高中概率教案
發(fā)表時間:2021-05-06初三數(shù)學第25章概率初步導學案。
一般給學生們上課之前,老師就早早地準備好了教案課件,大家靜下心來寫教案課件了。必須要寫好了教案課件計劃,未來的工作就會做得更好!你們會寫一段優(yōu)秀的教案課件嗎?考慮到您的需要,小編特地編輯了“初三數(shù)學第25章概率初步導學案”,相信能對大家有所幫助。
《概率初步》1第一節(jié)隨機事件導學案
主編人:占利華主審人:
班級:學號:姓名:
學習目標:
【知識與技能】
了解必然發(fā)生的事件、不可能發(fā)生的事件、隨機事件的特點。
【過程與方法】
經(jīng)歷體驗、操作、觀察、歸納、總結(jié)的過程,發(fā)展從紛繁復雜的表象中,提煉出本質(zhì)特征并加以抽象概括的能力。
【情感、態(tài)度與價值觀】
通過親身體驗、親自演示,感受數(shù)學就在身邊,使學生樂于親近數(shù)學,感受數(shù)學,喜歡數(shù)學。
【重點】
隨機事件的特點
【難點】
判斷現(xiàn)實生活中哪些事件是隨機事件。
學習過程:
一、自主學習
(一)復習鞏固
5名同學參加演講比賽,以抽簽方式?jīng)Q定每個人的出場順序。簽筒中有5根形狀大小相同的紙簽,上面分別標有出場的序號1,2,3,4,5。小軍首先抽簽,他在看不到的紙簽上的數(shù)字的情況從簽筒中隨機(任意)地取一根紙簽。請考慮以下問題:
1、抽到的序號有幾種可能的結(jié)果?
2、抽到的序號是0,可能嗎?
3、抽到的序號小于6,可能嗎?
4、抽到的序號是1,可能嗎?
5、你能列舉與問題4相似的事件嗎?
(二)自主探究
小偉擲一個質(zhì)地均勻的正方形骰子,骰子的六個面上分別刻有1至6的點數(shù)。請考慮以下問題,擲一次骰子,觀察骰子向上的一面:
1、可能出現(xiàn)哪些點數(shù)?
2、出現(xiàn)的點數(shù)是7,可能嗎?213、出現(xiàn)的點數(shù)大于0,可能嗎?
4、出現(xiàn)的點數(shù)是4,可能嗎?
(三)、歸納總結(jié):
1.必然事件是指
上述兩個實驗中哪些是必然事件:
2、不可能事件是指:
上述兩個實驗中哪些是不可能事件:
必然事件與不可能事件統(tǒng)稱為:
3、怎樣的事件稱為隨機事件呢?
舉例說明:
(四)自我嘗試:
指出下列事件中哪些是必然發(fā)生的,哪些是不可能發(fā)生的,哪些是隨機事件?
1.通常加熱到100°C時,水沸騰;
2.姚明在罰球線上投籃一次,命中;
3.擲一次骰子,向上的一面是6點;
4.度量三角形的內(nèi)角和,結(jié)果是360°;
5.經(jīng)過城市中某一有交通信號燈的路口,遇到紅燈;
6.某射擊運動員射擊一次,命中靶心;
7.太陽東升西落;
8.人離開水可以正常生活100天;
9.正月十五雪打燈;
10.宇宙飛船的速度比飛機快.
二、教師點拔
1、必然事件是?不可能事件是?確定事件是?
2、隨機事件是?
3、本節(jié)學習的數(shù)學方法是動手操作和合理想象。
三、課堂檢測
練習(一)指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是隨機事件。
(1)兩直線平行,內(nèi)錯角相等;
(2)劉翔再次打破110米欄的世界紀錄;
(3)打靶命中靶心;(
4)擲一次骰子,向上一面是3點;
(5)13個人中,至少有兩個人出生的月份相同;
(6)經(jīng)過有信號燈的十字路口,遇見紅燈;
(7)在裝有3個球的布袋里摸出4個球
(8)物體在重力的作用下自由下落。21世紀教育網(wǎng)
(9)拋擲一千枚硬幣,全部正面朝上。
練習(二)下列問題哪些是必然事件()哪些是不可能事件()哪些是隨機事件()(填序號即可)
①在標準大氣壓下且溫度低于0℃時,冰融化;
②某人的體溫是40℃;
③擲一枚硬幣,出現(xiàn)正面向上;
④導體通電后發(fā)熱;
⑤沒有水分,種子發(fā)芽;
練習(三)下列問題哪些是必然事件哪些是不可能事件()哪些是隨機事件()?(填序號即可)
①如果ab,那么a-b0;
②a2+b2=-1(其中a,b都是實數(shù));
③一元二次方程x2+2x+3=0無實數(shù)解;
④2010年2月有29天;
⑤相等的圓心角所對的弧相等。
四、課外訓練
1:指出下列事件中,必然事件是;不可能事件是;隨機事件的是。(填序號即可)
(1)兩直線平行,內(nèi)錯角相等;(2)劉翔再次打破110米欄的世界紀錄;
(3)打靶命中靶心;(4)擲一次骰子,向上一面是3點;
(5)13個人中,至少有兩個人出生的月份相同;(6)經(jīng)過有信號燈的十字路口,遇見紅燈;(7)在裝有3個球的布袋里摸出4個球(8)物體在重力的作用下自由下落。
(9)拋擲一百枚硬幣,全部正面朝上。
2、下列事件是隨機事件的是()
A:人長生不老B:2010年廣州亞運會會中國隊獲180枚金牌
C:擲兩枚質(zhì)地均勻的正方體骰子朝上一面的點數(shù)之積為21D:一個星期為七天
3、下列事件是隨機事件()
①小王數(shù)學下次月考考150分②多哈亞運會中國隊金牌總數(shù)第一名③異性電荷,相互吸引④明天下雪⑤一袋中有若干球,其中有2個紅球,小紅從中摸出3個球,都是紅球
(A)①③⑤(B)②④(C)①④(D)②⑤
4、下列成語故事所描述事件為必然發(fā)生的是()
A水中撈月B拔苗助長C守株待兔D甕中捉鱉
5、.在1,2,3,…,10這10個數(shù)字中,任取3個數(shù)字,那么“這三個數(shù)字的和大于6”這一事件是()
A.必然事件B.不可能事件C.隨機事件D.以上選項均不正確
6、下列說法錯誤的是()
A.“在標準大氣壓下,水加熱到100℃時沸騰”是必然事件
B.“姚明在一場比賽中投球的命中率為60%”是隨機事件
C.“在不受外力作用的條件下,做勻速直線運動的物體改變其勻速直線運動狀態(tài)”是不可能事件
D.“赤峰市明年今天的天氣與今天一樣”是必然事件
7、小偉擲一個質(zhì)地均勻的正方形骰子,骰子的六個面上分別刻有1至6的點數(shù)。請考慮以下問題,擲一次骰子,觀察骰子向上的一面:
(1)出現(xiàn)的點數(shù)是8,可能嗎?這是什么事件?
(2)出現(xiàn)的點數(shù)大于0,可能嗎?這是什么事件?
(3)出現(xiàn)的點數(shù)是3,可能嗎?這是什么事件?
擴展閱讀
初三數(shù)學第24章圓導學案
老師會對課本中的主要教學內(nèi)容整理到教案課件中,大家應該開始寫教案課件了。我們制定教案課件工作計劃,才能對工作更加有幫助!你們會寫多少教案課件范文呢?為了讓您在使用時更加簡單方便,下面是小編整理的“初三數(shù)學第24章圓導學案”,僅供您在工作和學習中參考。
數(shù)學課題24.1.2垂直于弦的直徑
課型新授班級九年級姓名
學習
目標1.理解圓的軸對稱性;
2.了解拱高、弦心距等概念;
3.使學生掌握垂徑定理,并能應用它解決有關(guān)弦的計算和證明問題。;
沉默是金難買課堂一分,躍躍欲試不如親身嘗試!
學法指導合作交流、討論、
一、自主先學————相信自己,你最棒!
⒈敘述:請同學敘述圓的集合定義?
⒉連結(jié)圓上任意兩點的線段叫圓的________,圓上兩點間的部分叫做_____________,
在同圓或等圓中,能夠互相重合的弧叫做______________。
3.課本P80頁有關(guān)“趙州橋”問題。
二、展示時刻——集體的智慧是無窮的,攜手解決下面的問題吧!
1)、動手實踐,發(fā)現(xiàn)新知
⒈同學們能不能找到下面這個圓的圓心?動手試一試,有方
法的同學請舉手。
⒉問題:①在找圓心的過程中,把圓紙片折疊時,兩個半圓_______
②剛才的實驗說明圓是____________,對稱軸是經(jīng)過圓心的每
一條_________。
2)、創(chuàng)設情境,探索垂徑定理
⒈在找圓心的過程中,折疊的兩條相交直徑可以是哪樣一些位置關(guān)系呢?
垂直是特殊情況,你能得出哪些等量關(guān)系?
⒉若把AB向下平移到任意位置,變成非直徑的弦,觀察一下,還有與剛才相類似的結(jié)論嗎?
⒊要求學生在圓紙片上畫出圖形,并沿CD折疊,實驗后提出猜想。
⒋猜想結(jié)論是否正確,要加以理論證明引導學生寫出已知,求證。
然后讓學生閱讀課本P81證明,并回答下列問題:
①書中證明利用了圓的什么性質(zhì)?
②若只證AE=BE,還有什么方法?
⒌垂徑定理:
分析:給出定理的推理格式
6.辨析題:下列各圖,能否得到AE=BE的結(jié)論?為什么?
三、學生展示——面對困難別退縮,相信自己一定行?。?!
1.如圖1,如果AB為⊙O的直徑,弦CD⊥AB,垂足為E,那么下列結(jié)論中,錯誤的是().
A.CE=DEB.C.∠BAC=∠BADD.ACAD
(圖1)(圖2)(圖3)(圖4)
2.如圖2,⊙O的直徑為10,圓心O到弦AB的距離OM的長為3,則弦AB的長是()
A.4B.6C.7D.8
3.如圖3,已知⊙O的半徑為5mm,弦AB=8mm,則圓心O到AB的距離是()
A.1mmB.2mmmC.3mmD.4mm
4.P為⊙O內(nèi)一點,OP=3cm,⊙O半徑為5cm,則經(jīng)過P點的最短弦長為________;
最長弦長為_______.
5.如圖4,OE⊥AB、OF⊥CD,如果OE=OF,那么_______(只需寫一個正確的結(jié)論)
6、已知,如圖所示,點O是∠EPF的平分線上的一點,以O為圓心的圓和角的兩邊分別
交于點A、B和C、D。求證:AB=CD
五、當堂訓練
一、定理的應用
1、已知:在圓O中,⑴弦AB=8,O到AB的距離等于3,(1)求圓O的半徑。
⑵若OA=10,OE=6,求弦AB的長。
2.練習P82頁練習2
四、自我反思:
本節(jié)課我的收獲:。
24.1.2垂直于弦的直徑作業(yè)紙
設計:韓偉班級姓名
一、必做題
1、⊙O的半徑是5,P是圓內(nèi)一點,且OP=3,過點P最短弦、最長弦的長為.
2、如右圖2所示,已知AB為⊙O的直徑,且AB⊥CD,垂足為M,CD=8,AM=2,
則OM=.
3、⊙O的半徑為5,弦AB的長為6,則AB的弦心距長為.
4、已知一段弧AB,請作出弧AB所在圓的圓心。
5、問題1:如圖1,AB是兩個以O為圓心的同心圓中大圓的直徑,AB交小圓交于C、D兩點,求證:AC=BD
問題2:把圓中直徑AB向下平移,變成非直徑的弦AB,如圖2,是否仍有AC=BD呢?
問題3:在圓2中連結(jié)OC,OD,將小圓隱去,得圖4,設OC=OD,求證:AC=BD
問題4:在圖2中,連結(jié)OA、OB,將大圓隱去,得圖5,設AO=BO,求證:AC=BD
6.如圖,已知AB是⊙O的弦,P是AB上一點,若AB=10,PB=4,OP=5,
求⊙O的半徑的長。
初三數(shù)學概率初步知識點復習
初三數(shù)學概率初步知識點復習
從直觀上來看,初中數(shù)學統(tǒng)計與概率知識點明顯與代數(shù)息息相關(guān),實則統(tǒng)計學也離不開幾何,而在我們學習統(tǒng)計與概率的時候,已經(jīng)深深理解,這是一塊與現(xiàn)實生活,尤其是經(jīng)濟生活密不可分的知識。我們需要做到
1.了解通過全面調(diào)查和抽樣調(diào)查收集數(shù)據(jù)的方法.
2.會設計簡單的調(diào)查問卷收集數(shù)據(jù);能根據(jù)問題查找有關(guān)資料,獲得數(shù)據(jù)信息.
3.掌握劃記法,會用表格整理數(shù)據(jù).
4.認識條形圖、折線網(wǎng)、扇形圖,掌握它們各自的特點,會畫扇形圖,會用扇形圖描述數(shù)據(jù).
5.結(jié)合實例進一步理解頻數(shù)的概念,了解頻數(shù)分布的意義和作用.
6.能夠根據(jù)需要對數(shù)據(jù)進行適當?shù)姆纸M;會列頻數(shù)分布表,會畫頻數(shù)分布直方圖和頻率折線圖.
7.根據(jù)問題需要選擇適當?shù)慕y(tǒng)計圖描述數(shù)據(jù).
8.平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義選擇適當?shù)慕y(tǒng)計量表示數(shù)據(jù)的集中趨勢.
9.會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況;能用計算器的統(tǒng)計功能進行統(tǒng)訃計算,進一步體會計算器的優(yōu)越性.
10.會用樣本平均數(shù)、方差估計總體的平均數(shù)、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想.
11.從事收集、整理、描述和分析數(shù)據(jù)得出結(jié)論的統(tǒng)計活動,經(jīng)歷數(shù)據(jù)處理的基本過程,體驗統(tǒng)計與生活的聯(lián)系,感受統(tǒng)計在生活和生產(chǎn)中的作用,養(yǎng)成用數(shù)據(jù)說話的習慣和實事求是的科學態(tài)度
1.條形圖是使用寬度相同的條形的高度或長短來表示數(shù)據(jù)變動的統(tǒng)計圖.條形圖可以橫置或縱置,縱置時也稱柱形圖.繪制時,如果將各類別(或組別)放狂橫軸,則用條形的高度表示頻數(shù);如果將各類別(或組別)放在縱軸,則用條形的長短表示頻數(shù).
2.扇形圖也稱圓形圖或餅圖,是用圓及圓內(nèi)扇形的面積來表示數(shù)值大小的統(tǒng)計圖.扇形圖主要用于表示總體中各組成部分所占的比例,對于研究結(jié)構(gòu)性問題很有用.
3.折線圖是在平I坷直角坐標系中用折線表現(xiàn)數(shù)量變化特征和規(guī)律的統(tǒng)計圖,主要用于顯示時間序列數(shù)據(jù),用于反映事物發(fā)展變化的規(guī)律和趨勢.
4.直方圖是用長方形的長度和寬度來表示頻數(shù)分布的統(tǒng)訓圖.在平面直角坐標系中,橫軸表示數(shù)據(jù)分組,縱軸表示頻數(shù),這樣,各組與相應的頻數(shù)就形成一些長方形,即直方圖.
5.若n個數(shù)*,也,…^的權(quán)分別是,9W2,…,。,則魚筆÷冬等去二士壘墜叫做這。個數(shù)的加權(quán)平均數(shù),統(tǒng)計rp也常把下面的這種算術(shù)平均數(shù)看成加權(quán)平均數(shù),在求n個數(shù)的算術(shù)平均數(shù)時,如果m,出現(xiàn)^次,*:出現(xiàn)五次,…,z。出現(xiàn)^次(這里^正…^=n),那么這n個數(shù)的算術(shù)平均數(shù);=型_!邁÷二二!塹也叫做x。尚,…,‰這^個數(shù)的加權(quán)平均數(shù).其中^以,…Z分別叫做x。,*:,…,扎的權(quán).
6.將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù).平均數(shù)、中位數(shù)和眾數(shù)都可以作為一組數(shù)據(jù)的代表,它們各有自己的特點,能夠從不同的角度提供信息.在實際應用中,需要分析具體問題的情況,選擇適當?shù)牧縼泶頂?shù)據(jù).
初三數(shù)學上冊第二十五章概率初步教案
每個老師需要在上課前弄好自己的教案課件,大家在細心籌備教案課件中。我們制定教案課件工作計劃,才能在以后有序的工作!哪些范文是適合教案課件?下面是小編為大家整理的“初三數(shù)學上冊第二十五章概率初步教案”,大家不妨來參考。希望您能喜歡!
第二十五章概率
課題:25.1隨機事件
教學目標:
知識技能目標
了解必然發(fā)生的事件、不可能發(fā)生的事件、隨機事件的特點.
數(shù)學思考目標
學生經(jīng)歷體驗、操作、觀察、歸納、總結(jié)的過程,發(fā)展學生從紛繁復雜的表
象中,提煉出本質(zhì)特征并加以抽象概括的能力.
解決問題目標
能根據(jù)隨機事件的特點,辨別哪些事件是隨機事件.
情感態(tài)度目標
引領(lǐng)學生感受隨機事件就在身邊,增強學生珍惜機會,把握機會的意識.
教學重點:
隨機事件的特點.
教學難點:
判斷現(xiàn)實生活中哪些事件是隨機事件.
教學過程
活動一
【問題情境】
摸球游戲
三個不透明的袋子均裝有10個乒乓球.挑選多名同學來參加游戲.
游戲規(guī)則
每人每次從自己選擇的袋子中摸出一球,記錄下顏色,放回,攪勻,重復前面的試驗.每人摸球5次.按照摸出黃色球的次數(shù)排序,次數(shù)最多的為第一名,其次為第二名,最少的為第三名.
【師生行為】
教師事先準備的三個袋子中分別裝有10個白色的乒乓球;5個白色的乒乓球和5個黃色的乒乓球;10個黃色的乒乓球.
學生積極參加游戲,通過操作和觀察,歸納猜測出在第1個袋子中摸出黃色球是不可能的,在第2個袋子中能否摸出黃色球是不確定的,在第3個袋子中摸出黃色球是必然的.
教師適時引導學生歸納出必然發(fā)生的事件、隨機事件、不可能發(fā)生的事件的特點.
【設計意圖】
通過生動、活潑的游戲,自然而然地引出必然發(fā)生的事件、隨機事件和不可能發(fā)生的事件,不僅能夠激發(fā)學生的學習興趣,并且有利于學生理解.能夠巧妙地實現(xiàn)從實踐認識到理性認識的過渡.
活動二
【問題情境】
指出下列事件中哪些是必然發(fā)生的,哪些是不可能發(fā)生的,哪些是隨機事件?
1.通常加熱到100°C時,水沸騰;
2.姚明在罰球線上投籃一次,命中;
3.擲一次骰子,向上的一面是6點;
4.度量三角形的內(nèi)角和,結(jié)果是360°;
5.經(jīng)過城市中某一有交通信號燈的路口,遇到紅燈;
6.某射擊運動員射擊一次,命中靶心;
7.太陽東升西落;
8.人離開水可以正常生活100天;
9.正月十五雪打燈;
10.宇宙飛船的速度比飛機快.
【師生行為】
教師利用多媒體課件演示問題,使問題情境更具生動性.
學生積極思考,回答問題,進一步夯實必然發(fā)生的事件、隨機事件和不可能發(fā)生的事件的特點.在比較充分的感知下,達到加深理解的目的.
教師在學生完成問題后應注意引導學生發(fā)現(xiàn)在我們生活的周圍大量地存在著隨機事件.
【設計意圖】
引領(lǐng)學生經(jīng)歷由實踐認識到理性認識再重新認識實踐問題的過程,同時引入一些常識問題,使學生進一步感悟數(shù)學是認識客觀世界的重要工具.
活動三
【問題情境】
情境1
5名同學參加講演比賽,以抽簽方式?jīng)Q定每個人的出場順序.簽筒中有5根形狀、大小相同的紙簽,上面分別標有出場的序號1,2,3,4,5.小軍首先抽簽,他在看不到紙簽上的數(shù)字的情況下從簽筒中隨機地抽取一根紙簽.
情境2
小偉擲一個質(zhì)地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù).
在具體情境中列舉不可能發(fā)生的事件、必然發(fā)生的事件和隨機事件.
【師生行為】
學生首先獨立思考,再把自己的觀點和小組其他同學交流,并提煉出小組成員列舉的主要事件,在全班發(fā)布.
【設計意圖】
開放性的問題有利于培養(yǎng)學生的發(fā)散性思維和創(chuàng)新思維,也有利于學生加深對學習內(nèi)容的理解.
活動四
【問題情境】
請你列舉一些生活中的必然發(fā)生的事件、隨機事件和不可能發(fā)生的事件.
【師生行為】
教師引導學生充分交流,熱烈討論.
【設計意圖】
隨機事件在現(xiàn)實世界中廣泛存在.通過讓學生自己找到大量豐富多彩的實例,使學生從不同側(cè)面、不同視角進一步深化對隨機事件的理解與認識.
活動五
【問題情境】
李寧運動品牌打出的口號是“一切皆有可能”,請你談談對這句話的理解.
【師生行為】
教師注意引導學生獨立思考,交流合作,提升學生對問題的理解與判斷能力.
【設計意圖】
有意識地引領(lǐng)學生從數(shù)學的角度重新審視現(xiàn)實世界,初步感悟辯證統(tǒng)一的思想.
活動六
【問題情境】
歸納、小結(jié)
布置作業(yè)
設計一個摸球游戲,要求對甲乙公平.
【師生行為】
學生反思、討論.學生在設計游戲的過程中,進一步感悟隨機事件的特點.作業(yè)的開放性為學生創(chuàng)設了更大的學習空間.
【設計意圖】
課堂小結(jié)采取學生反思匯報形式,幫助學生形成較完整的認知結(jié)構(gòu).作業(yè)使課堂內(nèi)容得以豐富和延展.
教學設計說明
現(xiàn)實生活中存在著大量的隨機事件,而概率正是研究隨機事件的一門學科.本課是“概率初步”一章的第一節(jié)課.教學中,教師首先以一個學生喜聞樂見的摸球游戲為背景,通過試驗與分析,使學生體驗有些事件的發(fā)生是必然的、有些是不確定的、有些是不可能的,引出必然發(fā)生的事件、隨機事件、不可能發(fā)生的事件.然后,通過對不同事件的分析判斷,讓學生進一步理解必然發(fā)生的事件、隨機事件、不可能發(fā)生的事件的特點.結(jié)合具體問題情境,引領(lǐng)學生設計提出必然發(fā)生的事件、隨機事件、不可能發(fā)生的事件,具有相當?shù)拈_放度,鼓勵學生的逆向思維與創(chuàng)新思維,在一定程度上滿足了不同層次學生的學習需要.
做游戲是學習數(shù)學最好的方法之一,根據(jù)本節(jié)課內(nèi)容的特點,教師設計了摸球游戲,力求引領(lǐng)學生在游戲中形成新認識,學習新概念,獲得新知識,充分調(diào)動了學生學習數(shù)學的積極性,體現(xiàn)了學生學習的自主性.在游戲中參與數(shù)學活動,在游戲中分析、歸納、合作、思考,領(lǐng)悟數(shù)學道理.在快樂輕松的學習氛圍中,顯性目標和隱性目標自然達成,在一定程度上,開創(chuàng)了一個嶄新的數(shù)學課堂教學模式.
課題:25.1.2概率的意義
教學目標:
〈一〉知識與技能
1.知道通過大量重復試驗時的頻率可以作為事件發(fā)生概率的估計值
2.在具體情境中了解概率的意義
〈二〉教學思考
讓學生經(jīng)歷猜想試驗--收集數(shù)據(jù)--分析結(jié)果的探索過程,豐富對隨機現(xiàn)象的體驗,體會概率是描述不確定現(xiàn)象規(guī)律的數(shù)學模型.初步理解頻率與概率的關(guān)系.
〈三〉解決問題
在分組合作學習過程中積累數(shù)學活動經(jīng)驗,發(fā)展學生合作交流的意識與能力.鍛煉質(zhì)疑、獨立思考的習慣與精神,幫助學生逐步建立正確的隨機觀念.
〈四〉情感態(tài)度與價值觀
在合作探究學習過程中,激發(fā)學生學習的好奇心與求知欲.體驗數(shù)學的價值與學習的樂趣.通過概率意義教學,滲透辯證思想教育.
【教學重點】在具體情境中了解概率意義.
【教學難點】對頻率與概率關(guān)系的初步理解
【教具準備】壹元硬幣數(shù)枚、圖釘數(shù)枚、多媒體課件
【教學過程】
一、創(chuàng)設情境,引出問題
教師提出問題:周末市體育場有一場精彩的籃球比賽,老師手中只有一張球票,小強與小明都是班里的籃球迷,兩人都想去.我很為難,真不知該把球給誰.請大家?guī)臀蚁雮€辦法來決定把球票給誰.
學生:抓鬮、抽簽、猜拳、投硬幣,……
教師對同學的較好想法予以肯定.(學生肯定有許多較好的想法,在眾多方法中推舉出大家較認可的方法.如抓鬮、投硬幣)
追問,為什么要用抓鬮、投硬幣的方法呢?
由學生討論:這樣做公平.能保證小強與小明得到球票的可能性一樣大
在學生討論發(fā)言后,教師評價歸納.
用拋擲硬幣的方法分配球票是個隨機事件,盡管事先不能確定“正面朝上”還上“反面朝上”,但同學們很容易感覺到或猜到這兩個隨機事件發(fā)生的可能性是一樣的,各占一半,所以小強、小明得到球票的可能性一樣大.
質(zhì)疑:那么,這種直覺是否真的是正確的呢?
引導學生以投擲壹元硬幣為例,不妨動手做投擲硬幣的試驗來驗證一下.
說明:現(xiàn)實中不確定現(xiàn)象是大量存在的,新課標指出:“學生數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義、富有挑戰(zhàn)的”,設置實際生活問題情境貼近學生的生活實際,很容易激發(fā)學生的學習熱情,教師應對此予以肯定,并鼓勵學生積極思考,為課堂教學營造民主和諧的氣氛,也為下一步引導學生開展探索交流活動打下基礎(chǔ).
二、動手實踐,合作探究
1.教師布置試驗任務.
(1)明確規(guī)則.
把全班分成10組,每組中有一名學生投擲硬幣,另一名同學作記錄,其余同學觀察試驗必須在同樣條件下進行.
(2)明確任務,每組擲幣50次,以實事求是的態(tài)度,認真統(tǒng)計“正面朝上”的頻數(shù)及“正面朝上”的頻率,整理試驗的數(shù)據(jù),并記錄下來..
2.教師巡視學生分組試驗情況.
注意:
(1).觀察學生在探究活動中,是否積極參與試驗活動、是否愿意交流等,關(guān)注學生是否積極思考、勇于克服困難.
(2).要求真實記錄試驗情況.對于合作學習中有可能產(chǎn)生的紀律問題予以調(diào)控.
3.各組匯報實驗結(jié)果.
由于試驗次數(shù)較少,所以有可能有些組試驗獲得的“正面朝上”的頻率與先前的猜想有出入.
提出問題:是不是我們的猜想出了問題?引導學生分析討論產(chǎn)生差異的原因.
在學生充分討論的基礎(chǔ)上,啟發(fā)學生分析討論產(chǎn)生差異的原因.使學生認識到每次隨機試驗的頻率具有不確定性,同時相信隨機事件發(fā)生的頻率也有規(guī)律性,引導他們小組合作,進一步探究.
解決的辦法是增加試驗的次數(shù),鑒于課堂時間有限,引導學生進行全班交流合作.
4.全班交流.
把各組測得數(shù)據(jù)一一匯報,教師將各組數(shù)據(jù)記錄在黑板上.全班同學對數(shù)據(jù)進行累計,按照書上P140要求填好25-2.并根據(jù)所整理的數(shù)據(jù),在25.1-1圖上標注出對應的點,完成統(tǒng)計圖.
表25-2
拋擲次數(shù)50100150200250300350400450500
“正面向上”的頻數(shù)
“正面向上”的頻率
想一想1(投影出示).觀察統(tǒng)計表與統(tǒng)計圖,你發(fā)現(xiàn)“正面向上”的頻率有什么規(guī)律?
注意學生的語言表述情況,意思正確予以肯定與鼓勵.“正面朝上”的頻率在0.5上下波動.
想一想2(投影出示)
隨著拋擲次數(shù)增加,“正面向上”的頻率變化趨勢有何規(guī)律?
在學生討論的基礎(chǔ)上,教師幫助歸納.使學生認識到每次試驗中隨機事件發(fā)生的頻率具有不確定性,同時發(fā)現(xiàn)隨機事件發(fā)生的頻率也有規(guī)律性.在試驗次數(shù)較少時,“正面朝上”的頻率起伏較大,而隨著試驗次數(shù)的逐漸增加,一般地,頻率會趨于穩(wěn)定,“正面朝上”的頻率越來越接近0.5.這也與我們剛開始的猜想是一致的.我們就用0.5這個常數(shù)表示“正面向上”發(fā)生的可能性的大小.
說明:注意幫助解決學生在填寫統(tǒng)計表與統(tǒng)計圖遇到的困難.通過以上實踐探究活動,讓學生真實地感受到、清楚地觀察到試驗所體現(xiàn)的規(guī)律,即大量重復試驗事件發(fā)生的頻率接近事件發(fā)生的可能性的大小(概率).鼓勵學生在學習中要積極合作交流,思考探究.學會傾聽別人意見,勇于表達自己的見解.
為了給學生提供大量的、快捷的試驗數(shù)據(jù),利用計算機模擬擲硬幣試驗的課件,豐富學生的體驗、提高課堂教學效率,使他們能直觀地、便捷地觀察到試驗結(jié)果的規(guī)律性--大量重復試驗中,事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近.
其實,歷史上有許多著名數(shù)學家也做過擲硬幣的試驗.讓學生閱讀歷史上數(shù)學家做擲幣試驗的數(shù)據(jù)統(tǒng)計表(看書P141表25-3).
表25-3
試驗者拋擲次數(shù)(n)“正面朝上”次數(shù)(m)“正面向上”頻率(m/n)
棣莫弗204810610.518
布豐404020480.5069
費勒1000049790.4979
皮爾遜1200060190.5016
皮爾遜24000120120.5005
通過以上學生親自動手實踐,電腦輔助演示,歷史材料展示,讓學生真實地感受到、清楚地觀察到試驗所體現(xiàn)的規(guī)律,大量重復試驗中,事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近,即大量重復試驗事件發(fā)生的頻率接近事件發(fā)生的可能性的大?。ǜ怕剩?同時,又感受到無論試驗次數(shù)多么大,也無法保證事件發(fā)生的頻率充分地接近事件發(fā)生的概率.
在探究學習過程中,應注意評價學生在活動中參與程度、自信心、是否愿意交流等,鼓勵學生在學習中不怕困難積極思考,敢于表達自己的觀點與感受,養(yǎng)成實事求是的科學態(tài)度.
5.下面我們能否研究一下“反面向上”的頻率情況?
學生自然可依照“正面朝上”的研究方法,很容易總結(jié)得出:“反面向上”的頻率也相應穩(wěn)定到0.5.
教師歸納:
(1)由以上試驗,我們驗證了開始的猜想,即拋擲一枚質(zhì)地均勻的硬幣時,“正面向上”與“反面向上”的可能性相等(各占一半).也就是說,用拋擲硬幣的方法可以使小明與小強得到球票的可能性一樣.
(2)在實際生活還有許多這樣的例子,如在足球比賽中,裁判用擲硬幣的辦法來決定雙方的比賽場地等等.
說明:這個環(huán)節(jié),讓學生親身經(jīng)歷了猜想試驗——收集數(shù)據(jù)——分析結(jié)果的探索過程,在真實數(shù)據(jù)的分析中形成數(shù)學思考,在討論交流中達成知識的主動建構(gòu),為下一環(huán)節(jié)概率意義的教學作了很好的鋪墊.
三、評價概括,揭示新知
問題1.通過以上大量試驗,你對頻率有什么新的認識?有沒有發(fā)現(xiàn)頻率還有其他作用?
學生探究交流.發(fā)現(xiàn)隨機事件的可能性的大小可以用隨機事件發(fā)生的頻率逐漸穩(wěn)定到的值(或常數(shù))估計或去描述.
通過猜想試驗及探究討論,學生不難有以上認識.對學生可能存在語言上、描述中的不準確等注意予以糾正,但要求不必過高.
歸納:以上我們用隨機事件發(fā)生的頻率逐漸穩(wěn)定到的常數(shù)刻畫了隨機事件的可能性的大小.
那么我們給這樣的常數(shù)一個名稱,引入概率定義.給出概率定義(板書):一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability),記作P(A)=p.
注意指出:
1.概率是隨機事件發(fā)生的可能性的大小的數(shù)量反映.
2.概率是事件在大量重復試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.
想一想(學生交流討論)
問題2.頻率與概率有什么區(qū)別與聯(lián)系?
從定義可以得到二者的聯(lián)系,可用大量重復試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.
說明:猜想試驗、分析討論、合作探究的學習方式十分有益于學生對概率意義的理解,使之明確頻率與概率的聯(lián)系,也使本節(jié)課教學重難點得以突破.為下節(jié)課進一步研究概率和今后的學習打下了基礎(chǔ).當然,學生隨機觀念的養(yǎng)成是循序漸進的、長期的.這節(jié)課教學應把握教學難度,注意關(guān)注學生接受情況.
四.練習鞏固,發(fā)展提高.
學生練習
1.書上P143.練習.1.鞏固用頻率估計概率的方法.
2.書上P143.練習.2鞏固對概率意義的理解.
教師應當關(guān)注學生對知識掌握情況,幫助學生解決遇到的問題.
五.歸納總結(jié),交流收獲:
1.學生互相交流這節(jié)課的體會與收獲,教師可將學生的總結(jié)與板書串一起,使學生對知識掌握條理化、系統(tǒng)化.
2.在學生交流總結(jié)時,還應注意總結(jié)評價這節(jié)課所經(jīng)歷的探索過程,體會到的數(shù)學價值與合作交流學習的意義.
【作業(yè)設計】
(1)完成P144習題25.12、4
(2)課外活動分小組活動,用試驗方法獲得圖釘從一定高度落下后釘尖著地的概率.
【教學設計說明】
這節(jié)課是在學習了25.1.1節(jié)隨機事件的基礎(chǔ)上學習的,學生通過大量重復試驗,體驗用事件發(fā)生的頻率去刻畫事件發(fā)生的可能性大小,從而得到概率的定義.
1.對概率意義的正確理解,是建立在學生通過大量重復試驗后,發(fā)現(xiàn)事件發(fā)生的頻率可以刻畫隨機事件發(fā)生可能性的基礎(chǔ)上.結(jié)合學生認知規(guī)律與教材特點,這節(jié)課以用擲硬幣方法分配球票為問題情境,引導學生親身經(jīng)歷猜測試驗—收集數(shù)據(jù)—分析結(jié)果的探索過程.這符合《新課標》“從學生已有生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象為數(shù)學模型并進行解釋與應用的過程”的理念.
貼近生活現(xiàn)實的問題情境,不僅易于激發(fā)學生的求知欲與探索熱情,而且會促進他們面對要解決的問題大膽猜想,主動試驗,收集數(shù)據(jù),分析結(jié)果,為尋求問題解決主動與他人交流合作.在知識的主動建構(gòu)過程中,促進了教學目標的有效達成.更重要的是,主動參與數(shù)學活動的經(jīng)歷會使他們終身受益.
2.隨機現(xiàn)象是現(xiàn)實世界中普遍存在的,概率的教學的一個很重要的目標就是培養(yǎng)學生的隨機觀念.為了實現(xiàn)這一目標,教學設計中讓學生親身經(jīng)歷對隨機事件的探索過程,通過與他人合作探究,使學生自我主動修正錯誤經(jīng)驗,揭示頻率與概率的關(guān)系,從而逐步建立正確的隨機觀念,也為以后進一步學習概率有關(guān)知識打下基礎(chǔ).
3.在教學中,本課力求向?qū)W生提供從事數(shù)學活動的時間與空間,為學生的自主探索與同伴的合作交流提供保障,從而促進學生學習方式的轉(zhuǎn)變,使之獲得廣泛的數(shù)學活動經(jīng)驗.教師在學習活動中是組織者、引導者與合作者,應注意評價學生在活動中參與程度、自信心、是否愿意交流等,給學生以適時的引導與鼓勵.
課題:25.2列舉法求概率
教學目標:
知識與技能目標
學習用列表法、畫樹形圖法計算概率,并通過比較概率大小作出合理的決策。
過程與方法目標
經(jīng)歷實驗、列表、統(tǒng)計、運算、設計等活動,學生在具體情境中分析事件,計算其發(fā)生的概率。滲透數(shù)形結(jié)合,分類討論,由特殊到一般的思想,提高分析問題和解決問題的能力。
情感與態(tài)度目標
通過豐富的數(shù)學活動,交流成功的經(jīng)驗,體驗數(shù)學活動充滿著探索和創(chuàng)造,體會數(shù)學的應用價值,培養(yǎng)積極思維的學習習慣。
教學重點:
習運用列表法或樹形圖法計算事件的概率。
教學難點:
能根據(jù)不同情況選擇恰當?shù)姆椒ㄟM行列舉,解決較復雜事件概率的計算問題。
教學過程
1.創(chuàng)設情景,發(fā)現(xiàn)新知
教材是通過P151—P152的例5、例6來介紹列表法和樹形圖法的。
例5(教材P151):同時擲兩個質(zhì)地均勻的骰子,計算下列事件的概率:
(1)兩個骰子的點數(shù)相同;
(2)兩個骰子的點數(shù)的和是9;
(3)至少有一個骰子的點數(shù)為2。
這個例題難度較大,事件可能出現(xiàn)的結(jié)果有36種。若首先就拿這個例題給學生講解,大多數(shù)學生理解起來會比較困難。所以在這里,我將新課的引入方式改為了一個有實際背景的轉(zhuǎn)盤游戲(前一課已有例2作基礎(chǔ))。
(1)創(chuàng)設情景
引例:為活躍聯(lián)歡晚會的氣氛,組織者設計了以下轉(zhuǎn)盤游戲:A、B兩個帶指針的轉(zhuǎn)盤分別被分成三個面積相等的扇形,轉(zhuǎn)盤A上的數(shù)字分別是1,6,8,轉(zhuǎn)盤B上的數(shù)字分別是4,5,7(兩個轉(zhuǎn)盤除表面數(shù)字不同外,其他完全相同)。每次選擇2名同學分別撥動A、B兩個轉(zhuǎn)盤上的指針,使之產(chǎn)生旋轉(zhuǎn),指針停止后所指數(shù)字較大的一方為獲勝者,負者則表演一個節(jié)目(若箭頭恰好停留在分界線上,則重轉(zhuǎn)一次)。作為游戲者,你會選擇哪個裝置呢?并請說明理由。
【設計意圖】選用這個引例,是基于以下考慮:以貼近學生生活的聯(lián)歡晚會為背景,創(chuàng)設轉(zhuǎn)盤游戲引入,能在最短時間內(nèi)激發(fā)學生的興趣,引起學生高度的注意力,進入情境。
(2)學生分組討論,探索交流
在這個環(huán)節(jié)里,首先要求學生分組討論,探索交流。然后引導學生將實際問題轉(zhuǎn)化為數(shù)學問題,即:
“停止轉(zhuǎn)動后,哪個轉(zhuǎn)盤指針所指數(shù)字較大的可能性更大呢?”
由于事件的隨機性,我們必須考慮事件發(fā)生概率的大小。此時我首先引導學生觀看轉(zhuǎn)盤動畫,同學們會發(fā)現(xiàn)這個游戲涉及A、B兩轉(zhuǎn)盤,即涉及2個因素,與前一課所講授單轉(zhuǎn)盤概率問題(教材P148例2)相比,可能產(chǎn)生的結(jié)果數(shù)目增多了,列舉時很容易造成重復或遺漏。怎樣避免這個問題呢?
實際上,可以將這個游戲分兩步進行。于是,指導學生構(gòu)造表格
(3)指導學生構(gòu)造表格
AB457
1
6
8
首先考慮轉(zhuǎn)動A盤:指針可能指向1,6,8三個數(shù)字中的任意一個,可能出現(xiàn)的結(jié)果就會有3個。接著考慮轉(zhuǎn)動B盤:當A盤指針指向1時,B盤指針可能指向4、5、7三個數(shù)字中的任意一個,這是列舉法的簡單情況。當A盤指針指向6或8時,B盤指針同樣可能指向4、5、7三個數(shù)字中的任意一個。一共會產(chǎn)生9種不同的結(jié)果。
【設計意圖】這樣既分散了難點,又激發(fā)了學生興趣,滲透了轉(zhuǎn)化的數(shù)學思想。
(4)學生獨立填寫表格,通過觀察與計算,得出結(jié)論(即列表法)
AB457
1(1,4)(1,5)(1,7)
6(6,4)(6,5)(6,7)
8(8,4)(8,5)(8,7)
從表中可以發(fā)現(xiàn):A盤數(shù)字大于B盤數(shù)字的結(jié)果共有5種。
∴P(A數(shù)較大)=,P(B數(shù)較大)=.
∴P(A數(shù)較大)>P(B數(shù)較大)
∴選擇A裝置的獲勝可能性較大。
在學生填寫表格過程中,注意向?qū)W生強調(diào)數(shù)對的有序性。
由于游戲是分兩步進行的,我們也可用其他的方法來列舉。即先轉(zhuǎn)動A盤,可能出現(xiàn)1,6,8三種結(jié)果;第二步考慮轉(zhuǎn)動B盤,可能出現(xiàn)4,5,7三種結(jié)果。
(5)解法二:
由圖知:可能的結(jié)果為:(1,4),(1,5),(1,7),
(6,4),(6,5),(6,7),
(8,4),(8,5),(8,7)。共計9種。
∴P(A數(shù)較大)=,P(B數(shù)較大)=.
∴P(A數(shù)較大)>P(B數(shù)較大)
∴選擇A裝置的獲勝可能性較大。
然后,引導學生對所畫圖形進行觀察:若將圖形倒置,你會聯(lián)想到什么?這個圖形很像一棵樹,所以稱為樹形圖(在幻燈片上放映)。列表和樹形圖是列舉法求概率的兩種常用的方法。
【設計意圖】自然地學生感染了分類計數(shù)和分步計數(shù)思想。
2.自主分析,再探新知
通過引例的分析,學生對列表法和樹形圖法求概率有了初步的了解,為了幫助學生熟練掌握這兩種方法,我選用了下列兩道例題(本節(jié)教材P151—P152的例5和例6)。
例1:同時擲兩個質(zhì)地均勻的骰子,計算下列事件的概率:
(1)兩個骰子的點數(shù)相同;
(2)兩個骰子的點數(shù)的和是9;
(3)至少有一個骰子的點數(shù)為2。
例1是教材上一道“擲骰子”的問題,有了引例作基礎(chǔ),學生不難發(fā)現(xiàn):引例涉及兩個轉(zhuǎn)盤,這里涉及兩個骰子,實質(zhì)都是涉及兩個因素。于是,學生通過類比列出下列表。
第2個
第1個123456
1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)
3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)
4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)
5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
由上表可以看出,同時擲兩個骰子,可能出現(xiàn)的結(jié)果有36個,它們出現(xiàn)的可能性相等。由所列表格可以發(fā)現(xiàn):
(1)滿足兩個骰子的點數(shù)相同(記為事件A)的結(jié)果有6個,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)==。
[滿足條件的結(jié)果在表格的對角線上]
(2)滿足兩個骰子的點數(shù)的和是9(記為事件B)的結(jié)果有4個,即(3,6),(4,5),(5,4),(6,3),所以P(B)==。
[滿足條件的結(jié)果在(3,6)和(6,3)所在的斜線上]
(3)至少有一個骰子的點數(shù)為2(記為事件C)的結(jié)果有11個,所以P(C)=。
[滿足條件的結(jié)果在數(shù)字2所在行和2所在的列上]
接著,引導學生進行題后小結(jié):
當一個事件要涉及兩個因素并且可能出現(xiàn)的結(jié)果數(shù)目較多時,通常采用列表法。運用列表法求概率的步驟如下:
①列表;
②通過表格計數(shù),確定公式P(A)=中m和n的值;
③利用公式P(A)=計算事件的概率。
分析到這里,我會問學生:“例1題目中的“擲兩個骰子”改為“擲三個骰子”,還可以使用列表法來做嗎?”由此引出下一個例題。
例2:甲口袋中裝有2個相同的球,它們分別寫有字母A和B;乙口袋中3個相同的球,它們分別寫有字母C、D和E;丙口袋中2個相同的球,它們分別寫有字母H和I。從三個口袋中各隨機地取出1個球。
(1)取出的三個球上恰好有1個、2個和3個元音字母的概率分別為多少?
(2)取出的三個球上全是輔音字母的概率是多少?
例2與前面兩題比較,有所不同:要從三個袋子里摸球,即涉及到3個因素。此時同學們會發(fā)現(xiàn)用列表法就不太方便,可以嘗試樹形圖法。
本游戲可分三步進行。分步畫圖和分類排列相關(guān)的結(jié)論是解題的關(guān)鍵。
從圖形上可以看出所有可能出現(xiàn)的結(jié)果共有12個,即:
(幻燈片上用顏色區(qū)分)
這些結(jié)果出現(xiàn)的可能性相等。
(1)只有一個元音字母的結(jié)果(黃色)有5個,即ACH,ADH,BCI,BDI,BEH,所以;
有兩個元音的結(jié)果(白色)有4個,即ACI,ADI,AEH,BEI,所以;
全部為元音字母的結(jié)果(綠色)只有1個,即AEI,所以。
(2)全是輔音字母的結(jié)果(紅色)共有2個,即BCH,BDH,所以。
通過例2的解答,很容易得出題后小結(jié):
當一次試驗要涉及3個或更多的因素時,通常采用“畫樹形圖”。運用樹形圖法
求概率的步驟如下:(幻燈片)
①畫樹形圖;
②列出結(jié)果,確定公式P(A)=中m和n的值;
③利用公式P(A)=計算事件概率。
接著我向?qū)W生提問:到現(xiàn)在為止,我們所學過的用列舉法求概率分為哪幾種情況?列表法和畫樹形圖法求概率有什么優(yōu)越性?什么時候使用“列表法”方便,什么時候使用“樹形圖法”更好呢?
【設計意圖】通過對上述問題的思考,可以加深學生對新方法的理解,更好的認識到列表法和畫樹形圖法求概率的優(yōu)越性在于能夠直觀、快捷、準確地獲取所需信息,有利于學生根據(jù)實際情況選擇正確的方法。
3.應用新知,深化拓展
為了檢驗學生對列表法和畫樹形圖法的掌握情況,提高應用所學知識解決問題的能力,在此我選擇了教材P154課后練習作為隨堂練習。
(1)經(jīng)過某十字路口的汽車,它可能繼續(xù)前行,也可能向左或向右,如果這三種可能性大小相同。三輛汽車經(jīng)過這個十字路口,求下列事件的概率:
①三輛車全部繼續(xù)前行;
②兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn);
③至少有兩輛車向左轉(zhuǎn)。
[隨堂練習(1)是一道與實際生活相關(guān)的交通問題,可用樹形圖法來解決。]
(2)在6張卡片上分別寫有1——6的整數(shù),隨機地抽取一張后放回,再隨機地抽取一張,那么第二次取出的數(shù)字能夠整除第一次取出的數(shù)字的概率是多少?
通過解答隨堂練習(2),學生會發(fā)現(xiàn)列出的表格和例1的表格完全一樣。不同的是:變換了實際背景,設置的問題也不一樣。這時,我提出:我們是否可以根據(jù)這個表格再編一道用列舉法求概率的題目來呢?
為了進一步拓展思維,我向?qū)W生提出了這樣一個問題,供學生課后思考:
在前面的引例中,轉(zhuǎn)盤的游戲規(guī)則是不公平的,你能把它改成一個公平的游戲嗎?
【設計意圖】以上問題的提出和解決有利于學生發(fā)現(xiàn)數(shù)學問題的本質(zhì),做到舉一反三,融會貫通。
4.歸納總結(jié),形成能力
我將引導學生從知識、方法、情感三方面來談一談這節(jié)課的收獲。要求每個學生在組內(nèi)交流,派小組代表發(fā)言。
【設計意圖】通過這個環(huán)節(jié),可以提高學生概括能力、表達能力,有助于學生全面地了解自己的學習過程,感受自己的成長與進步,增強自信,也為教師全面了解學生的學習狀況、因材施教提供了重要依據(jù)。
5.布置作業(yè),鞏固提高
考慮到學生的個體差異,為促使每一個學生得到不同的發(fā)展,同時促進學生對自己的學習進行反思,在第五個環(huán)節(jié)“布置作業(yè),鞏固提高”里作如下安排:
(1)必做題:書本P154/3,P155/4,5
(2)選做題:
①請設計一個游戲,并用列舉法計算游戲者獲勝的概率。
②研究性課題:通過調(diào)查學校周圍道路的交通狀況,為交通部門提出合理的建議等。
【設計意圖】通過教學實踐作業(yè)和社會實踐活動,引導學生靈活運用所學知識,讓學生把動腦、動口、動手三者結(jié)合起來,啟發(fā)學生的創(chuàng)造性思維,培養(yǎng)協(xié)作精神和科學的態(tài)度。
25.3利用頻率估計概率
疑難分析:
1.當試驗的可能結(jié)果不是有限個,或各種結(jié)果發(fā)生的可能性不相等時,一般用統(tǒng)計頻率的方法來估計概率.
2.利用頻率估計概率的數(shù)學依據(jù)是大數(shù)定律:當試驗次數(shù)很大時,隨機事件A出現(xiàn)的頻率,穩(wěn)定地在某個數(shù)值P附近擺動.這個穩(wěn)定值P,叫做隨機事件A的概率,并記為P(A)=P.
3.利用頻率估計出的概率是近似值.
例題選講
例1某籃球運動員在最近的幾場大賽中罰球投籃的結(jié)果如下:
投籃次數(shù)n8101291610
進球次數(shù)m6897127
進球頻率
(1)計算表中各次比賽進球的頻率;
(2)這位運動員投籃一次,進球的概率約為多少?
解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;
(2)0.75.
評注:本題中將同一運動員在不同比賽中的投籃視為同等條件下的重復試驗,所求出的概率只是近似值.
例2某商場設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購物10元以上能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應的獎品,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
(1)計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1001502005008001000
落在“鉛筆”的次數(shù)m68111136345546701
落在“鉛筆”的頻率
(2)請估計,當很大時,頻率將會接近多少?
(3)轉(zhuǎn)動該轉(zhuǎn)盤一次,獲得鉛筆的概率約是多少?
(4)在該轉(zhuǎn)盤中,標有“鉛筆”區(qū)域的扇形的圓心角大約是多少?(精確到1°)
解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;
(2)0.69;
(3)0.69;
(4)0.69×360°≈248°.
評注:(1)試驗的次數(shù)越多,所得的頻率越能反映概率的大??;(2)頻數(shù)分布表、扇形圖、條形圖、直方圖都能較好地反映頻數(shù)、頻率的分布情況,我們可以利用它們所提供的信息估計概率.
基礎(chǔ)訓練
一、選一選(請將唯一正確答案的代號填入題后的括號內(nèi))
1.盒子中有白色乒乓球8個和黃色乒乓球若干個,為求得盒中黃色乒乓球的個數(shù),某同學進行了如下實驗:每次摸出一個乒乓球記下它的顏色,如此重復360次,摸出白色乒乓球90次,則黃色乒乓球的個數(shù)估計為()
A.90個B.24個C.70個D.32個
2.從生產(chǎn)的一批螺釘中抽取1000個進行質(zhì)量檢查,結(jié)果發(fā)現(xiàn)有5個是次品,那么從中任取1個是次品概率約為().
A.B.C.D.
3.下列說法正確的是().
A.拋一枚硬幣正面朝上的機會與拋一枚圖釘釘尖著地的機會一樣大;
B.為了解漢口火車站某一天中通過的列車車輛數(shù),可采用全面調(diào)查的方式進行;
C.彩票中獎的機會是1%,買100張一定會中獎;
D.中學生小亮,對他所在的那棟住宅樓的家庭進行調(diào)查,發(fā)現(xiàn)擁有空調(diào)的家庭占100%,于是他得出全市擁有空調(diào)家庭的百分比為100%的結(jié)論.
4.小亮把全班50名同學的期中數(shù)學測試成績,繪成如圖所示的條形圖,其中從左起第一、二、三、四個小長方形高的比是1∶3∶5∶1.從中同時抽一份最低分數(shù)段和一份最高分數(shù)段的成績的概率分別是().
A.、B.、
C.、D.、
5.某人把50粒黃豆染色后與一袋黃豆充分混勻,接著抓出100黃豆,數(shù)出其中有10粒黃豆被染色,則這袋黃豆原來有().
A.10粒B.160粒C.450粒D.500粒
6.某校男生中,若隨機抽取若干名同學做“是否喜歡足球”的問卷調(diào)查,抽到喜歡足球的同學的概率是,這個的含義是().
A.只發(fā)出5份調(diào)查卷,其中三份是喜歡足球的答卷;
B.在答卷中,喜歡足球的答卷與總問卷的比為3∶8;
C.在答卷中,喜歡足球的答卷占總答卷的;
D.在答卷中,每抽出100份問卷,恰有60份答卷是不喜歡足球.
7.要在一只口袋中裝入若干個形狀與大小都完全相同的球,使得從袋中摸到紅球的概率為,四位同學分別采用了下列裝法,你認為他們中裝錯的是().
A.口袋中裝入10個小球,其中只有兩個紅球;
B.裝入1個紅球,1個白球,1個黃球,1個藍球,1個黑球;
C.裝入紅球5個,白球13個,黑球2個;
D.裝入紅球7個,白球13個,黑球2個,黃球13個.
8.某學生調(diào)查了同班同學身上的零用錢數(shù),將每位同學的零用錢數(shù)記錄了下來(單位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.
假如老師隨機問一個同學的零用錢,老師最有可能得到的回答是().
A.2元B.5元C.6元D.0元
二、填一填
9.同時拋擲兩枚硬幣,按照正面出現(xiàn)的次數(shù),可以分為“2個正面”、“1個正面”和“沒有正面”這3種可能的結(jié)果,小紅與小明兩人共做了6組實驗,每組實驗都為同時拋擲兩枚硬幣10次,下表為實驗記錄的統(tǒng)計表:
結(jié)果第一組第二組第三組第四組第五組第六組
兩個正面335142
一個正面655557
沒有正面120411
由上表結(jié)果,計算得出現(xiàn)“2個正面”、“1個正面”和“沒有正面”這3種結(jié)果的頻率分別是___________________.當試驗組數(shù)增加到很大時,請你對這三種結(jié)果的可能性的大小作出預測:______________.
10.紅星養(yǎng)豬場400頭豬的質(zhì)量(質(zhì)量均為整數(shù)千克)頻率分布如下,其中數(shù)據(jù)不在分點上
組別頻數(shù)頻率
46~5040
51~5580
56~60160
61~6580
66~7030
71~7510
從中任選一頭豬,質(zhì)量在65kg以上的概率是_____________.
11.為配和新課程的實施,某市舉行了“應用與創(chuàng)新”知識競賽,共有1萬名學生參加了這次競賽(滿分100分,得分全為整數(shù))。為了解本次競賽成績情況,從中隨機抽取了部分學生的競賽成績,進行統(tǒng)計,整理見下表:
組別分組頻數(shù)頻率
149.5~59.5600.12
259.5~69.51200.24
369.5~79.51800.36
479.5~89.5130c
589.5~99.5b0.02
合計a1.00
表中a=________,b=________,c=_______;若成績在90分以上(含90分)的學生獲一等獎,估計全市獲一等獎的人數(shù)為___________.
三、做一做
12.小穎有20張大小相同的卡片,上面寫有1~20這20個數(shù)字,她把卡片放在一個盒子中攪勻,每次從盒中抽出一張卡片,記錄結(jié)果如下:
實驗次數(shù)20406080100120140160180200
3的倍數(shù)的頻數(shù)5131726323639495561
3的倍數(shù)的頻率
(1)完成上表;
(2)頻率隨著實驗次數(shù)的增加,穩(wěn)定于什么值左右?
(3)從試驗數(shù)據(jù)看,從盒中摸出一張卡片是3的倍數(shù)的概率估計是多少?
(4)根據(jù)推理計算可知,從盒中摸出一張卡片是3的倍數(shù)的概率應該是多少?
13.甲、乙兩同學開展“投球進筐”比賽,雙方約定:①比賽分6局進行,每局在指定區(qū)域內(nèi)將球投向筐中,只要投進一次后該局便結(jié)束;②若一次未進可再投第二次,以此類推,但每局最多只能投8次,若8次投球都未進,該局也結(jié)束;③計分規(guī)則如下:a.得分為正數(shù)或0;b.若8次都未投進,該局得分為0;c.投球次數(shù)越多,得分越低;d.6局比賽的總得分高者獲勝.
(1)設某局比賽第n(n=1,2,3,4,5,6,7,8)次將球投進,請你按上述約定,用公式、表格或語言敘述等方式,為甲、乙兩位同學制定一個把n換算為得分M的計分方案;
(2)若兩人6局比賽的投球情況如下(其中的數(shù)字表示該局比賽進球時的投球次數(shù),“×”表示該局比賽8次投球都未進):
第一局第二局第三局第四局第五局第六局
甲5×4813
乙82426×
根據(jù)上述計分規(guī)則和你制定的計分方案,確定兩人誰在這次比賽中獲勝.
四、試一試
16.理論上講,兩個隨機正整數(shù)互質(zhì)的概率為P=.請你和你班上的同學合作,每人隨機寫出若干對正整數(shù)(或自己利用計算器產(chǎn)生),共得到n對正整數(shù),找出其中互質(zhì)的對數(shù)m,計算兩個隨機正整數(shù)互質(zhì)的概率,利用上面的等式估算的近似值.
解答
一、
1.D2.B3.B4.A5.C6.C7.C8.B
二、
9.;10.0.1,0.2,0.4,0.2,0.075,0.025;0.1
11.50,10,0.26;200
三、
12.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;
(2)0.31;
(3)0.31;
(4)0.3
13.解:(1)計分方案如下表:
n(次)12345678
M(分)87654321
(用公式或語言表述正確,同樣給分.)
(2)根據(jù)以上方案計算得6局比賽,甲共得24分,乙共得分23分,所以甲在這次比賽中獲勝.
四、
14.略