小學(xué)數(shù)學(xué)數(shù)學(xué)教案
發(fā)表時間:2021-08-17高一數(shù)學(xué)教案:《映射》教學(xué)設(shè)計。
高一數(shù)學(xué)教案:《映射》教學(xué)設(shè)計
教學(xué)目標(biāo)
1.了解映射的概念,象與原象的概念,和一一映射的概念.
(1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);
(2)能準(zhǔn)確使用數(shù)學(xué)符號表示映射, 把握映射與一一映射的區(qū)別;
(3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.
3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對知識的探究能力.
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:
由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.
(2)重點(diǎn),難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識.
①映射的概念是比較抽象的概念,它是在初中所學(xué)對應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強(qiáng)調(diào)對應(yīng)集合 中的唯一這點(diǎn)要求的理解;
映射是學(xué)生在初中所學(xué)的對應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.
②而一一映射又在映射的基礎(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.
教法建議
(1)在映射概念引入時,可先從學(xué)生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識從感性認(rèn)識到理性認(rèn)識.
(2)在剛開始學(xué)習(xí)映射時,為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識映射,而后再選擇用抽象的數(shù)學(xué)符號表示映射,比如:
, .
這種表示方法比較簡明,抽象,且能看到三者之間的關(guān)系.除此之外,映射的一般表示方法為 ,從這個符號中也能看到映射是由三部分構(gòu)成的整體,這對后面認(rèn)識函數(shù)是三件事構(gòu)成的整體是非常有幫助的.
(3)對于學(xué)生層次較高的學(xué)??梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏, 引出一一映射概念.
(4)關(guān)于求象和原象的問題,應(yīng)在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認(rèn)識.
(5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.
教學(xué)設(shè)計方案
2.1 映射
教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.JaB88.coM
(2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對比,歸納的能力.
教學(xué)方法:啟發(fā)討論式
教學(xué)過程:
一、引入
在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.
二、新課
在前一章集合的初步知識中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究兩個集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個)
我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?
提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個元素?
讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細(xì)說明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)
提問2:能用自己的語言描述一下這幾個對應(yīng)的共性嗎?
經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)
(板書)
一.映射
(3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.
教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識.
教學(xué)用具:實(shí)物投影儀
相關(guān)推薦
高一數(shù)學(xué)映射036
課題:§1.2.2映射
教學(xué)目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)結(jié)合簡單的對應(yīng)圖示,了解一一映射的概念.
教學(xué)重點(diǎn):映射的概念.
教學(xué)難點(diǎn):映射的概念.
教學(xué)過程:
一、引入課題
復(fù)習(xí)初中已經(jīng)遇到過的對應(yīng):
1.對于任何一個實(shí)數(shù)a,數(shù)軸上都有唯一的點(diǎn)P和它對應(yīng);
2.對于坐標(biāo)平面內(nèi)任何一個點(diǎn)A,都有唯一的有序?qū)崝?shù)對(x,y)和它對應(yīng);
3.對于任意一個三角形,都有唯一確定的面積和它對應(yīng);
4.某影院的某場電影的每一張電影票有唯一確定的座位與它對應(yīng);
5.函數(shù)的概念.
二、新課教學(xué)
1.我們已經(jīng)知道,函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種的對應(yīng)就叫映射(mapping)(板書課題).
2.先看幾個例子,兩個集合A、B的元素之間的一些對應(yīng)關(guān)系
(1)開平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3.什么叫做映射?
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射(mapping).
記作“f:AB”
說明:
(1)這兩個集合有先后順序,A到B的射與B到A的映射是截然不同的.其中f表示具體的對應(yīng)法則,可以用漢字?jǐn)⑹觯?br> (2)“都有唯一”什么意思?
包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思。
4.例題分析:下列哪些對應(yīng)是從集合A到集合B的映射?
(1)A={P|P是數(shù)軸上的點(diǎn)},B=R,對應(yīng)關(guān)系f:數(shù)軸上的點(diǎn)與它所代表的實(shí)數(shù)對應(yīng);
(2)A={P|P是平面直角體系中的點(diǎn)},B={(x,y)|x∈R,y∈R},對應(yīng)關(guān)系f:平面直角體系中的點(diǎn)與它的坐標(biāo)對應(yīng);
(3)A={三角形},B={x|x是圓},對應(yīng)關(guān)系f:每一個三角形都對應(yīng)它的內(nèi)切圓;
(4)A={x|x是新華中學(xué)的班級},B={x|x是新華中學(xué)的學(xué)生},對應(yīng)關(guān)系f:每一個班級都對應(yīng)班里的學(xué)生.
思考:
將(3)中的對應(yīng)關(guān)系f改為:每一個圓都對應(yīng)它的內(nèi)接三角形;(4)中的對應(yīng)關(guān)系f改為:每一個學(xué)生都對應(yīng)他的班級,那么對應(yīng)f:BA是從集合B到集合A的映射嗎?
5.完成課本練習(xí)
三、作業(yè)布置
補(bǔ)充習(xí)題
高一數(shù)學(xué)映射復(fù)習(xí)037
北師大高中數(shù)學(xué)必修(Ⅰ)第二章《函數(shù)》全部教案
第四節(jié)映射
一.教學(xué)目標(biāo):1.知識與技能:(1)了解映射的概念及表示方法;(2)結(jié)合簡單的對應(yīng)圖表,理解一一映射的概念.
2.過程與方法:(1)函數(shù)推廣為映射,只是把函數(shù)中的兩個數(shù)集推廣為兩個任意的集合;(2)通過實(shí)例進(jìn)一步理解映射的概念;(3)會利用映射的概念來判斷“對應(yīng)關(guān)系”是否是映射,一一映射.
3.情態(tài)與價值:映射在近代數(shù)學(xué)中是一個極其重要的概念,是進(jìn)一步學(xué)習(xí)各類映射的基礎(chǔ).
二.教學(xué)重點(diǎn):映射的概念
教學(xué)難點(diǎn):映射的概念
三.學(xué)法與教學(xué)方法
1.學(xué)法:通過豐富的實(shí)例,學(xué)生進(jìn)行交流討論和概括;從而完成本節(jié)課的教學(xué)目標(biāo);2.教學(xué)方法:探究交流法。
四.教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
復(fù)習(xí)初中常見的對應(yīng)關(guān)系:1.對于任何一個實(shí)數(shù),數(shù)軸上都有唯一的點(diǎn)和它對應(yīng);2.對于坐標(biāo)平面內(nèi)任何一個點(diǎn)A,都有唯一的有序?qū)崝?shù)對()和它對應(yīng);3.對于任意一個三角形,都有唯一確定的面積和它對應(yīng);4.某影院的某場電影的每一張電影票有唯一確定的座位與它對應(yīng);5.函數(shù)的概念.
(二)研探新知
1.我們已經(jīng)知道,函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種對應(yīng)就叫映射(板書課題).
2.先看幾個例子,兩個集合A、B的元素之間的一些對應(yīng)關(guān)系:
(1)開平方;(2)求正弦;(3)求平方;(4)乘以2.
歸納引出映射概念:
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則,使對于集合A中的任意一個元素,在集合B中都有唯一確定的元素與之對應(yīng),那么就稱對應(yīng):A→B為從集合A到集合B的一個映射.記作“:A→B”
說明:
(1)這兩個集合有先后順序,A到B的映射與B到A的映射是截然不同的,其中表示具體的對應(yīng)法則,可以用多種形式表述.
(2)“都有唯一”什么意思?
包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思.
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維
例1.下列哪些對應(yīng)是從集合A到集合B的映射?
(1)A={是數(shù)軸上的點(diǎn)},B=R,對應(yīng)關(guān)系:數(shù)軸上的點(diǎn)與它所代表的實(shí)數(shù)對應(yīng);
(2)A={是平面直角坐標(biāo)中的點(diǎn)},對應(yīng)關(guān)系:平面直角坐標(biāo)系中的點(diǎn)與它的坐標(biāo)對應(yīng);
(3)A={三角形},B=:每一個三角形都對應(yīng)它的內(nèi)切圓;
(4)A={是新華中學(xué)的班級},對應(yīng)關(guān)系:每一個班級都對應(yīng)班里的學(xué)生.
思考:將(3)中的對應(yīng)關(guān)系改為:每一個圓都對應(yīng)它的內(nèi)接三角形;(4)中的對應(yīng)關(guān)系改為:每一個學(xué)生都對應(yīng)他的班級,那么對應(yīng):B→A是從集合B到集合A的映射嗎?
例2.在下圖中,圖(1),(2),(3),(4)用箭頭所標(biāo)明的A中元素與B中元素的對應(yīng)法則,是不是映射?是不是函數(shù)關(guān)系?
A開平方BA求正弦B
(1)(2)
A求平方BA乘以2B
(3)(4)
(四)鞏固深化,反饋矯正
1、畫圖表示集合A到集合B的對應(yīng)(集合A,B各取4個元素)
已知:(1),對應(yīng)法則是“乘以2”;
(2)A=>,B=R,對應(yīng)法則是“求算術(shù)平方根”;
(3),對應(yīng)法則是“求倒數(shù)”;
(4)<對應(yīng)法則是“求余弦”.
2.在下圖中的映射中,A中元素600的象是什么?B中元素的原象是什么?
A求正弦B
(五)歸納小結(jié)
提出問題:怎樣判斷建立在兩個集合上的一個對應(yīng)關(guān)系是否是一個映射,你能歸納出幾個“標(biāo)準(zhǔn)”呢?
師生一起歸納:判定是否是映射主要看兩條:一條是A集合中的元素都要有象,但B中元素未必要有原象;二條是A中元素與B中元素只能出現(xiàn)“一對一”或“多對一”的對應(yīng)形式.
(六)設(shè)置問題,留下懸念.
1.由學(xué)生舉出生活中兩個有關(guān)映射的實(shí)例.
2.已知是集合A上的任一個映射,試問在值域(A)中的任一個元素的原象,是否都是唯一的?為什么?
3.已知集合從集合A到集合B的映射,試問能構(gòu)造出多少映射?
AB
解:二對一,有3個映射;
一對一時,有3×2=6個映射
所以,共有9個映射
4.設(shè)集合A={a,b,c},B={0,1},試問:從A到B的映射一共有幾個?并將它們分別表示出來。
AB
【共有2×2×2=8個映射】
五、課后反思
高一數(shù)學(xué)教案:《指數(shù)》教學(xué)設(shè)計
高一數(shù)學(xué)教案:《指數(shù)》教學(xué)設(shè)計
教學(xué)目標(biāo)
1.理解分?jǐn)?shù)指數(shù)的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì).
(1) 理解n次方根,n次根式的概念及其性質(zhì),能根據(jù)性質(zhì)進(jìn)行相應(yīng)的根式計算.
(2) 能認(rèn)識到分?jǐn)?shù)指數(shù)是指數(shù)概念由整數(shù)向有理數(shù)的一次推廣,了解它是根式的一種新的寫法,能正確進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的互化.
(3) 能利用有理指數(shù)運(yùn)算性質(zhì)簡化根式運(yùn)算.
2.通過指數(shù)范圍的擴(kuò)大,使學(xué)生能理解運(yùn)算的本質(zhì),認(rèn)識到知識之間的聯(lián)系和轉(zhuǎn)化,認(rèn)識到符號化思想的重要性,在抽象的符號或字母的運(yùn)算中提高運(yùn)算能力.
3.通過對根式與分?jǐn)?shù)指數(shù)冪的關(guān)系的認(rèn)識,使學(xué)生能學(xué)會透過表面去認(rèn)清事物的本質(zhì).
教學(xué)建議
教材分析
(1)本節(jié)的教學(xué)重點(diǎn)是分?jǐn)?shù)指數(shù)冪的概念及其運(yùn)算性質(zhì).教學(xué)難點(diǎn)是根式的概念和分?jǐn)?shù)指數(shù)冪的概念.
(2)由于分?jǐn)?shù)指數(shù)冪的概念是借助 次方根給出的,而 次根式, 次方根又是學(xué)生剛剛接觸到的概念,也是比較陌生的.以此為基礎(chǔ)去學(xué)習(xí)認(rèn)識新知識自然是比較困難的.且 次方根,分?jǐn)?shù)指數(shù)冪的定義都是用抽象字母和符號的形式給出的,學(xué)生在接受理解上也是比較困難的.基于以上原因,根式和分?jǐn)?shù)指數(shù)冪的概念成為本節(jié)應(yīng)突破的難點(diǎn).
(3)學(xué)習(xí)本節(jié)主要目的是將指數(shù)從整數(shù)指數(shù)推廣到有理數(shù)指數(shù),為指數(shù)函數(shù)的研究作好準(zhǔn)備.且有理指數(shù)冪具備的運(yùn)算性質(zhì)還可以推廣到無理指數(shù)冪,也就是說在運(yùn)算上已將指數(shù)范圍推廣到了實(shí)數(shù)范圍,為對數(shù)運(yùn)算的出現(xiàn)作好了準(zhǔn)備,而使這些成為可能的就是分?jǐn)?shù)指數(shù)冪的引入.
教法建議
(1)根式概念的引入是本節(jié)教學(xué)的關(guān)鍵.為了讓學(xué)生感到根式的學(xué)習(xí)是很自然也很必要的,不妨在設(shè)計時可以考慮以下幾點(diǎn):
①先以具體數(shù)字為例,復(fù)習(xí)正整數(shù)冪,介紹各部分的名稱及運(yùn)算的本質(zhì)是乘方,讓它與學(xué)生熟悉的運(yùn)算聯(lián)系起來,樹立起轉(zhuǎn)化的觀點(diǎn).
②當(dāng)復(fù)習(xí)負(fù)指數(shù)冪時,由于與乘除共同有關(guān),所以出現(xiàn)了分式,這樣為分?jǐn)?shù)指數(shù)冪的運(yùn)算與根式相關(guān)作好準(zhǔn)備.
2.5指數(shù)(板書)
1. 關(guān)于整數(shù)指數(shù)冪的復(fù)習(xí)
(1)概念
既然是一種運(yùn)算,除了定義之外,自然要給出它的運(yùn)算規(guī)律,再來回顧一下關(guān)于整數(shù)指數(shù)冪的運(yùn)算性質(zhì).可以找一個學(xué)生說出相應(yīng)的運(yùn)算性質(zhì),教師用投影儀依次打出:
(2)運(yùn)算性質(zhì) ; ; .
復(fù)習(xí)后直接提出新課題,今天在此基礎(chǔ)上把指數(shù)從整數(shù)范圍推廣到分?jǐn)?shù)范圍.在剛才的復(fù)習(xí)我們已經(jīng)看到當(dāng)指數(shù)在整數(shù)范圍內(nèi)時,運(yùn)算最多也就是與分式有關(guān),如果指數(shù)推廣到分指數(shù)會與什么有關(guān)呢?應(yīng)與根式有關(guān).初中時雖然也學(xué)過一點(diǎn)根式,但不夠用,因此有必要先從根式說起.
為了加深對符號的認(rèn)識,還可以提出這樣的問題: 一定表示一個正數(shù)嗎? 中的 a定是正數(shù)或非負(fù)數(shù)嗎?讓學(xué)生來回答,在回答中進(jìn)一步認(rèn)清符號的含義,再從另一個角度進(jìn)行總結(jié)。
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計
教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.
2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.
學(xué)過什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
學(xué)生舉出如 等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個例子,問學(xué)生.
提問1. 是函數(shù)嗎?
(由學(xué)生討論, 發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做 .)
教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.
二、新課
現(xiàn)在請同學(xué)們打開書翻到第50 頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2函數(shù)
一、函數(shù)的概念