初中教案
發(fā)表時(shí)間:2021-04-08初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):基本定理。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2矩形的對(duì)角線相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(f236.COM 活動(dòng)范文吧)
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2相似三角形周長的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、直線L和O相交d<r
直線L和O相切d=r
直線L和O相離d>r
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、兩圓外離d>R+r兩圓外切d=R+r兩圓相交R-r<d<R+r(R>r)
兩圓內(nèi)切d=R-r(R>r)兩圓內(nèi)含d<R-r(R>r)
136、定理相交兩圓的連心線垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142、正三角形面積√3a/4a表示邊長
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計(jì)算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
延伸閱讀
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):函數(shù)
教案課件是老師需要精心準(zhǔn)備的,規(guī)劃教案課件的時(shí)刻悄悄來臨了。只有規(guī)劃好教案課件工作計(jì)劃,才能規(guī)范的完成工作!你們了解多少教案課件范文呢?以下是小編收集整理的“初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):函數(shù)”,供您參考,希望能夠幫助到大家。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。
在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:圖形是由點(diǎn),線,面構(gòu)成的。面與面相交得線,線與線相交得點(diǎn)。點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。圓可以分割成若干個(gè)扇形。
2、角
線:線段有兩個(gè)端點(diǎn)。將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。經(jīng)過兩點(diǎn)有且只有一條直線。
比較長短:兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。一度的1/60是一分,一分的1/60是一秒。
角的比較:角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:同一平面內(nèi),不相交的兩條直線叫做平行線。經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。互相垂直的兩條直線的交點(diǎn)叫做垂足。平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:幾何定理
每個(gè)老師不可缺少的課件是教案課件,大家在認(rèn)真寫教案課件了。只有寫好教案課件計(jì)劃,可以更好完成工作任務(wù)!有哪些好的范文適合教案課件的?以下是小編為大家精心整理的“中考數(shù)學(xué)知識(shí)點(diǎn)歸納:幾何定理”,希望能為您提供更多的參考。
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:幾何定理
幾何必背定理總結(jié)
1、同角(或等角)的余角相等、
2、對(duì)頂角相等、
3、三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和、
4、在同一平面內(nèi)垂直于同一條直線的兩條直線是平行線、
5、同位角相等,兩直線平行、
6、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合、
7、直角三角形中,斜邊上的中線等于斜邊的一半、
8、在角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等、及其逆定理、
9、夾在兩條平行線間的平行線段相等、夾在兩條平行線間的垂線段相等、
10、一組對(duì)邊平行且相等、或兩組對(duì)邊分別相等、或?qū)蔷€互相平分的四邊形是平行四邊形、
11、有三個(gè)角是直角的四邊形、對(duì)角線相等的平行四邊形是矩形、
12、菱形性質(zhì):四條邊相等、對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角、
13、正方形的四個(gè)角都是直角,四條邊相等、兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角、
14、在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦、兩個(gè)弦心距中有一對(duì)相等,那么它們所對(duì)應(yīng)的其余各對(duì)量都相等、
15、垂直于弦的直徑平分這條弦,并且平分弦所對(duì)弧、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧、
16、直角三角形被斜邊上的高線分成的兩個(gè)直角三角形和原三角形相似、
17、相似三角形對(duì)應(yīng)高線的比,對(duì)應(yīng)中線的比和對(duì)應(yīng)角平分線的比都等于相似比、相似三角形面積的比等于相似比的平方、
18.圓內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角等于它的內(nèi)對(duì)角、
19、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線、
20、切線的性質(zhì)定理①經(jīng)過圓心垂直于切線的直線必經(jīng)過切點(diǎn)、②圓的切線垂直于經(jīng)過切點(diǎn)的半徑、③經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心、
21、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等、連結(jié)圓外一點(diǎn)和圓心的直線,平分從這點(diǎn)向圓所作的兩條切線所夾的角、
22、弦切角定理弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半、弦切角等于它所夾的弧所對(duì)的圓周角、
23、相交弦定理;切割線定理;割線定理;
中考復(fù)習(xí)簡單幾何練習(xí)題及答案
點(diǎn)擊下載附件:中考復(fù)習(xí)簡單幾何練習(xí)題及答案.doc
一、選擇題(每小題3分)
1.已知∠AOB=30°,自∠AOB的頂點(diǎn)O引射線OC,若∠AOC:∠AOB=4:3,則∠BOC等于()。
A.10°B.40°C.70°D.10°或70°
2.用一副三角板可以作出大于0°而小于180°的角的個(gè)數(shù)()。
A.5個(gè)B.10個(gè)C.11個(gè)D.以上都不對(duì)
3.如果兩條平行線被第三條直線所截得的8個(gè)角中,有一個(gè)角的度數(shù)已知,
則()。
A.只能求出其余3個(gè)角的度數(shù)B.能求出其余5個(gè)角的度數(shù)
C.只能求出其余6個(gè)角的度數(shù)D.能求出其余7個(gè)角的度數(shù)
4.若兩條平行線被第三條直線所截,則下列說法錯(cuò)誤的是()。
A.一對(duì)同位角的平分線互相平行
B.一對(duì)內(nèi)錯(cuò)角的平分線互相平行
C.一對(duì)同旁內(nèi)角的平分線互相垂直
D.一對(duì)同旁內(nèi)角的平分線互相平行
5.下列說法,其中正確的是()。
A.兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等;
B.不相交的兩條直線就是平行線;
C.點(diǎn)到直線的垂線段,叫做點(diǎn)到直線的距離;
D.同位角相等,兩直線平行。
6.下列關(guān)于對(duì)頂角的說法:
(1)相等的角是對(duì)頂角(2)對(duì)頂角相等
(3)不相等的角不是對(duì)頂角(4)不是對(duì)頂角不相等
其中正確的有()。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
初中數(shù)學(xué)知識(shí)點(diǎn)總匯
初中數(shù)學(xué)知識(shí)點(diǎn)總匯
B:方程與不等式
1:方程與方程組
一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:
去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2:不等式與不等式組
不等式:
①用符號(hào)=號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
3:函數(shù)
變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二、空間與圖形
A:圖形的認(rèn)識(shí):
1:點(diǎn),線,面
點(diǎn),線,面:
①圖形是由點(diǎn),線,面構(gòu)成的。
②面與面相交得線,線與線相交得點(diǎn)。
③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
3視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個(gè)扇形。
2:角
線:
①線段有兩個(gè)端點(diǎn)。
②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。
③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。
④經(jīng)過兩點(diǎn)有且只有一條直線。
比較長短:
①兩點(diǎn)之間的所有連線中,線段最短。
②兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點(diǎn)叫做垂足。
③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
3:相交線與平行線
角:
①如果兩個(gè)角的和是直角,那么稱和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角。
②同角或等角的余角/補(bǔ)角相等。
③對(duì)頂角相等。
④同位角相等/內(nèi)錯(cuò)角相等/同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然。