一元二次方程高中教案
發(fā)表時間:2021-01-25《一元二次方程解法》復(fù)習(xí)課教案設(shè)計(jì)。
《一元二次方程解法》復(fù)習(xí)課教案設(shè)計(jì)
復(fù)習(xí)目標(biāo):
1、能說出一元二次方程及其相關(guān)概念。
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
復(fù)習(xí)重難點(diǎn):一元二次方程的解法
教學(xué)過程
一、情景導(dǎo)入
前面我們復(fù)習(xí)了一元一次方程與二元一次方程組的解法,大家掌握得很不錯,請同學(xué)解方程x(x-1)=1,(學(xué)生略作思考后,示意不會做)忘了吧?看來好多學(xué)生都已經(jīng)忘了如何解一元二次方程呢?那么這節(jié)課我們就一起來復(fù)習(xí)一元二次方程的解法(板書課題)
二、復(fù)習(xí)指導(dǎo)(學(xué)生按照復(fù)習(xí)提綱解決問題,師做簡單的板書準(zhǔn)備后,巡視指導(dǎo),特別要注意幫助有困難的同學(xué),了解學(xué)生的情況,為展示歸納做準(zhǔn)備。)
復(fù)習(xí)提綱
1.-元二次方程的定義:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______項(xiàng),a是_______,bx叫做_______,b是_______,c叫做_______項(xiàng)。
3.一元二次方程的解法:
(1)用直接開平方法解方程(2x+1)2=9
形如x2=p(p≥0)的方程的根為________。
(2)用配方法解方程x2+2x=3
用配方法解方程步驟:,,,。
(3)用求根公式法解方程x2-3x-5=0,x2-3x+5=0。
一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=________,根x=。
(1)當(dāng)△0時,方程有兩個_______的實(shí)數(shù)根。
(2)當(dāng)△=0時,方程有兩個_______的實(shí)數(shù)根。
(3)當(dāng)△0時,_______。
三、展示歸納
1、教師抽有困難的學(xué)生逐題匯報復(fù)習(xí)結(jié)果,學(xué)生說教師板書。
2、教師發(fā)動全班學(xué)生進(jìn)行評價,補(bǔ)充,完善。
3、教師畫龍點(diǎn)睛的強(qiáng)調(diào)。
四、變式練習(xí)(1、2、4題讓學(xué)生說出理由,3題讓學(xué)生觀察方程的特點(diǎn)可發(fā)現(xiàn):(1)可用直接開平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)
1、判斷下列哪些方程是一元二次方程?
(1)4x2-16x+15=0(2)2x2-3=0(3)ax2+bx+c=0
2、請將方程(x+1)(2-x)=1化為一般形式_______。
3、解下列方程:
(1)(x-3)2-9=0;(2)x2-2x=5;
(3)x2-4x+2=0;(4)2(x-3)=3x(x-3)。
4、不解方程,判斷下列方程根的情況。
(1)2x2-5x-3=0(2)x2+6x+9=0(3)x2-4x+5=0
五、課堂總結(jié)
請談?wù)劚竟?jié)課的收獲與困惑。(學(xué)生自主小結(jié)歸納,將本章知識內(nèi)化為自己的東西,并提高歸納小結(jié)的能力。)
六、布置作業(yè)
擴(kuò)展閱讀
一元二次方程
每個老師不可缺少的課件是教案課件,大家在仔細(xì)設(shè)想教案課件了。教案課件工作計(jì)劃寫好了之后,這樣我們接下來的工作才會更加好!你們會寫一段適合教案課件的范文嗎?下面是小編幫大家編輯的《一元二次方程》,僅供參考,大家一起來看看吧。
第二十二章一元二次方程
教材內(nèi)容
本單元教學(xué)的主要內(nèi)容:
1.一元二次方程及其有關(guān)概念,一元二次方程的解法(開平方法、配方法、公式法、分解因式法),
一元二次方程根與系數(shù)的關(guān)系,運(yùn)用一元二次方程分析和解決實(shí)際問題.
2.本單元在教材中的地位和作用:
教學(xué)目標(biāo)
1.一分析實(shí)際問題中的等量關(guān)系并求解其中未知數(shù)為背景,認(rèn)識一元二次方程及其有關(guān)概念。
2.根據(jù)化歸思想,抓住“降次”這一基本策略,熟練掌握開平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.經(jīng)歷分析和解決問題的過程,體會一元二次方程的教學(xué)模型作用,進(jìn)一步提高在實(shí)際問題中運(yùn)用方程這種重要數(shù)學(xué)工具的基本能力。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):
1.一元二次方程及其有關(guān)概念
2.一元二次方程的解法(開平方法、配方法、公式法、分解因式法)
3.一元二次方程根與系數(shù)的關(guān)系以及運(yùn)用一元二次方程分析和解決實(shí)際問題。
難點(diǎn):
1.一元二次方程及其有關(guān)概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根與系數(shù)的關(guān)系以及靈活運(yùn)用
課時安排
本章教學(xué)時約需課時,具體分配如下(供參考)
22.1一元二次方程1課時
22.2降次7課時
22.3實(shí)際問題與一元二次方程3課時
教學(xué)活動、習(xí)題課、小結(jié)
22.1一元二次方程
教學(xué)目的
1.使學(xué)生理解并能夠掌握整式方程的定義.
2.使學(xué)生理解并能夠掌握一元二次方程的定義.
3.使學(xué)生理解并能夠掌握一元二次方程的一般表達(dá)式以及各種特殊形式.
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):一元二次方程的定義.
難點(diǎn):一元二次方程的一般形式及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識別.
教學(xué)過程
復(fù)習(xí)提問
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已學(xué)過的方程?分別叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.結(jié)合上述有關(guān)方程講解什么叫做“元”,什么叫做“次”.
引入新課
1.方程的分類:(通過上面的復(fù)習(xí),引導(dǎo)學(xué)生答出)
學(xué)過的幾類方程是
沒學(xué)過的方程有x2-70x+825=0,x(x+5)=150.
這類“兩邊都是關(guān)于未知數(shù)的整式的方程,叫做整式方程.”像這樣,我們把“只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的整式方程叫做一元二次方程.”
據(jù)此得出復(fù)習(xí)中學(xué)生未學(xué)過的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同時指導(dǎo)學(xué)生把學(xué)過的方程分為兩大類:
2.一元二次方程的一般形式
注意引導(dǎo)學(xué)生考慮方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化為:x2+5x-150=0.
從而引導(dǎo)學(xué)生認(rèn)識到:任何一個一元二次方程,經(jīng)過整理都可以化為
ax2+bx+c=0(a≠0)的形式.并稱之為一元二次方程的一般形式.
其中ax2,bx,c分別稱為二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng);a,b分別稱為二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).
【注意】二次項(xiàng)系數(shù)a是不等于0的實(shí)數(shù)(a=0時,方程化為bx+c=0,不再是二次方程了);b,c可為任意實(shí)數(shù).
例把方程5x(x+3)=3(x-1)+8化成一般形式.并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
課堂練習(xí)P271、2題
歸納總結(jié)
1.方程分為兩大類:
判別整式方程與分式方程的關(guān)鍵是看分母中是否含有未知數(shù);判別一元一次方程,一元二次方程的關(guān)鍵是看方程化為一般形式后,未知數(shù)的最高次數(shù)是一次還是二次.
2.一元二次方程的定義:一個整式方程,經(jīng)化簡形成只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2,則這樣的整式方程稱一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可為任意實(shí)數(shù),而a不能等于零.
布置作業(yè):習(xí)題22.11、2題.
達(dá)標(biāo)測試
1.在下列方程中,一元二次方程的個數(shù)是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1個B.2個C.3個D.4個
2.關(guān)于x的一元二次方程3x2=5x-2的二次項(xiàng)系數(shù),一次項(xiàng)和常數(shù)項(xiàng),下列說法完全正確的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是關(guān)于x的一元二次方程,則()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,則k的取值范圍是
5.方程4x2=3x-+1的二次項(xiàng)是,一次項(xiàng)是,常數(shù)項(xiàng)是
課后反思:
22.2解一元二次方程
第一課時
直接開平方法
教學(xué)目的
1.使學(xué)生掌握用直接開平方法解一元二次方程.
2.引導(dǎo)學(xué)生通過特殊情況下的解方程,小結(jié)、歸納出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):準(zhǔn)確地求出方程的根.
難點(diǎn):正確地表示方程的兩個根.
教學(xué)過程
復(fù)習(xí)過程
回憶數(shù)的開方一章中的知識,請學(xué)生回答下列問題,并說明解決問題的依據(jù).
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解題的依據(jù)是:一個正數(shù)有兩個平方根,這兩個平方根互為相反數(shù).
即一般地,如果一個數(shù)的平方等于a(a≥0),那么這樣的數(shù)有兩個,它們是互為相反數(shù).
引入新課
我們已經(jīng)學(xué)過了一些方程知識,那么上述方程屬于什么方程呢?
新課
例1解方程x2-4=0.
解:先移項(xiàng),得x2=4.
即x1=2,x2=-2.
這種解一元二次方程的方法叫做直接開平方法.
例2解方程(x+3)2=2.
練習(xí):P281、2
歸納總結(jié)
1.本節(jié)主要學(xué)習(xí)了簡單的一元二次方程的解法——直接開平方法.
2.直接法適用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作業(yè):習(xí)題22.14、6題
達(dá)標(biāo)測試
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解為
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程無實(shí)根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.對于方程(ax+b)2=c下列敘述正確的是
A.不論c為何值,方程均有實(shí)數(shù)根B.方程的根是
C.當(dāng)c≥0時,方程可化為:
D.當(dāng)c=0時,
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
課后反思
一元二次方程復(fù)習(xí)教案
九年級數(shù)學(xué)《第三章一元二次方程》復(fù)習(xí)案人教新課標(biāo)版
課型復(fù)習(xí)課授課時間年月日
執(zhí)筆人審稿人總第課時
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
一、復(fù)習(xí)目標(biāo):
1、能說出一元二次方程及其相關(guān)概念,;
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
3、能靈活應(yīng)用一元二次方程的知識解決相關(guān)問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識和能力。
二、復(fù)習(xí)重難點(diǎn):
重點(diǎn):一元二次方程的解法和應(yīng)用.
難點(diǎn):應(yīng)用一元二次方程解決實(shí)際問題的方法.
三、知識回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:
配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應(yīng)用?請舉例說明。
4、利用方程解決實(shí)際問題的關(guān)鍵是。
在解決實(shí)際問題的過程中,怎樣判斷求得的結(jié)果是否合理?請舉例說明。
四、例題解析:
例1、填空
1、當(dāng)m時,關(guān)于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當(dāng)m時,是一元二次方程;當(dāng)m時,是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時,應(yīng)將方程變形為()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當(dāng)?shù)姆椒ń?
例3、1、新竹文具店以16元/支的價格購進(jìn)一批鋼筆,根據(jù)市場調(diào)查,如果以20元/支的價格銷售,每月可以售出200支;而這種鋼筆的售價每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價?此時店主該進(jìn)貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點(diǎn)P、Q同時由A、B兩點(diǎn)出發(fā)分別沿AC,BC方向向點(diǎn)C勻速運(yùn)動,它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?
一元二次方程的解法導(dǎo)學(xué)案
班級姓名學(xué)號
學(xué)習(xí)目標(biāo)
1、了解形如(x+m)2=n(n≥0)的一元二次方程的解法——直接開平方法
2、會用直接開平方法解一元二次方程
學(xué)習(xí)重點(diǎn):會用直接開平方法解一元二次方程
學(xué)習(xí)難點(diǎn):理解直接開平方法與平方根的定義的關(guān)系
教學(xué)過程
一、情境引入:
1.我們曾學(xué)習(xí)過平方根的意義及其性質(zhì),現(xiàn)在來回憶一下:什么叫做平方根?平方根有哪些性質(zhì)?
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根。用式子表示:若x2=a,則x叫做a的平方根。記作x=,即x=或x=。
如:9的平方根是±3,的平方根是
平方根有下列性質(zhì):
(1)一個正數(shù)有兩個平方根,這兩個平方根是互為相反數(shù)的;
(2)零的平方根是零;
(3)負(fù)數(shù)沒有平方根。
2如何解方程(1)x2=4,(2)x2-2=0呢?
二、探究學(xué)習(xí):
1.嘗試:
(1)根據(jù)平方根的意義,x是4的平方根,∴x=±2
即此一元二次方程的解(或根)為:x1=2,x2=-2
(2)移項(xiàng),得x2=2
根據(jù)平方根的意義,x就是2的平方根,∴x=
即此一元二次方程的解(或根)為:x1=,x2=
2.概括總結(jié).
什么叫直接開平方法?
像解x2=4,x2-2=0這樣,這種解一元二次方程的方法叫做直接開平方法。
說明:運(yùn)用“直接開平方法”解一元二次方程的過程,就是把方程化為形如x2=a(a≥0)或(x+h)2=k(k≥0)的形式,然后再根據(jù)平方根的意義求解
3.概念鞏固:
已知一元二次方程mx2+n=0(m≠0),若方程可以用直接開平方法求解,且有兩個實(shí)數(shù)根,則m、n必須滿足的條件是()
A.n=0B.m、n異號C.n是m的整數(shù)倍D.m、n同號
4.典型例題:
例1解下列方程
(1)x2-1.21=0(2)4x2-1=0
解:(1)移向,得x2=1.21(2)移向,得4x2=1
∵x是1.21的平方根兩邊都除以4,得x2=
∴x=±1.1∵x是的平方根
即x1=1.1,x2=-1.1∴x=
即x1=,x2=
例2解下列方程:
⑴(x+1)2=2⑵(x-1)2-4=0
⑶12(3-2x)2-3=0
分析:第1小題中只要將(x+1)看成是一個整體,就可以運(yùn)用直接開平方法求解;第2小題先將-4移到方程的右邊,再同第1小題一樣地解;第3小題先將-3移到方程的右邊,再兩邊都除以12,再同第1小題一樣地去解,然后兩邊都除以-2即可。
解:(1)∵x+1是2的平方根
∴x+1=
即x1=-1+,x2=-1-
(2)移項(xiàng),得(x-1)2=4
∵x-1是4的平方根
∴x-1=±2
即x1=3,x2=-1
(3)移項(xiàng),得12(3-2x)2=3
兩邊都除以12,得(3-2x)2=0.25
∵3-2x是0.25的平方根
∴3-2x=±0.5
即3-2x=0.5,3-2x=-0.5
∴x1=,x2=
例3解方程(2x-1)2=(x-2)2
分析:如果把2x-1看成是(x-2)2的平方根,同樣可以用直接開平方法求解
解:2x-1=
即2x-1=±(x-2)
∴2x-1=x-2或2x-1=-x+2
即x1=-1,x2=1
5.探究:(1)能用直接開平方法解的一元二次方程有什么特點(diǎn)?
如果一個一元二次方程具有(x+h)2=k(k≥0)的形式,那么就可以用直接開平方法求解。
(2)用直接開平方法解一元二次方程的一般步驟是什么?
首先將一元二次方程化為左邊是含有未知數(shù)的一個完全平方式,右邊是非負(fù)數(shù)的形式,然后用平方根的概念求解
(3)任意一個一元二次方程都能用直接開平方法求解嗎?請舉例說明
6.鞏固練習(xí):
(1)下列解方程的過程中,正確的是()
①x2=-2,解方程,得x=±
②(x-2)2=4,解方程,得x-2=2,x=4
③4(x-1)2=9,解方程,得4(x-1)=±3,x1=;x2=
④(2x+3)2=25,解方程,得2x+3=±5,x1=1;x2=-4
(2)解下列方程:
①x2=16②x2-0.81=0③9x2=4④y2-144=0
(3)解下列方程:
①(x-1)2=4②(x+2)2=3
③(x-4)2-25=0④(2x+3)2-5=0
⑤(2x-1)2=(3-x)2
(4)一個球的表面積是100cm2,求這個球的半徑。(球的表面積s=4R2,其中R是球半徑)
三、歸納總結(jié):
1、不等關(guān)系在日常生活中普遍存在.
2、用不等號表示不等關(guān)系的式子叫做不等式.
3、列不等式表示不等關(guān)系.
4.2一元二次方程的解法(1)
【課后作業(yè)】
班級姓名學(xué)號
1、用直接開平方法解方程(x+h)2=k,方程必須滿足的條件是()
A.k≥oB.h≥oC.hk>oD.k<o(jì)
2、方程(1-x)2=2的根是()
A.-1、3B.1、-3C.1-、1+D.-1、+1
3、解下例方程
(1)36-x2=0;(2)4x2=9(3)3x2-=0(4)(2x+1)2-3=0
(5)81(x-2)2=16;(6)(2x-1)2=(x-2)2(7)=0(a≥0)(8)(ax+c)2=d(a≠0,d≥0)
4.便民商店1月份的利潤是2500元,3月份的利潤為3025元,這兩個月利潤的平均月增長的百分率是多少?