小學數(shù)學除法的教案
發(fā)表時間:2020-10-26整式的除法(第1課時)教案。
教學課題1.9整式的除法(一)
三維目標知識目標經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算;
能力目標理解整式除法運算的算理,發(fā)展有條理的思考及表達能力。
情感目標培養(yǎng)學生獨立思考的學習習慣
教學重、
難、疑點教學重點:可以通過單項式與單項式的乘法來理解單項式的除法,要確實弄清單項式除法的含義,會進行單項式除法運算。
教學難點:確實弄清單項式除法的含義,會進行單項式除法運算。
教學方法教法探索討論、歸納總結(jié)。
學
法探索討論、歸納總結(jié)。
教具學具
準備投影儀。
教學過程設計
巧設情景
導入新課準備活動:
填空:1、2、3、
過
程
與
方
法教學環(huán)節(jié)與步驟課
堂
要
素
提
示充分體現(xiàn)“自主、合作,分層評價”(滲透探究的內(nèi)涵)的教學特色
(力求課堂活而不亂,實而不悶)
“知識是能力的基礎,能力是知識的升華,情感是力量的源泉”
通過各種途徑,培養(yǎng)學生的搜索力、發(fā)現(xiàn)力、概括力、想象力、記憶力
思維力、操作力、應變力、創(chuàng)造力和自我調(diào)控力
教師活動(恰到好處的主導作用)學生活動(體現(xiàn)充分的主體作用)
值
觀(一)探索練習,計算下列各題,并說明你的理由。
(1)
(2)
(3)
提醒:可以用類似于分數(shù)約分的方法來計算。
討論:通過上面的計算,該如何進行單項式除以單項式的運算?
結(jié)論:單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。
一、例題講解:
1、計算(1)
(2)
(3)
做鞏固練習1。
2、月球距離地球大約3.84×105千米,一架飛機的速度約為8×102千米/時,如果乘坐此飛機飛行這么遠的距離,大約需要多少時間?
做鞏固練習2。
二、鞏固練習:
1、計算:
(1)
(2)
(3)
(4)
2、計算:
(1)
(2)
小結(jié):弄清單項式除法的含義,會進行單項式除法運算。
精選課堂練習基礎題有廣度
(投影顯示或書面練習)提高題有梯度
(投影顯示或書面練習)
(習題適應全體學生)
見過程
(習題適應不同層次的學生)
巧布課外
作業(yè)鞏固基礎提升能力拓展思維
(巧字體現(xiàn)在試題能面向生活,面向生產(chǎn),面向社會,面向“三考”,能緊跟時代步伐,將知識轉(zhuǎn)化為能力,著力培養(yǎng)學生的應用能力、探究精神、創(chuàng)新精神及其能力)
(自編或從各種資料上精選試題,份量適中,不能給學生加重負擔)
課本P41習題1.15:1、2、4。
板
書
設
計
課
后
記(本課或本章節(jié)教學反思)(wWw.36gH.coM 合同范本網(wǎng))
擴展閱讀
同底數(shù)冪的除法(1)(總第14課時)教案
一般給學生們上課之前,老師就早早地準備好了教案課件,到寫教案課件的時候了。我們制定教案課件工作計劃,才能更好地安排接下來的工作!你們清楚教案課件的范文有哪些呢?下面是小編精心為您整理的“同底數(shù)冪的除法(1)(總第14課時)教案”,僅供參考,歡迎大家閱讀。
課題:8.3同底數(shù)冪的除法(1)(總第14課時)課型:新授
學習目標:
1.能說出同底數(shù)冪除法的運算性質(zhì),并會用符號表示.
2.會正確的運用同底數(shù)冪除法的運算性質(zhì)進行運算,并能說出每一步運算的依據(jù).
學習重點:同底數(shù)冪的除法運算法則的推導過程,會用同底數(shù)冪的除法運算法則進行有關(guān)計算.
學習難點:會正確的運用同底數(shù)冪除法的運算性質(zhì)進行運算,并能說出每一步運算的依據(jù).
.學習過程:
【預習交流】
1.預習課本P47到P48,有哪些疑惑?
2.已知n是大于1的自然數(shù),則等于()
A.B.C.D.
3.若xm=2,xn=5,則xm+n=,xm-n=.
4.已知:Ax2n+1=x3n(x≠0),那么A=.
【點評釋疑】
1.課本P47情境創(chuàng)設和做一做.
2.公式推導:am÷an=am-n(a≠0,m、n是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
3.課本P47例1.
4.應用探究
(1)計算:①②③
(2)一次數(shù)學興趣小組活動中,同學們做了一個找朋友的游戲:有六個同學A、B、C、D、E、F分別藏在六張大紙牌的后面,如圖所示,A、B、C、D、E、F所持的紙牌的前面分別寫有六個算式:.游戲規(guī)定:所持算式的值相等的兩個人是朋友.如果現(xiàn)在由同學A來找他的朋友,他可以找誰呢?說說你的看法.
5.鞏固練習課本P48練習1、2、3.
【達標檢測】
1.計算:26÷22=,(-3)6÷(-3)3=,()7÷()4=,
a3m÷a2m-1(m是正整數(shù))=,.
2.(a3a2)3÷(-a2)2÷a=.(x4)2÷(x4)2(x2)2x2=.(ab)12÷[(ab)4÷(ab)3]2=.
3.填上適當?shù)闹笖?shù):a5÷a()=a4,
4.下列4個算式:(1)(2)(3)
(4)其中,計算錯誤的有()A.4個B.3個C.2個D.1個
5.在下列四個算式:,,正確的有()
A.1個B.2個C.3個D.4個
6.4m8m-1÷2m=512,則m=.
7.aman=a4,且am÷an=a6,則mn=.
8.若,則=.
9.閱讀下列一段話,并解決后面的問題.
觀察下面一列數(shù):1,2,4,8,…我們發(fā)現(xiàn),這列數(shù)從第二項起,每一項與它前一項的比值都是2.我們把這樣的一列數(shù)叫做等比數(shù)列,這個共同的比值叫做等比數(shù)列的公比.
(1)等比數(shù)列5,-15,45,…的第4項是;
(2)如果一列數(shù)a1,a2,a3,…是等比數(shù)列,且公比是q,那么根據(jù)上述規(guī)定有,所以
則an=(用a1與q的代數(shù)式表示)
(3)一個等比數(shù)列的第2項是10,第3項是20,求它的第1項和第4項.
【總結(jié)評價】
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
【課后作業(yè)】課本P50習題8.31、2.
1.9 整式的除法(1)
1.9整式的除法(1)
教學目標:
1.經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算;
2.理解整式除法運算的算理,發(fā)展有條理的思考及表達能力.教學重點:可以通過單項式與單項式的乘法來理解單項式的除法,要確實弄清單項式除法的含義,會進行單項式除法運算.教學難點:確實弄清單項式除法的含義,會進行單項式除法運算.教學過程:
一、探索練習,計算下列各題,并說明你的理由.
(1)
(2)
(3)
提醒:可以用類似于分數(shù)約分的方法來計算.
討論:通過上面的計算,該如何進行單項式除以單項式的運算?
結(jié)論:
單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式.
二、例題講解:
1.計算:(1);(2);
(3).
做鞏固練習1.
2.月球距離地球大約3.84×105千米,一架飛機的速度約為8×102千米/時,如果乘坐此飛機飛行這么遠的距離,大約需要多少時間?
做鞏固練習2.三、鞏固練習:
1.計算:
(1);(2);
(3);(4).
2.計算:
(1);
(2).
小結(jié):弄清單項式除法的含義,會進行單項式除法運算.
作業(yè):課本P41習題1.15:1、2、4.
教學后記:
整式的除法(1)學案
每個老師需要在上課前弄好自己的教案課件,大家在認真寫教案課件了。對教案課件的工作進行一個詳細的計劃,才能對工作更加有幫助!有多少經(jīng)典范文是適合教案課件呢?以下是小編為大家精心整理的“整式的除法(1)學案”,僅供參考,歡迎大家閱讀。
1.7整式的除法(1)
一、學習目標:1.經(jīng)歷探索整式除法法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,多項式除以單項式,并且結(jié)果都是整式).
2.理解整式除法運算的算理,發(fā)展有條理的思考及表達能力.
二、學習重點:可以通過單項式與單項式的乘法來理解單項式的除法,要確實弄清單項式除法的含義,會進行單項式除法運算。
三、學習難點:確實弄清單項式除法的含義,會進行單項式除法運算。
四、學習設計:
(一)預習準備
(1)預習書28~29頁
(2)回顧:1、2、3、
(二)學習過程:
1、探索練習,計算下列各題,并說明你的理由。
(1)(2)(3)
2、例題精講
類型一單項式除以單項式的計算
例1計算:
(1)(-x2y3)÷(3x2y);(2)(10a4b3c2)÷(5a3bc).
變式練習:
(1)(2a6b3)÷(a3b2);(2)(x3y2)÷(x2y).
類型二單項式除以單項式的綜合應用
例2計算:
(1)(2x2y)3(-7xy2)÷(14x4y3);(2)(2a+b)4÷(2a+b)2.
變式練習:
(1)(x2y2n)÷(x2)x3;(2)3a(a+5)4÷〔a(a+5)3〕(a+5)-1
類型三單項式除以單項式在實際生活中的應用
例3月球距離地球大約3.84×105千米,一架飛機的速度約為8×102千米/時
如果乘坐此飛機飛行這么遠的距離,大約需要多少時間?
3、當堂測評
填空:(1)6xy÷(-12x)=.
(2)-12x6y5÷=4x3y2.
(3)12(m-n)5÷4(n-m)3=
(4)已知(-3x4y3)3÷(-xny2)=-mx8y7,則m=,n=.
計算:
(1)(x2y)(3x3y4)÷(9x4y5).(2)(3xn)3÷(2xn)2(4x2)2.
4、拓展:
(1)已知實數(shù)a,b,c滿足|a-1|+|b+3|+|3c-1|=0,求(abc)125÷(a9b3c2)的值。
(2)若ax3my12÷(3x3y2n)=4x6y8,求(2m+n-a)-n的值。
回顧小結(jié):單項式相除,其實質(zhì)就是系數(shù)相除,除式和被除式都含有的字母的冪按同底數(shù)
冪的除法去做,只在被除式中含有的字母及其指數(shù)作為單獨因式直接寫在商中,不要漏掉.