高中集合教案
發(fā)表時間:2020-04-01高一數(shù)學下冊《集合》知識點。
一名優(yōu)秀的教師在每次教學前有自己的事先計劃,高中教師在教學前就要準備好教案,做好充分的準備。教案可以讓學生更好的消化課堂內容,幫助授課經驗少的高中教師教學。怎么才能讓高中教案寫的更加全面呢?以下是小編為大家收集的“高一數(shù)學下冊《集合》知識點”僅供您在工作和學習中參考。
高一數(shù)學下冊《集合》知識點
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{xR|x-32},{x|x-32}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果AB,BC,那么AC
④如果AB同時BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
練習題:
1.(2010年高考廣東卷)若集合A={x|-2<x<1},B={x|0<x<2},則集合A∩B=()
A.{x|-1<x<1}B.{x|-2<x<1}
C.{x|-2<x<2}D.{x|0<x<1}
解析:選D.因為A={x|-2<x<1},B={x|0<x<2},所以A∩B={x|0<x<1}.
2.(2010年高考湖南卷)已知集合M={1,2,3},N={2,3,4}則()
A.MNB.NM
C.M∩N={2,3}D.M∪N={1,4}
解析:選C.∵M={1,2,3},N={2,3,4}.
∴選項A、B顯然不對.M∪N={1,2,3,4},
∴選項D錯誤.又M∩N={2,3},故選C.
3.已知集合M={y|y=x2},N={y|x=y(tǒng)2},則M∩N=()
A.{(0,0),(1,1)}B.{0,1}
C.{y|y≥0}D.{y|0≤y≤1}
解析:選C.M={y|y≥0},N=R,∴M∩N=M={y|y≥0}.
4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,則實數(shù)m的取值范圍是________.
解析:A∪B=A,即BA,∴m≥2.
答案:m≥2
相關閱讀
高一數(shù)學上冊《集合》知識點
經驗告訴我們,成功是留給有準備的人。作為高中教師準備好教案是必不可少的一步。教案可以讓上課時的教學氛圍非?;钴S,有效的提高課堂的教學效率。你知道怎么寫具體的高中教案內容嗎?小編經過搜集和處理,為您提供高一數(shù)學上冊《集合》知識點,相信能對大家有所幫助。
高一數(shù)學上冊《集合》知識點
1、集合的概念
集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)”。理解這句話,應該把握4個關鍵詞:對象、確定的、不同的、整體。
對象――即集合中的元素。集合是由它的元素唯一確定的。
整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。
確定的――集合元素的確定性――元素與集合的“從屬”關系。
不同的――集合元素的互異性。
2、有限集、無限集、空集的意義
有限集和無限集是針對非空集合來說的。我們理解起來并不困難。
我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下“0與Φ”及“Φ與{Φ}”的關系。
幾個常用數(shù)集N、N*、N+、Z、Q、R要記牢。
3、集合的表示方法
(1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合:
①元素不太多的有限集,如{0,1,8}
②元素較多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}
③呈現(xiàn)一定規(guī)律的無限集,如{1,2,3,…,n,…}
●注意a與{a}的區(qū)別
●注意用列舉法表示集合時,集合元素的“無序性”。
(2)特征性質描述法的關鍵是把所研究的集合的“特征性質”找準,然后適當?shù)乇硎境鰜砭托辛恕5P鍵點也是難點。學習時多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。
4、集合之間的關系
●注意區(qū)分“從屬”關系與“包含”關系
“從屬”關系是元素與集合之間的關系。
“包含”關系是集合與集合之間的關系。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用“”等符號,會用Venn圖描述集合之間的關系是基本要求。
●注意辨清Φ與{Φ}兩種關系。
高一數(shù)學下冊《集合與函數(shù)概念》知識點匯總
作為杰出的教學工作者,能夠保證教課的順利開展,教師要準備好教案,這是教師工作中的一部分。教案可以讓講的知識能夠輕松被學生吸收,幫助教師緩解教學的壓力,提高教學質量。你知道如何去寫好一份優(yōu)秀的教案呢?下面是小編為大家整理的“高一數(shù)學下冊《集合與函數(shù)概念》知識點匯總”,歡迎閱讀,希望您能閱讀并收藏。
高一數(shù)學下冊《集合與函數(shù)概念》知識點匯總
第一章集合與函數(shù)概念
一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性.第一章集合與函數(shù)概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數(shù)學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA
2.“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-11}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?BB?C那么A?C
④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
高一數(shù)學《集合有關概念》知識點總結
俗話說,居安思危,思則有備,有備無患。作為高中教師準備好教案是必不可少的一步。教案可以讓學生能夠聽懂教師所講的內容,幫助高中教師在教學期間更好的掌握節(jié)奏。那么,你知道高中教案要怎么寫呢?下面是由小編為大家整理的“高一數(shù)學《集合有關概念》知識點總結”,供大家借鑒和使用,希望大家分享!
高一數(shù)學《集合有關概念》知識點總結
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
u注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{xR|x-32},{x|x-32}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果AB,BC,那么AC
④如果AB同時BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
u有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型
交集
并集
補集
定義
由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
S
A
記作,即
CSA=
韋
恩
圖
示
S
A
性
質
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
例題:
1.下列四組對象,能構成集合的是()
A某班所有高個子的學生B著名的藝術家C一切很大的書D倒數(shù)等于它自身的實數(shù)
2.集合{a,b,c}的真子集共有個
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是.
4.設集合A=,B=,若AB,則的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。
6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.
7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
高一數(shù)學下冊《抽樣》知識點復習
高一數(shù)學下冊《抽樣》知識點復習
(1)抽簽法
一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
(抽簽法簡單易行,適用于總體中的個數(shù)不多時。當總體中的個體數(shù)較多時,將總體攪拌均勻就比較困難,用抽簽法產生的樣本代表性差的可能性很大)
(2)隨機數(shù)法
隨機抽樣中,另一個經常被采用的方法是隨機數(shù)法,即利用隨機數(shù)表、隨機數(shù)骰子或計算機產生的隨機數(shù)進行抽樣。
分層抽樣
簡介
分層抽樣(StratifiedRandomSampling)主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。
定義
一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣(stratifiedsampling)。
整群抽樣
定義
什么是整群抽樣(Clustersampling)
整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。
應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。
優(yōu)缺點
整群抽樣的優(yōu)點是實施方便、節(jié)省經費;
整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。
實施步驟
先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:
一、確定分群的標注
二、總體(N)分成若干個互不重疊的部分,每個部分為一群。
三、據(jù)各樣本量,確定應該抽取的群數(shù)。
四、采用簡單隨機抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。
例如,調查中學生患近視眼的情況,抽某一個班做統(tǒng)計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。
與分層抽樣的區(qū)別
整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。
分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;
分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
系統(tǒng)抽樣
定義
當總體中的個體數(shù)較多時,采用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然后按照預先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣(systematicsample)。
步驟
一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統(tǒng)抽樣:
(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、準考證號、門牌號等;
(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數(shù)時,取k=N/n;
(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l
(4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。
練習題:
1、抽樣推斷的基本內容是:()
A.參數(shù)估計
B.假設檢驗
C.參數(shù)估計和假設檢驗兩方面
D.數(shù)據(jù)的收集
2、抽樣平均誤差的實質是()
A.總體標準差
B.抽樣總體的標準差
C.抽樣總體方差
D.樣本平均數(shù)(成數(shù)〉的標準差
3、不重復抽樣平均誤差:()
A.總是大于重復抽樣平均誤差
B.總是小于重復抽樣平均誤差
C.總是等于重復抽樣平均誤差
D.上情況都可能發(fā)生
4、在其它條件不變的情況下,抽樣單位數(shù)增加一半,抽樣平差:()
A.縮小為原來的81.6%
B.縮小為原來的50%
C.縮小為原來的25%
D.擴大為原來的四倍
5、樣本的形成是:()
A.隨機的
B.隨意的
C.非隨機的
D.確定的
6、抽樣誤差之所以產生是由于:()
A.破壞了隨機抽樣的原則。
B.抽樣總體的結構不足以代表總體的結構。
C.破壞了抽樣的系統(tǒng)。
D.調查人員的素質。