小學(xué)三角形教案
發(fā)表時間:2020-12-08八年級數(shù)學(xué)下冊《直角三角形》知識點(diǎn)蘇教版。
每個老師在上課前需要規(guī)劃好教案課件,是時候?qū)懡贪刚n件了。只有規(guī)劃好新的教案課件工作,才能更好的在接下來的工作輕裝上陣!你們會寫適合教案課件的范文嗎?為了讓您在使用時更加簡單方便,下面是小編整理的“八年級數(shù)學(xué)下冊《直角三角形》知識點(diǎn)蘇教版”,僅供參考,大家一起來看看吧。
八年級數(shù)學(xué)下冊《直角三角形》知識點(diǎn)蘇教版
知識點(diǎn)
1、有一個角為90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC寫作Rt△ABC。
直角三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)外,具有一些特殊的性質(zhì):
2、性質(zhì)
性質(zhì)1:直角三角形兩直角邊的平方和等于斜邊的平方
性質(zhì)2:在直角三角形中,兩個銳角互余
性質(zhì)3:在直角三角形中,斜邊上的中線等于斜邊的一半。(即直角三角形的外心位于斜邊的中點(diǎn),外接圓半徑R=C/2)。
性質(zhì)4:直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。
性質(zhì)5:射影定理
在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的射影的比例中項(xiàng),每條直角邊是它們在斜邊上的射影和斜邊的比例中項(xiàng)
∠ACB=90°
CD⊥AB(4)ABCD=ACBC(可用面積來證明)
(5)直角三角形的外接圓的半徑R=1/2BC,
(6)直角三角形的內(nèi)切圓的半徑r=1/2(AB+AC-BC)(公式一);
r=AB*AC/(AB+BC+CA)(公式二)
性質(zhì)6:在直角三角形中,如果有一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;
在直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于30°。
相關(guān)閱讀
直角三角形
每個老師上課需要準(zhǔn)備的東西是教案課件,規(guī)劃教案課件的時刻悄悄來臨了。是時候?qū)ψ约航贪刚n件工作做個新的規(guī)劃了,接下來的工作才會更順利!你們了解多少教案課件范文呢?考慮到您的需要,小編特地編輯了“直角三角形”,希望對您的工作和生活有所幫助。
§1、2直角三角形(2)
教學(xué)目標(biāo):1、進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力。
2、能夠證明直角三角形全等的“HL”判定定理既解決實(shí)際問題。
重點(diǎn):能夠證明直角三角形全等的“HL”判定定理。并且用紙解決問題。
難點(diǎn):證明“HL”定理的思路的探究和分析。-
教學(xué)過程:
一、復(fù)習(xí)提問
1、判斷兩個三角形全等的方法有哪幾種?
2、有兩邊及其中一邊的對角對應(yīng)相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結(jié)論。
(思考交流引導(dǎo)學(xué)生分析證明思路,寫出證明過程)
二、探究
兩邊及其一個角對應(yīng)相等的兩個三角形全等嗎?如果相等說明理由。如果不相等,應(yīng)如何改變條件?用自己的語言清楚地說明,并寫出證明過程。
問題1,此定理適用于什么樣的三角形?(適用于直角三角形)
2、判定直角三角形的方法有哪些,分別說出?(HL,SAS,ASA,AAS,SSS.先考慮HL,在考慮另外四種方法。)
三、做一做
如圖利用刻度尺和三角板,能否
做出這個角的角平分線?并證明。
(設(shè)計做一做的目的為了讓學(xué)生體會數(shù)學(xué)
結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語言清楚地表達(dá)自己的想法,并能按要求將推理證明過程寫出來。)
四、練習(xí)隨堂練習(xí)P23--1
判斷命題的真假,并說明理由
1、銳角對應(yīng)相等的兩個直角三角形全等。
2、斜邊及一銳角對應(yīng)相等的兩個直角三角形全等。
3、兩條直角邊對應(yīng)相等的兩個直角三角形全等。
4、一條直角邊和另一條直角邊上的中線隊(duì)以相等的兩個直角三角形全等。
(對于假的命題要舉出反例,真命題要說明理由。教師分析講解。)
五、議一議
如圖:已知∠ACB=∠BDA=90。
要使⊿ACB≌⊿BDA,還需要什么條件?
把他們寫出來,并說明理由。
(教學(xué)中給予學(xué)生時間和空間,
鼓勵學(xué)生積極思考,并在獨(dú)立思考的基礎(chǔ)上,
通過交流,獲得不同的答案,并將一種方法寫出證明過程。)
六、小結(jié):
1、本節(jié)課學(xué)習(xí)了哪些知識?
2、還有那一些方面的收獲?
七、作業(yè):
1、基礎(chǔ)作業(yè):P23頁習(xí)題1.51、2。
2、拓展作業(yè):《目標(biāo)檢測》
3、預(yù)習(xí)作業(yè):預(yù)習(xí):線段的垂直平分線。
板書設(shè)計:
八年級數(shù)學(xué)上冊《直角三角形》教案
每個老師上課需要準(zhǔn)備的東西是教案課件,規(guī)劃教案課件的時刻悄悄來臨了。此時就可以對教案課件的工作做個簡單的計劃,才能規(guī)范的完成工作!有沒有出色的范文是關(guān)于教案課件的?下面是由小編為大家整理的“八年級數(shù)學(xué)上冊《直角三角形》教案”,歡迎您閱讀和收藏,并分享給身邊的朋友!
八年級數(shù)學(xué)上冊《直角三角形》教案
〖教學(xué)目標(biāo)〗
◆1、體驗(yàn)直角三角形應(yīng)用的廣泛性,進(jìn)一步認(rèn)識直角三角形.
◆2、學(xué)會用符號和字母表示直角三角形.
◆3、經(jīng)歷“直角三角形兩個銳角互余”的探討,掌握直角三角形兩個銳角互余的性質(zhì).
◆4、掌握“直角三角形斜邊上中線等于斜邊的一半”性質(zhì),并能靈活應(yīng)用.
〖教學(xué)重點(diǎn)與難點(diǎn)〗
◆教學(xué)重點(diǎn):“直角三角形的兩個銳角互余”的性質(zhì)及其應(yīng)用在以后的幾何學(xué)習(xí)中將得到廣泛的應(yīng)用,是本節(jié)教學(xué)的重點(diǎn).
◆教學(xué)難點(diǎn):“直角三角形斜邊上中線等于斜邊的一半”性質(zhì)的推導(dǎo)過程。
〖教學(xué)過程〗
一、復(fù)習(xí)引入:
1.三角形分類.
2.小學(xué)已學(xué)習(xí)的直角三角形知識。(直角三角形及相關(guān)概念-直角邊、斜邊等)
學(xué)生口答后引入課題。(板書課題:2.6直角三角形(1))
二、新課教學(xué):
1.由復(fù)習(xí)得出直角三角形的概念。
板書:有一個角是直角的三角形叫做直角三角形.
直角三角形表示方法:Rt⊿.
由書本圖例,讓學(xué)生體驗(yàn)直角三角形應(yīng)用的廣泛性。(讓學(xué)生舉例說明直角三角形應(yīng)用)
2.合作學(xué)習(xí):
(1)直角三角形的內(nèi)角有什么特點(diǎn)?
學(xué)生討論后,小結(jié)得出:(板書)直角三角形的兩個銳角互余.
(2)鞏固練習(xí)
(3)直角三角形斜邊上的中線等于斜邊的一半
完成課本第68頁“做一做”第2題。
教師提問:讓學(xué)生猜測直角三角形斜邊上的中線與斜邊一半的大小關(guān)系。
教師板書性質(zhì)。
例1如圖,一名滑雪運(yùn)動員沿著傾斜角為30°的斜邊,中A滑行至B。已知AB=200m,問這名滑雪運(yùn)動員的高度下降了多少m?
30°
A
B
C
教師先引導(dǎo)學(xué)生理解題意后分析:書上分析。
教師板演解題過程:
解:如圖作Rt△ABC的斜邊上的中線CD,則CD=AD=1/2AB=1/2×200=100(在直角三角形中,斜邊上的中線等于斜邊的一半)
A
∵∠B=30°(已知)
D
∴∠A=90°-∠B=90°-30°
30°
C
B
(直角三角形兩銳角互余)
∴∠DCA=∠A=60°(等邊對等角)
∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形內(nèi)角和等于180°)
∴△ABC是等邊三角形(三個角都是60°的三角形是等邊三角形)
∴AC=AD=100
答:這名滑雪運(yùn)動員的高度下降了100m。
講完后教師歸納一下“在直角三角形中如果一個銳角是30°,則它所對的直角邊等于斜邊的一半”讓學(xué)生注意書寫的規(guī)范。
三、練習(xí):1、在Rt△ABC中,CD是斜邊AB上的中線,若CD=3.5厘米,則AB=__厘米
2、已知△ABC中,∠A=90°,
BC=20cm,則BC邊上的中線為
見書本第70頁第6題,以及變式1:連結(jié)CD,取CD的中點(diǎn)N,連結(jié)EN,你能判斷EN與CD的位置關(guān)系嗎?
變式2:三角形ABD與三角形ABC在AB的異側(cè).
四、總結(jié)回顧:
1、直角三角形的概念及其應(yīng)用的廣泛性.
2、直角三角形的兩個銳角互余,直角三角形斜邊上中線等于斜邊的一半。
3、注重知識間的相互聯(lián)系,學(xué)會通過比較理解掌握相應(yīng)的幾何知識。
五、作業(yè):
1.作業(yè)本2.6(1)2.知識梳理
得到直角三角形嗎
第一章勾股定理
2.能得到直角三角形嗎
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中,可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理,并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
●知識與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
●過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
●情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)—猜想—?dú)w納—論證
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn),但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個三角形的三邊長,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數(shù)都滿足嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出“若一個三角形的三邊長,滿足,則這個三角形是直角三角形”這一結(jié)論;在活動中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由“特殊→一般→特殊”的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足,可以構(gòu)成直角三角形;②7,24,25滿足,可以構(gòu)成直角三角形;③8,15,17滿足,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:
如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形
滿足的三個正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。
活動3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。
①9,12,15;②15,36,39;③12,35,36;④12,18,22
解答:①②
2.一個三角形的三邊長分別是,則這個三角形的面積是()
A250B150C200D不能確定
解答:B
3.如圖1:在中,于,,則是()
A等腰三角形B銳角三角形
C直角三角形D鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,(圖1)
得到的三角形是()
A直角三角形B銳角三角形
C鈍角三角形D不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求,又,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90°,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900==即∴△ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將作適當(dāng)變形(),以便于計算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1,圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問題。
效果:
學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形;②滿足的三個正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由“特殊→一般→特殊”的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將作適當(dāng)變形,便于計算。
意圖:
鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入“如果一個三角形的三邊長,滿足,是否能得到這個三角形是直角三角形”的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動,從中體驗(yàn)任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由“特殊→一般→特殊”的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識解決實(shí)際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。
4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計
能得到直角三角形嗎
情景引入————小試牛刀:登高望遠(yuǎn)—————
合作探究————1.——————1.——————
2.——————2.——————
3.——————課后作業(yè):