小學數(shù)學數(shù)學教案
發(fā)表時間:2021-10-02高二數(shù)學教案:《曲線和方程》教學設(shè)計。
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.
(3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.
(4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.
(5)進一步理解數(shù)形結(jié)合的思想方法.
教學建議
教材分析
(1)知識結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點、難點分析
①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.
②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎(chǔ)是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.
(2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.
(4)從集合與對應的觀點可以看得更清楚:
(5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎(chǔ)上讓學生自然地獲得.教學中對課本例2的解法分析很重要.
這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.
教學設(shè)計示例
課題:求曲線的方程(第一課時)
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.
教學重點、難點:求曲線的方程.
教學用具:計算機.
教學方法:啟發(fā)引導法,討論法.
教學過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學生思考并回答.教師強調(diào).
2.坐標法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
擴展閱讀
高二數(shù)學曲線和方程教案12
每個老師上課需要準備的東西是教案課件,大家在仔細規(guī)劃教案課件。必須要寫好了教案課件計劃,才能促進我們的工作進一步發(fā)展!那么到底適合教案課件的范文有哪些?為了讓您在使用時更加簡單方便,下面是小編整理的“高二數(shù)學曲線和方程教案12”,僅供參考,大家一起來看看吧。
曲線和方程(復習)
教學要求:掌握曲線和方程、充要條件等概念,能熟練地求曲線方程、曲線的交點,判別直線與曲線的位置關(guān)系。
教學重點:熟練地求曲線方程。
教學過程:
一、復習準備:
1.提問:什么叫曲線方程?方程曲線?
2.充分、必要、充要條件?
3.求曲線方程的步驟是怎樣的?
(建系設(shè)點→寫條件→列方程→化簡→證明)
4.如何求曲線交點?
(聯(lián)立兩曲線的方程,組成方程組,解方程組)
5.如何判斷直線與曲線的位置關(guān)系?
(直線與曲線方程,聯(lián)立為方程組,再解方程組,二解時為相交;一解時為相切或相交,無解時為相離)
二、講授新課:
1.出示典型習題:
①方程x+ky-3x-ky-4=0的曲線過點P(2,1),求k的值。
②求到直線x-y=0的距離等于的點所組成的軌跡方程。
③動點到x軸與到y(tǒng)軸的距離之比為1:2,求動點的軌跡方程。
④若點(x,y)在曲線x+2y+1=0上移動,求2+4的最小值。
2.先學生分析解法,再分組板演。
①題解法:代入點P,求得k值。(待定系數(shù)法)
②題解法:設(shè)動點,用d列距離等式。
③題解法:設(shè)動點求軌跡。
④題解法:利用基本不等式。
三、鞏固練習:
1.點(m-1,2m+1)在第二象限內(nèi)的充要條件是。
2.“=1”成立是“=1”成立的條件。
3.一動點到A(1,0)、B(7,0)兩點的距離之和等于10,求這動點的軌跡。
4.△ABC中,A(0,0),重心G在曲線y=x+3上運動,求BC邊中點的軌跡方程。
解法:設(shè)軌跡上任意一點(x,y),利用重心公式求得重心坐標,再代入到曲線y=x+3上即得所求軌跡方程。
小結(jié)思想:轉(zhuǎn)化思想。
5.課堂作業(yè):書P
高二數(shù)學求曲線的方程教案9
7.6.2求曲線的方程(二)
教學要求:更進一步熟練運用求曲線方程的方法、步驟,能熟練地根據(jù)條件求出簡單的曲線方程。
教學重點:熟練地求曲線方程。
教學過程:
一、復習準備:
1.已知線段AB的長度為1,求平面上到A、B兩點的距離的平方和是16的點M的軌跡方程。
(用兩種建立坐標系的方法)
2.知識回顧:求曲線方程的步驟
(建系設(shè)點→寫條件→列方程→化簡→證明)
二、講授新課:
1.教學例題:
①出示例:動點M在x軸的下方,它到點A(0,-3)的距離減去它到x軸的距離的差都是4,求點M的軌跡方程。
②分析:由題意設(shè)動點M(x,y),其條件如何寫出?方程如何列式?
③學生試求→分析條件“限制在x軸的下方”如何處理?→小結(jié)解題步驟。
④變題:假如不限制在x軸下方呢?
⑤出示例:已知定點F到定直線L的距離等于2,動點M到點F的距離與到直線L的距離相等,求動點M的軌跡方程。
⑥分析:有哪些建立坐標系的方法?
教師給出一種建系方法:以直線L為x軸,點F在y軸的正半軸上,建立坐標系。
⑦學生按自己的方法與所給出的建系方法,分組求方程。并比較。
2.練習:
求到點(-4,0)和(4,0)的距離的平方差是48的動點的軌跡方程。(x±3)
三、鞏固練習:
1.試求到兩坐標軸距離之差為2的點的軌跡方法,并作出圖形。
(答案:||x|-|y||=2)
2.由原點作拋物線y=x+1的割線OPQ,求弦PQ的中點的軌跡方程。
解法:設(shè)割線y=kx,則x-kx+1=0
∵△0
∴k2或k-2
,消k得y=2x(x1或x-1)
3.課堂作業(yè):書P727、8、9題。
高二數(shù)學下冊《曲線和方程》知識點復習
一名優(yōu)秀的教師在教學時都會提前最好準備,教師要準備好教案,這是教師的任務(wù)之一。教案可以讓學生更好的吸收課堂上所講的知識點,幫助教師能夠井然有序的進行教學。我們要如何寫好一份值得稱贊的教案呢?以下是小編為大家收集的“高二數(shù)學下冊《曲線和方程》知識點復習”供大家參考,希望能幫助到有需要的朋友。
高二數(shù)學下冊《曲線和方程》知識點復習
1.定義
在選定的直角坐標系下,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下關(guān)系:
(1)曲線C上的點的坐標都是方程f(x,y)=0的解(一點不雜);
(2)以方程f(x,y)=0的解為坐標的點都是曲線C上的點(一點不漏).
這時稱方程f(x,y)=0為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
設(shè)P={具有某種性質(zhì)(或適合某種條件)的點},Q={(x,y)|f(x,y)=0},若設(shè)點M的坐標為(x0,y0),則用集合的觀點,上述定義中的兩條可以表述為:
以上兩條還可以轉(zhuǎn)化為它們的等價命題(逆否命題):
為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
2.曲線方程的兩個基本問題
(1)由曲線(圖形)求方程的步驟:
①建系,設(shè)點:建立適當?shù)淖鴺讼?,用變?shù)對(x,y)表示曲線上任意一點M的坐標;
②立式:寫出適合條件p的點M的集合p={M|p(M)};
③代換:用坐標表示條件p(M),列出方程f(x,y)=0;
④化簡:化方程f(x,y)=0為最簡形式;
⑤證明:以方程的解為坐標的點都是曲線上的點.
上述方法簡稱“五步法”,在步驟④中若化簡過程是同解變形過程;或最簡方程的解集與原始方程的解集相同,則步驟⑤可省略不寫,因為此時所求得的最簡方程就是所求曲線的方程.
(2)由方程畫曲線(圖形)的步驟:
①討論曲線的對稱性(關(guān)于x軸、y軸和原點);
②求截距:
③討論曲線的范圍;
④列表、描點、畫線.
3.交點
求兩曲線的交點,就是解這兩條曲線方程組成的方程組.
4.曲線系方程
過兩曲線f1(x,y)=0和f2(x,y)=0的交點的曲線系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
練習題:
1.設(shè)m>1,則關(guān)于x,y的方程(1-m)x2+y2=m2-1表示的曲線是()
A.焦點在x軸上的橢圓
B.焦點在y軸上的橢圓
C.焦點在x軸上的雙曲線
D.焦點在y軸上的雙曲線
答案:D
2.動點P為橢圓x2a2+y2b2=1(a>b>0)上異于橢圓頂點(±a,0)的一點,F(xiàn)1、F2為橢圓的兩個焦點,動圓C與線段F1P、F1F2的延長線及線段PF2相切,則圓心C的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.直線
高二數(shù)學教案:《直線的方程》教學設(shè)計
高二數(shù)學教案:《直線的方程》教學設(shè)計
教學目標
(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學,培養(yǎng)學生靈活的思維品質(zhì)和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.
(2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.
②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應關(guān)系,為繼續(xù)學習“曲線方程”打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關(guān)的問題指導學生練習,培養(yǎng)學生的綜合能力.
(7)直線方程的理論在其他學科和生產(chǎn)生活實際中有大量的應用.教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.
教學設(shè)計示例
直線方程的一般形式
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.
【動畫演示】
演示“直線各參數(shù).gsp”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計在此從略