的確定方法:若ab,則有:
(1)的解集是xa,即“同小取小”.(2)的解集是xb,即“同大取大”.
(3)的解集是axb,.(4)的解集是無解,即“一大一小中間找”.