小學(xué)對稱教案
發(fā)表時(shí)間:2020-12-01初二數(shù)學(xué)知識點(diǎn)歸納:用坐標(biāo)表示軸對稱。
初二數(shù)學(xué)知識點(diǎn)歸納:用坐標(biāo)表示軸對稱
用坐標(biāo)表示軸對稱:
關(guān)于x軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn)是:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);
關(guān)于y軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn)是:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變。
點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為x,-y,
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為-x,y。
例如圖中:
點(diǎn)A(2,3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為A,,(-2,3);
點(diǎn)A(2,3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為A,(2,3)。
點(diǎn)撥:
①寫出平面坐標(biāo)系中一個(gè)點(diǎn)關(guān)于x軸和y軸對稱的點(diǎn)的坐標(biāo):
關(guān)于x軸對稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
②畫出一個(gè)圖形關(guān)于x軸或y軸對稱:
先求出已知圖形中的一些特殊點(diǎn)(如多邊形的頂點(diǎn))的對應(yīng)點(diǎn)的坐標(biāo),描出并連接這些點(diǎn),就可以得到這個(gè)圖形的軸對稱圖形。
一、知識回顧
已知△ABC,求作△A’B’C’,使它與△ABC關(guān)于直線l成軸對稱
二、學(xué)習(xí)新知
(一)關(guān)于x軸、y軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)
1、思考:教材P43
2、探索:在平面直角坐標(biāo)系內(nèi)畫出下列已知點(diǎn)以及對稱點(diǎn),并把坐標(biāo)填在表格中,你能發(fā)現(xiàn)坐標(biāo)間有什么規(guī)律?
已知點(diǎn)A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
關(guān)于x軸對稱的點(diǎn)A’()B’()C’()D’()E’()
關(guān)于y軸對稱的點(diǎn)A’’()B’’()C’’()D’’()E’’()
(平面直角坐標(biāo)系在教材P43圖12.2-11)
3、歸納:點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的作標(biāo)是;
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的作標(biāo)是
4、練習(xí):教材P44練習(xí)第1題、第2題(完成于書上)
(二)應(yīng)用:1、如圖,四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(-5,1),
B(-2,1),C(-2,5),D(-5,4),分別作出四邊形ABCD關(guān)于y軸和x軸對稱的圖形。
三、鞏固提高
1、分別寫出下列各點(diǎn)關(guān)于x軸和y軸對稱的點(diǎn)的坐標(biāo)
(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
關(guān)于x軸對稱的點(diǎn)
關(guān)于y軸對稱的點(diǎn)
2、如圖,利用關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn),分別作出與△ABC關(guān)于x軸和y軸對稱的圖形
相關(guān)閱讀
八年級數(shù)學(xué)知識點(diǎn):用坐標(biāo)表示軸對稱
教案課件是每個(gè)老師工作中上課需要準(zhǔn)備的東西,大家正在計(jì)劃自己的教案課件了。教案課件工作計(jì)劃寫好了之后,這樣接下來工作才會(huì)更上一層樓!你們清楚教案課件的范文有哪些呢?以下是小編收集整理的“八年級數(shù)學(xué)知識點(diǎn):用坐標(biāo)表示軸對稱”,希望能為您提供更多的參考。
八年級數(shù)學(xué)知識點(diǎn):用坐標(biāo)表示軸對稱
用坐標(biāo)表示軸對稱:
關(guān)于x軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn)是:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);
關(guān)于y軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn)是:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變。
點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為x,-y,
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為-x,y。
例如圖中:
點(diǎn)A(2,3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為A,,(-2,3);
點(diǎn)A(2,3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為A,(2,3)。
點(diǎn)撥:
①寫出平面坐標(biāo)系中一個(gè)點(diǎn)關(guān)于x軸和y軸對稱的點(diǎn)的坐標(biāo):
關(guān)于x軸對稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
②畫出一個(gè)圖形關(guān)于x軸或y軸對稱:
先求出已知圖形中的一些特殊點(diǎn)(如多邊形的頂點(diǎn))的對應(yīng)點(diǎn)的坐標(biāo),描出并連接這些點(diǎn),就可以得到這個(gè)圖形的軸對稱圖形。
一、知識回顧
已知△ABC,求作△A’B’C’,使它與△ABC關(guān)于直線l成軸對稱
二、學(xué)習(xí)新知
(一)關(guān)于x軸、y軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)
1、思考:教材P43
2、探索:在平面直角坐標(biāo)系內(nèi)畫出下列已知點(diǎn)以及對稱點(diǎn),并把坐標(biāo)填在表格中,你能發(fā)現(xiàn)坐標(biāo)間有什么規(guī)律?
已知點(diǎn)A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
關(guān)于x軸對稱的點(diǎn)A’()B’()C’()D’()E’()
關(guān)于y軸對稱的點(diǎn)A’’()B’’()C’’()D’’()E’’()
(平面直角坐標(biāo)系在教材P43圖12.2-11)
3、歸納:點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的作標(biāo)是;
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的作標(biāo)是
4、練習(xí):教材P44練習(xí)第1題、第2題(完成于書上)
(二)應(yīng)用:1、如圖,四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(-5,1),
B(-2,1),C(-2,5),D(-5,4),分別作出四邊形ABCD關(guān)于y軸和x軸對稱的圖形。
三、鞏固提高
1、分別寫出下列各點(diǎn)關(guān)于x軸和y軸對稱的點(diǎn)的坐標(biāo)
(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
關(guān)于x軸對稱的點(diǎn)
關(guān)于y軸對稱的點(diǎn)
2、如圖,利用關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn),分別作出與△ABC關(guān)于x軸和y軸對稱的圖形
用坐標(biāo)表示軸對稱導(dǎo)學(xué)案
13.2.2用坐標(biāo)表示軸對稱
一、學(xué)習(xí)目標(biāo)
1、能夠經(jīng)過探索利用坐標(biāo)來表示軸對稱;
2、掌握關(guān)于軸、軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)。
二、溫故知新
如圖:(1)觀察圖(1)中兩個(gè)圓臉有什么關(guān)系?
(2)若已知圖(1)中圓臉右眼的坐標(biāo)為(4,3),左眼
的坐標(biāo)為(2,3),嘴角兩個(gè)端點(diǎn),右端點(diǎn)的坐標(biāo)為(4,1),
左端點(diǎn)的坐標(biāo)為(2,1).你能根據(jù)軸對稱的性質(zhì)寫出左邊圓
臉上左眼,右眼及嘴角兩端點(diǎn)的坐標(biāo)嗎?
三、自主探究合作展示
探究(一)
1、在如圖(2)所示平面直角坐標(biāo)系內(nèi)畫出下列已知點(diǎn)以及對稱點(diǎn),并把坐標(biāo)填在表格中,你能發(fā)現(xiàn)坐標(biāo)間有什么規(guī)律?
已知點(diǎn)A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
關(guān)于軸對稱的點(diǎn)()()()()()
關(guān)于軸對稱的點(diǎn)()()()()()
2、歸納:點(diǎn)(,)關(guān)于軸對稱的點(diǎn)的坐標(biāo)是;
點(diǎn)(,)關(guān)于軸對稱的點(diǎn)的坐標(biāo)是
探究(二)
例題:
如圖(3),四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(-5,1),B(-2,1),C(-2,5),D(-5,4),分別作出四邊形ABCD關(guān)于軸和軸對稱的圖形。
例題反思:
四、雙基檢測
1、分別寫出下列各點(diǎn)關(guān)于軸和軸對稱的點(diǎn)的坐標(biāo)。
(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
關(guān)于軸對稱的點(diǎn)
關(guān)于軸對稱的點(diǎn)
2、已知點(diǎn)(2a+b,-3a)與點(diǎn)(8,b+2).(1)若點(diǎn)與點(diǎn)關(guān)于軸對稱,則a=_____;b=_______.
(2)若點(diǎn)與點(diǎn)關(guān)于軸對稱,則a=_____;b=_______.
3、如圖(4),△OBC關(guān)于軸對稱,點(diǎn)A的坐標(biāo)為(1,-2),標(biāo)出點(diǎn)B的坐標(biāo).
3、如圖(5),利用關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)的特點(diǎn),分別作出與△ABC關(guān)于軸和軸對稱的圖形.
五、學(xué)習(xí)反思
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):軸對稱
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):軸對稱
第三章、軸對稱
知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形.
⑵兩個(gè)圖形成軸對稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱.
⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質(zhì):
⑴對稱的性質(zhì):
①不管是軸對稱圖形還是兩個(gè)圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質(zhì):
①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.
②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.
⑶關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)性質(zhì)
①點(diǎn)P(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為P(x,-y)
②點(diǎn)P(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為P(-x,y).