小學(xué)方程的教案
發(fā)表時間:2020-02-19高一數(shù)學(xué)下冊《直線的方程》知識點人教版。
一名優(yōu)秀的教師在教學(xué)時都會提前最好準(zhǔn)備,教師要準(zhǔn)備好教案,這是老師職責(zé)的一部分。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。我們要如何寫好一份值得稱贊的教案呢?下面是由小編為大家整理的“高一數(shù)學(xué)下冊《直線的方程》知識點人教版”,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)下冊《直線的方程》知識點人教版
定義:
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
表達式:
斜截式:y=kx+b
兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)
點斜式:y-y1=k(x-x1)
截距式:(x/a)+(y/b)=0
補充一下:最基本的標(biāo)準(zhǔn)方程不要忘了,AX+BY+C=0,
因為,上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,K不存在的情況。
相關(guān)推薦
人教版高一數(shù)學(xué)下冊《軌跡方程》知識點講解
人教版高一數(shù)學(xué)下冊《軌跡方程》知識點講解
一、求動點的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌跡方程的常用方法:
求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動點軌跡方程的一般步驟
①建系建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點設(shè)軌跡上的任一點P(x,y);
③列式列出動點p所滿足的關(guān)系式;
④代換依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明證明所求方程即為符合條件的動點軌跡方程。
練習(xí)題:
1.若點P到直線x=-1的距離比它到點(2,0)的距離小1,則點P的軌跡為()
A.圓
B.橢圓
C.雙曲線
D.拋物線
2.一條線段AB的長為2,兩個端點A和B分別在x軸和y軸上滑動,則線段AB的中點的軌跡是()
A.雙曲線
B.雙曲線的一分支
C.圓
D.橢圓
3.已知|AB→|=3,A、B分別在y軸和x軸上運動,O為原點,OP→=13OA→+23OB→,則動點P的軌跡方程是()
A.x24+y2=1
B.x2+y24=1
C.x29+y2=1
D.x2+y29=1
4.已知兩定點F1(-1,0)、F2(1,0),且12|F1F2|是|PF1|與|PF2|的等差中項,則動點P的軌跡是()
A.橢圓
B.雙曲線
C.拋物線
D.線段
人教版高一數(shù)學(xué)下冊《直線圓的位置關(guān)系》知識點復(fù)習(xí)
古人云,工欲善其事,必先利其器。作為教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生更容易聽懂所講的內(nèi)容,幫助教師營造一個良好的教學(xué)氛圍。優(yōu)秀有創(chuàng)意的教案要怎樣寫呢?下面是由小編為大家整理的“人教版高一數(shù)學(xué)下冊《直線圓的位置關(guān)系》知識點復(fù)習(xí)”,希望能為您提供更多的參考。
人教版高一數(shù)學(xué)下冊《直線圓的位置關(guān)系》知識點復(fù)習(xí)
由直線與圓的公共點的個數(shù),得出以下直線和圓的三種位置關(guān)系:
(1)相交:直線與圓有兩個公共點時,叫做直線和圓相交.這時直線叫做圓的割線.
(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切.這時直線叫做圓的切線,唯一的公共點叫做切點.
(3)相離:直線和圓沒有公共點時,叫做直線和圓相離.
直線與圓的位置關(guān)系的數(shù)量特征
1、遷移:點與圓的位置關(guān)系
(1)點P在⊙O內(nèi)dr.
2、歸納概括:
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么
(1)直線l和⊙O相交dr.
練習(xí)題:
1.直線L上的一點到圓心的距離等于⊙O的半徑,則L與⊙O的位置關(guān)系是()
A.相離
B.相切
C.相交
D.相切或相交
2.圓的最大的弦長為12cm,如果直線與圓相交,且直線與圓心的距離為d,那么()
A.d6cm
B.6cmd12cm
C.d≥6cm
D.d12cm
3.P是⊙O外一點,PA、PB切⊙O于點A、B,Q是優(yōu)弧AB上的一點,設(shè)∠APB=α,∠AQB=β,則α與β的關(guān)系是()
A.α=β
B.α+β=90°
C.α+2β=180°
D.2α+β=180°
4.在⊙O中,弦AB和CD相交于點P,若PA=4,PB=7,CD=12,則以PC、PD的長為根的一元二次方程為()
A.x2+12x+28=0
B.x2-12x+28=0
C.x2-11x+12=0
D.x2+11x+12=0
高一數(shù)學(xué)下冊《直線平面平行的判定及其性質(zhì)》知識點人教版
高一數(shù)學(xué)下冊《直線平面平行的判定及其性質(zhì)》知識點人教版
如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?
平行或異面。
若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?
答:無數(shù)條;平行。
如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?
平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內(nèi),所以a與b平行。
綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?
如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
練習(xí)題:
1.(質(zhì)疑夯基)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”.)
(1)若一條直線和平面內(nèi)一條直線平行,那么這條直線和這個平面平行.()
(2)若直線a∥平面α,P∈α,則過點P且平行于直線a的直線有無數(shù)條.()
(3)如果一個平面內(nèi)的兩條直線平行于另一個平面,那么這兩個平面平行.()
(4)如果兩個平面平行,那么分別在這兩個平面內(nèi)的兩條直線平行或異面.()
答案:(1)×(2)×(3)×(4)√
2.下列命題中正確的是()
A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面β
B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行
C.平行于同一條直線的兩個平面平行
D.若直線a,b和平面α滿足a∥b,a∥α,bα,則b∥α
解析:選項A中,a∥β或aβ,A不正確.
選項B中,a與α內(nèi)的直線平行或異面,B錯.
C中的兩個平面平行或相交,C不正確.
由線面平行的性質(zhì)與判定,選項D正確.
答案:D
3.設(shè)α,β是兩個不同的平面,m是直線且mα.“m∥β”是“α∥β”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
解析:由mα,m∥β?α∥β.
但mα,α∥βm∥β,
∴“m∥β”是“α∥β”的必要不充分條件.
答案:B
高一數(shù)學(xué)下冊《直線平面垂直的判定及其性質(zhì)》知識點人教版
高一數(shù)學(xué)下冊《直線平面垂直的判定及其性質(zhì)》知識點人教版
(1)創(chuàng)設(shè)情境
直線平面垂直的判定
直線平面垂直的判定
①請同學(xué)們觀察圖片,說出旗桿與地面、高樓的側(cè)棱與地面的位置有什么關(guān)系?
②請把自己的數(shù)學(xué)書打開直立在桌面上,觀察書嵴與桌面的位置有什么關(guān)系?
③請將①中旗桿與地面的位置關(guān)系畫出相應(yīng)的幾何圖形。
(2)觀察歸納
①思考:一條直線與平面垂直時,這條直線與平面內(nèi)的直線有什么樣的位置關(guān)系?
②多媒體演示:旗桿與它在地面上影子的位置變化。
③歸納出直線與平面垂直的定義及相關(guān)概念。
定義:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作:l⊥α.
直線平面垂直的判定
直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足。
用符號語言表示為:
直線平面垂直的判定
(3)辨析(完成下列練習(xí)):
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線就與這個平面垂直。
②若a⊥α,b
直線平面垂直的判定
α,則a⊥b。
在創(chuàng)設(shè)情境中,學(xué)生練習(xí)本上畫圖,教師針對學(xué)生出現(xiàn)的問題,如不直觀、不標(biāo)字母等加以強調(diào),并指出這就叫直線與平面垂直,引出課題。
在多媒體演示時,先展示動畫1使學(xué)生感受到旗桿AB所在直線與過點B的直線都垂直。再展示動畫2使學(xué)生明確旗桿AB所在直線與地面內(nèi)任意一條不過點B的直線B1C1也垂直,進而引導(dǎo)學(xué)生歸納出直線與平面垂直的定義。
直線平面垂直的判定
在辨析問題中,解釋“無數(shù)”與“任何”的不同,并說明線面垂直的定義既是線面垂直的判定又是性質(zhì),線線垂直與線面垂直可以相互轉(zhuǎn)化,給出常用命題:
直線平面垂直的判定
2.直線與平面垂直的判定定理的探究
(1)設(shè)置問題情境
提出問題:學(xué)校廣場上樹了一根新旗桿,現(xiàn)要檢驗它是否與地面垂直,你有什么好辦法?
(2)折紙試驗
如圖,請同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來做一個實驗:過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考:
直線平面垂直的判定
①折痕AD與桌面垂直嗎?
②如何翻折才能使折痕AD與桌面所在的平面垂直?
③多媒體演示翻折過程。
(3)歸納直線與平面垂直的判定定理
①思考:由折痕AD⊥BC,翻折之后垂直關(guān)系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論?
②歸納出直線與平面垂直的判定定理。
定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
直線平面垂直的判定
用符號語言表示為:
直線平面垂直的判定
在討論實際問題時,學(xué)生同桌合作進行試驗(將鐵絲當(dāng)旗桿,桌面當(dāng)?shù)孛妫┖蠼涣鞣桨福缬弥苯侨前辶恳淮?,量兩次等。教師不作點評,說明完成下面的折紙試驗后就有結(jié)論。
在折紙試驗中,學(xué)生會出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)這兩類學(xué)生進行交流,根據(jù)直線與平面垂直的定義分析“不垂直”的原因。學(xué)生再次折紙,進而探究直線與平面垂直的條件,經(jīng)過討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過程,增強幾何直觀性。
在歸納直線與平面垂直的判定定理時,先讓學(xué)生敘述結(jié)論,不完善的地方教師引導(dǎo)、補充完整,并結(jié)合“兩條相交直線確定一個平面”的事實,簡要說明直線與平面垂直的判定定理。然后,學(xué)生試用圖形語言表述,練習(xí)本上畫圖,可能出現(xiàn)垂足與兩相交直線交點重合的情況(如圖),教師加以說明,同時給出符號語言表述。
直線平面垂直的判定
在理解直線與平面垂直的判定定理時,強調(diào)“兩條”、“相交”缺一不可,并結(jié)合前面“檢驗旗桿與地面垂直”問題再進行確認(rèn)。指出要判斷一條直線與一個平面是否垂直,取決于在這個平面內(nèi)能否找到兩條相交直線和已知直線垂直,這充分體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”相互轉(zhuǎn)化的數(shù)學(xué)思想。
3.直線與平面垂直的判定定理的初步應(yīng)用
(1)嘗試練習(xí):
求證:與三角形的兩條邊同時垂直的直線必與第三條邊垂直。
直線平面垂直的判定
學(xué)生根據(jù)題意畫圖,將其轉(zhuǎn)化為幾何命題:不妨設(shè)
請三位同學(xué)板演,其余同學(xué)在練習(xí)本上完成,師生共同評析,明確運用線面垂直判定定理時的具體步驟,防止缺少條件,同時指出:這為證明“線線垂直”提供了一種方法。
(2)嘗試練習(xí):如圖,有一根旗桿AB高8m,它的頂端A掛有兩條長10m的繩子,拉緊繩子并把它的下端放在地面上的兩點(和旗桿腳不在同一條直線上)C、D。如果這兩點都和旗桿腳B的距離是6m,那么旗桿就和地面垂直.為什么?
直線平面垂直的判定
本題需要通過計算得到線線垂直。學(xué)生練習(xí)本上完成后,對照課本P69例1,完善自己的解題步驟。
(3)嘗試練習(xí):如圖,已知a∥b,a⊥α,求證:b⊥α。
此題有一定難度,教師引導(dǎo)學(xué)生分析思路,可利用線面垂直的定義證,也可用判定定理證,提示輔助線的添法,學(xué)生練習(xí)本上完成,對照課本P69例2,完善自己的解題步驟。
直線平面垂直的判定