一元二次方程高中教案
發(fā)表時(shí)間:2020-10-06七年級(jí)下冊(cè)《用二元一次方程組解決問(wèn)題》學(xué)案。
七年級(jí)下冊(cè)《用二元一次方程組解決問(wèn)題》學(xué)案
10.5用二元一次方程組解決問(wèn)題(1)
【教學(xué)目標(biāo)】
1.經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫(huà)現(xiàn)實(shí)世界中含有多個(gè)未知數(shù)的問(wèn)題的有效數(shù)學(xué)模型,初步感受數(shù)學(xué)建模思想,進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
2.會(huì)根據(jù)具體問(wèn)題中的數(shù)量關(guān)系列出二元一次方程組并求解,能檢驗(yàn)所得的問(wèn)題的結(jié)果是否符合實(shí)際意義,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
【教學(xué)重、難點(diǎn)】
重點(diǎn):正確分析應(yīng)用題的數(shù)量關(guān)系.
難點(diǎn):找準(zhǔn)等量關(guān)系.
【教學(xué)過(guò)程】
一.復(fù)習(xí)引入
1.我們前面學(xué)過(guò)用一些數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,你還記得有哪些嗎?是如何解決的?
2.情境探究
《一千零一夜》中有這樣一段文字:有一群鴿子,其中一部分在樹(shù)上歡歌,另一部分在地上覓食.樹(shù)上的一只鴿子對(duì)地上覓食的鴿子說(shuō):“若從你們中飛上來(lái)一只,則樹(shù)下的鴿子就是整個(gè)鴿群的13;若從我們中飛一只到地上,則樹(shù)上、樹(shù)下的鴿子就一樣多了.”你知道樹(shù)上、樹(shù)下各有多少只鴿子嗎?
合作探究:
(1)題目中已知條件是什么?所求問(wèn)題是什么?根據(jù)你的經(jīng)驗(yàn),你有哪些方法解決這個(gè)問(wèn)題?(引導(dǎo)學(xué)生用一元一次方程和二元一次方程組進(jìn)行解決)
(2)比較剛才所列方程和方程組的過(guò)程,你認(rèn)為數(shù)學(xué)問(wèn)題中有多個(gè)等量關(guān)系時(shí)用一元一次方程方便還是用二元一次方程組方便?(引導(dǎo)學(xué)生體會(huì)到在解決含有多個(gè)未知數(shù)的數(shù)學(xué)問(wèn)題時(shí),選擇二元一次方程組較為簡(jiǎn)便)
板書(shū):10.5用二元一次方程組解決問(wèn)題(1)
借助于用一元一次方程解決問(wèn)題的經(jīng)驗(yàn),你認(rèn)為用二元一次方程組解決問(wèn)題要經(jīng)歷哪些步驟?需要注意哪些問(wèn)題?
二.合作探究
活動(dòng)一:用二元一次方程組解決問(wèn)題
五一長(zhǎng)假期間,某旅行社接待一日游和三日游的游客共2200人,收旅行費(fèi)200萬(wàn)元,其中一日游每人收費(fèi)200元,三日游每人收費(fèi)1500元.該旅行社接待的一日游和三日游旅客各多少人?
想一想:有哪些已知量?哪些未知量?已知量和未知量之間有哪些數(shù)量關(guān)系?如何設(shè)未知數(shù)?表達(dá)實(shí)際問(wèn)題的兩個(gè)相等關(guān)系是什么?
歸納:列二元一次方程組解決實(shí)際問(wèn)題的一般步驟是怎樣的?
審,設(shè),列,解,驗(yàn),答
注意:(1)題目中給出的量單位不統(tǒng)一,解題時(shí)應(yīng)化為統(tǒng)一單位.
(2)解二元一次方程組的過(guò)程不再展開(kāi).
活動(dòng)二:應(yīng)用拓展
例1.為了保護(hù)環(huán)境,某學(xué)校環(huán)保小組成員收集廢舊電池,第一天收集5節(jié)1號(hào)電池,6節(jié)5號(hào)電池,總質(zhì)量為500g;第二天收集3節(jié)一號(hào)電池,4節(jié)5號(hào)電池,總質(zhì)量為310g.一節(jié)一號(hào)電池和一節(jié)五號(hào)電池的質(zhì)量分別是多少?
拓展提升
1.根據(jù)圖中給出的信息,求每件T恤衫和每瓶礦泉水的價(jià)格.
活動(dòng)三:展示交流
1.七年一班共44人,現(xiàn)分成甲、乙兩組參加學(xué)?;顒?dòng).由于需要,現(xiàn)從乙組調(diào)了6人到甲組后,甲乙兩組人數(shù)相等.問(wèn)原來(lái)甲乙各多少人?
2.小亮買了5本練習(xí)本和2支圓珠筆共花了5.5元.已知圓珠筆比練習(xí)本貴1元,問(wèn)練習(xí)本和圓珠筆各多少元?
三.反思提升
盤點(diǎn)收獲:本節(jié)課你有哪些收獲?
四.檢測(cè)反饋
1.課本P111習(xí)題1~3題;
2.比較用一元一次方程解決問(wèn)題和用二元一次方程組解決問(wèn)題的異同,請(qǐng)寫(xiě)一篇數(shù)學(xué)小論文.
[句怡美 jYM1.cOM]
延伸閱讀
二元一次方程組學(xué)案
教案課件是每個(gè)老師工作中上課需要準(zhǔn)備的東西,是認(rèn)真規(guī)劃好自己教案課件的時(shí)候了。只有規(guī)劃好了教案課件新的工作計(jì)劃,才能促進(jìn)我們的工作進(jìn)一步發(fā)展!你們知道多少范文適合教案課件?考慮到您的需要,小編特地編輯了“二元一次方程組學(xué)案”,供您參考,希望能夠幫助到大家。
10.2二元一次方程組(2)
班級(jí)姓名學(xué)號(hào)
【課前準(zhǔn)備】:
箱子里有許多的紅球和藍(lán)球,現(xiàn)摸到1個(gè)紅球,3個(gè)綠球,共得11分,你知道摸到1個(gè)紅球得多少分?1個(gè)綠球得多少分?
再摸一次,又摸到了3個(gè)紅球,2個(gè)綠球,共得12分。你知道摸到1個(gè)紅球、1個(gè)綠球各得多少分?
【探索新知】
問(wèn)題一:?jiǎn)栴}中的量滿足怎樣的相等關(guān)系?
問(wèn)題中的量應(yīng)同時(shí)滿足以上兩個(gè)相等關(guān)系.如果設(shè)摸到1個(gè)紅球得x分,摸到1個(gè)綠球得y分.那么可以得到方程:
______________.
_______________
因而將這兩個(gè)方程組成二元一次方程組:
___________
____________
問(wèn)題二:根據(jù)上面的方程組,請(qǐng)你猜一猜,“摸到紅、綠球得分”問(wèn)題的答案。你用了什么方法?
方程(1)的解是
……
方程(2)的解是
……
可以看出___________是這兩個(gè)方程的公共解,我們把_______________________叫做二元一次方程組的解。
因此,我們知道,摸到1個(gè)紅球得2分,1個(gè)綠球得3分.
【知識(shí)運(yùn)用】
例1:二元一次方程組的解是()
A.B.C.D.
例2:你能求出“雞兔同籠”問(wèn)題中二元一次方程組的解嗎?
練習(xí)應(yīng)用
(1)如果是方程組的解,則m=,n=.
【當(dāng)堂反饋】
1.有3對(duì)數(shù):①②③在這3對(duì)數(shù)中,是方程的解;是方程的解;是二元一次方程組的解.
2.下列各對(duì)數(shù)值中,哪一組是二元一次方程組的解?
3.如果是二元一次方程組的解.求m、n的值.
4.已知關(guān)于x、y的二元一次方程組的解滿足,求a的值.
5.甲種飲料每瓶2.5元,乙種飲料每瓶1.5元,某人買了x瓶甲種飲料,y瓶乙種飲料,共花了34元。
(1)列出關(guān)于x、y的二元一次方程;
(2)如果甲種飲料和乙種飲料共買16瓶,列出關(guān)于x、y的二元一次方程組,并找出它的解。
6、寫(xiě)出解是的二元一次方程組?你能寫(xiě)出幾個(gè)?
7、1)方程y=2x-3的解有個(gè);
2)方程3x+2y=1的解有個(gè);
3)方程組y=2x-3的解有個(gè)
3x+2y=1
七年級(jí)下冊(cè)《二元一次方程組》教案
七年級(jí)下冊(cè)《二元一次方程組》教案
教學(xué)目標(biāo):
1.認(rèn)識(shí)二元一次方程和二元一次方程組.
2.了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.
教學(xué)重點(diǎn):
理解二元一次方程組的解的意義.
教學(xué)難點(diǎn):
求二元一次方程的正整數(shù)解.
教學(xué)過(guò)程:
籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分.負(fù)一場(chǎng)得1分,某隊(duì)為了爭(zhēng)取較好的名次,想在全部22場(chǎng)比賽中得到40分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?
思考:
這個(gè)問(wèn)題中包含了哪些必須同時(shí)滿足的條件?設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,你能用方程把這些條件表示出來(lái)嗎?
由問(wèn)題知道,題中包含兩個(gè)必須同時(shí)滿足的條件:
勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù),
勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分.
這兩個(gè)條件可以用方程
x+y=22
2x+y=40
表示.
上面兩個(gè)方程中,每個(gè)方程都含有兩個(gè)未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.
把兩個(gè)方程合在一起,寫(xiě)成
《二元一次方程組》教案nx+y=22
2x+y=40
像這樣,把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.
探究:
滿足方程①,且符合問(wèn)題的實(shí)際意義的x、y的值有哪些?把它們填入表中.
x
上表中哪對(duì)x、y的值還滿足方程②
一般地,使二元一次方程兩邊的值相等的兩個(gè)未知數(shù)的值,叫做二元一次方程的解.
二元一次方程組的兩個(gè)方程的公共解,叫做二元一次方程組的解.
例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,試求a、b的取值范圍.
(2)方程x∣a∣–1+(a-2)y=2是二元一次方程,試求a的值.
例2若方程x2m–1+5y3n–2=7是二元一次方程.求m、n的值
例3已知下列三對(duì)值:
《二元一次方程組》教案n《二元一次方程組》教案n《二元一次方程組》教案nx=-6x=10x=10
y=-9y=-6y=-1
(1)《二元一次方程組》教案n《二元一次方程組》教案n哪幾對(duì)數(shù)值使方程《二元一次方程組》教案nx-y=6的左、右兩邊的值相等?
(2)哪幾對(duì)數(shù)值是方程組的解?
例4求二元一次方程3x+2y=19的正整數(shù)解.
課堂練習(xí):
教科書(shū)第102頁(yè)練習(xí)
習(xí)題8.11、2題
作業(yè):
教科書(shū)第102頁(yè)3、4、5題
評(píng)價(jià)與反思
1.概念課教學(xué)模式:本節(jié)課的主要內(nèi)容是二元一次方程(組)的有關(guān)概念,設(shè)計(jì)時(shí)按照“實(shí)例研究,初步體會(huì)——比較分析,把握實(shí)質(zhì)——?dú)w納概括,形成定義——應(yīng)用提高,發(fā)展能力”的思路進(jìn)行,讓學(xué)生體會(huì)到是因?yàn)椤靶枰倍鴮W(xué)習(xí)新知識(shí),逐步滲透應(yīng)用意識(shí)。
2.類比法的運(yùn)用:二元一次方程及其解的意義類比一元一次方程學(xué)習(xí),一方面加深學(xué)生對(duì)于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關(guān)知識(shí)的異同,同時(shí)為二元一次方程組相關(guān)概念掃清障礙。
3.分層遞進(jìn),循環(huán)上升:學(xué)生對(duì)知識(shí)的理解,教師對(duì)學(xué)生的要求,都是由低到高,逐步提升,題目的設(shè)計(jì)從單一知識(shí)點(diǎn)的直接運(yùn)用,逐漸到多個(gè)知識(shí)點(diǎn)的靈活運(yùn)用,給學(xué)生設(shè)計(jì)必要的臺(tái)階,使其一步步向前,最終達(dá)到教學(xué)目標(biāo)。
解二元一次方程組
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,規(guī)劃教案課件的時(shí)刻悄悄來(lái)臨了。此時(shí)就可以對(duì)教案課件的工作做個(gè)簡(jiǎn)單的計(jì)劃,才能規(guī)范的完成工作!有沒(méi)有出色的范文是關(guān)于教案課件的?下面是由小編為大家整理的“解二元一次方程組”,歡迎您閱讀和收藏,并分享給身邊的朋友!
第七章二元一次方程組總課時(shí):8課時(shí)使用人:
備課時(shí)間:第九周上課時(shí)間:第十三周
第2課時(shí):7、2解二元一次方程組(1)
教學(xué)目標(biāo)
知識(shí)與技能:會(huì)用代入消元法解二元一次方程組.
過(guò)程與方法:了解“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.
情感態(tài)度與價(jià)值觀:讓學(xué)生經(jīng)歷自主探索過(guò)程,化未知為已知,從中獲得成功的體驗(yàn),從而激發(fā)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點(diǎn)
用代入消元法解二元一次方程組.
教學(xué)難點(diǎn)
在解題過(guò)程中體會(huì)“消元”思想和“化未知為已知”的化歸思想.
教學(xué)準(zhǔn)備:多媒體課件
教學(xué)過(guò)程:
第一環(huán)節(jié):情境引入(5分鐘,學(xué)生理解題意,小組討論解決方案)
內(nèi)容:
教師引導(dǎo)學(xué)生共同回憶上一節(jié)課討論的“買門票”問(wèn)題,想一想當(dāng)時(shí)是怎么獲得二元一次方程組的解的.
設(shè)他們中有x個(gè)成人,y個(gè)兒童,我們得到了方程組成人和兒童到底去了多少人呢?在上一節(jié)課的“做一做”中,我們通過(guò)檢驗(yàn)是不是方程x+y=8和方程5x+3y=34的解,從而得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組的解的定義,得出是方程組的解.所以成人和兒童分別去了5人和3人.
提出問(wèn)題:每一個(gè)二元一次方程的解都有無(wú)數(shù)多個(gè),而方程組的解是方程組中各個(gè)方程的公共解,前面的方法中卻好我們找到了這個(gè)公共解,但如果數(shù)據(jù)不巧,這可沒(méi)那么容易,那么,有什么方法可以獲得任意一個(gè)二元一次方程組的解呢?
第二環(huán)節(jié):探索新知(10分鐘,教師引導(dǎo)學(xué)生分析方程中的數(shù)量關(guān)系,找到方法)
內(nèi)容:回顧七年級(jí)第一學(xué)期學(xué)習(xí)的一元一次方程,是不是也曾碰到過(guò)類似的問(wèn)題,能否利用一元一次方程求解該問(wèn)題?(由學(xué)生獨(dú)立思考解決,教師注意指導(dǎo)學(xué)生規(guī)范表達(dá))
解:設(shè)去了x個(gè)成人,則去了(8-x)個(gè)兒童,根據(jù)題意,得:
5x+3(8-x)=34.
解得:x=5.
將x=5代入8-x=8-5=3.
答:去了5個(gè)成人,3個(gè)兒童.
在學(xué)生解決的基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)行比較:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?
(先讓學(xué)生獨(dú)立思考,然后在學(xué)生充分思考的前提下,進(jìn)行小組討論,在此基礎(chǔ)上由學(xué)生代表回答,老師適時(shí)地引導(dǎo)與補(bǔ)充,力求通過(guò)學(xué)生觀察、思考與討論后能得出以下的一些要點(diǎn).)
1.列二元一次方程組設(shè)有兩個(gè)未知數(shù):x個(gè)成人,y個(gè)兒童.列一元一次方程只設(shè)了一個(gè)未知數(shù):x個(gè)成人,兒童去的個(gè)數(shù)通過(guò)去的總?cè)藬?shù)與去的成人數(shù)相比較,得出(8-x)個(gè).因此y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8,根據(jù)等式的性質(zhì)可以推出y=8-x.
2.發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相類似,只需把5x+3y=34中的“y”用“(8-x)”代替就轉(zhuǎn)化成了一元一次方程.
教師引導(dǎo)學(xué)生發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問(wèn)題的方法——即將新知識(shí)(二元一次方程組)轉(zhuǎn)化為舊知識(shí)(一元一次方程)便可.
(由學(xué)生來(lái)回答)上一節(jié)課我們就已知道方程組中相同的字母表示的是同一個(gè)未知量.所以將中的①變形,得y=8-x③,我們把y=8-x代入方程②,即將②中的y用(8-x)代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.
教師總結(jié):同學(xué)們很善于思考.這就是我們?cè)跀?shù)學(xué)研究中經(jīng)常用到的“化未知為已知”的化歸思想,通過(guò)它使問(wèn)題得到完美解決.下面我們完整地解一下這個(gè)二元一次方程組.
(教師把解答的詳細(xì)過(guò)程板書(shū)在黑板上,并要求學(xué)生一起來(lái)完成)
解:
由①得:.③
將③代入②得:
.
解得:.
把代入③得:.
所以原方程組的解為:
(提醒學(xué)生進(jìn)行檢驗(yàn),即把求出的解代入原方程組,必然使原方程組中的每個(gè)方程都同時(shí)成立,如不成立,則可知解有問(wèn)題)
下面我們?cè)囍眠@種方法來(lái)解答上一節(jié)的“誰(shuí)的包裹多”的問(wèn)題.
(放手讓學(xué)生用已經(jīng)獲取的經(jīng)驗(yàn)去解決新的問(wèn)題,由學(xué)生自己完成,讓兩個(gè)學(xué)生在黑板上規(guī)范的板書(shū),教師巡視:發(fā)現(xiàn)學(xué)生的閃光點(diǎn)以及存在的問(wèn)題并適時(shí)的加以輔導(dǎo),以期學(xué)生在解答的過(guò)程中領(lǐng)會(huì)“代入消元法”的真實(shí)含義和“化歸”的數(shù)學(xué)思想.)
第三環(huán)節(jié):鞏固新知(10分鐘,教師演示,學(xué)生理解、識(shí)記)
內(nèi)容:
1例解下列方程組:
(1)(2)
(根據(jù)學(xué)生的情況可以選擇學(xué)生自己完成或教師指導(dǎo)完成)
(1)解:將②代入①,得:.
解得:.
把代入②,得:.
所以原方程組的解為:
(2)由②,得:.③
將③代入①,得:.
解得:.
將y=2代入③,得:.
所以原方程組的解是
(⑵題需先進(jìn)行恒等變形,教師要鼓勵(lì)學(xué)生通過(guò)自主探索與交流獲得求解,在求解過(guò)程中學(xué)生消元的具體方法可能不同,所以教學(xué)中不必強(qiáng)求解答過(guò)程的統(tǒng)一,但要提出如何選擇將哪個(gè)方程恒等變形、消去哪個(gè)未知數(shù)能使運(yùn)算較為簡(jiǎn)單.讓學(xué)生在解題中進(jìn)行思考)
(教師在解完后要引導(dǎo)學(xué)生再次就解出的結(jié)果進(jìn)行思考,判斷它們是否是原方程組的解.促使學(xué)生進(jìn)一步理解方程組解的含義以及學(xué)會(huì)檢驗(yàn)方程組解的方法.)
2思考總結(jié):(教師根據(jù)學(xué)生的實(shí)際情況進(jìn)行生與生、師與生之間的相互補(bǔ)充與評(píng)價(jià),并提出下面的問(wèn)題)
⑴給這種解方程組的方法取個(gè)什么名字好?
⑵上面解方程組的基本思路是什么?
⑶主要步驟有哪些?
⑷我們觀察例題的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?
(由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過(guò)程中的獨(dú)特想法,請(qǐng)學(xué)生小組的代表回答或?qū)W生舉手回答,其余學(xué)生可以補(bǔ)充,力求讓學(xué)生能夠回答出以下的要點(diǎn),教師要板書(shū)要點(diǎn),在學(xué)生回答時(shí)注意進(jìn)行積極評(píng)價(jià))
1.在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用含其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入另一個(gè)未變形的方程,從而由“二元”轉(zhuǎn)化為“一元”,達(dá)到消元的目的.我們將這種方法叫代入消元法.
2.解二元一次方程組的基本思路是消元,把“二元”變?yōu)椤耙辉?
3.解上述方程組的步驟:
第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠蹋瑢⑺哪硞€(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái).
第二步:把此代數(shù)式代入沒(méi)有變形的另一個(gè)方程中,可得一個(gè)一元一次方程.
第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.
第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.
第五步:把方程組的解表示出來(lái).
第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行),即把求得的解代入每一個(gè)方程看是否成立.
4.用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的系數(shù)的絕對(duì)值是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)的絕對(duì)值都不是1,則選取系數(shù)的絕對(duì)值較小的方程變形.
第四環(huán)節(jié):練習(xí)提高(10分鐘,學(xué)生獨(dú)立完成,教師個(gè)別指導(dǎo),全班交流)
內(nèi)容:
1.教材隨堂練習(xí)(在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過(guò)自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,可以不必強(qiáng)調(diào)解答過(guò)程統(tǒng)一.可能會(huì)出現(xiàn)整體代換的思想,若有條件可以提出,為下一課做點(diǎn)鋪墊也可以)
2.補(bǔ)充練習(xí):用代入消元法解下列方程組:
(1)(2)⑶(注意分?jǐn)?shù)線有括號(hào)功能)
第五環(huán)節(jié):課堂小結(jié)(5分鐘,教師引導(dǎo)學(xué)生總結(jié)解方程的方法)
內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉?;解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.
第六環(huán)節(jié):布置作業(yè)習(xí)題7.2A組(優(yōu)等生)1、2
B組(中等生)1
C組(后三分之一生)1
教學(xué)反思