高中對(duì)數(shù)函數(shù)教案
發(fā)表時(shí)間:2020-04-07對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
4.6對(duì)數(shù)函數(shù)的圖像與性質(zhì)(1)案例背景
對(duì)數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).
案例敘述:
(一).創(chuàng)設(shè)情境
(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).
(提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
(學(xué)生):是指數(shù)函數(shù),它是存在反函數(shù)的.
(師):求反函數(shù)的步驟
(由一個(gè)學(xué)生口答求反函數(shù)的過程):
由得.又的值域?yàn)椋?br> 所求反函數(shù)為.
(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).
(二)新課
1.(板書)定義:函數(shù)的反函數(shù)叫做對(duì)數(shù)函數(shù).
(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?
(教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)
(學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,?duì)數(shù)函數(shù)的值域?yàn)椋业讛?shù)就是指數(shù)函數(shù)中的,故有著相同的限制條件.
(在此基礎(chǔ)上,我們將一起來研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)
2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)
(提問)用什么方法來畫函數(shù)圖像?
(學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.
(學(xué)生2)用列表描點(diǎn)法也是可以的。
請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時(shí),要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).
(2)畫出直線.
(3)的圖像在翻折時(shí)先將特殊點(diǎn)對(duì)稱點(diǎn)找到,變化趨勢由靠近軸對(duì)稱為逐漸靠近軸,而的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在左側(cè)的先翻,然后再翻在右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
教師畫完圖后再利用電腦將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)
3.性質(zhì)
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè).
(3)圖像恒過(1,0)
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于軸對(duì)稱.
(5)單調(diào)性:與有關(guān).當(dāng)時(shí),在上是增函數(shù).即圖像是上升的
當(dāng)時(shí),在上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時(shí),有;當(dāng)時(shí),有.
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對(duì)圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
(三).簡單應(yīng)用
1.研究相關(guān)函數(shù)的性質(zhì)
例1.求下列函數(shù)的定義域:
(1)(2)(3)
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.
2.利用單調(diào)性比較大小
例2.比較下列各組數(shù)的大小
(1)與;(2)與;
(3)與;(4)與.
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W(xué)生以其中一組為例寫出詳細(xì)的比較過程.
三.拓展練習(xí)
練習(xí):若,求的取值范圍.
四.小結(jié)及作業(yè)
案例反思:
本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
擴(kuò)展閱讀
對(duì)數(shù)函數(shù)的性質(zhì)
總課題對(duì)數(shù)函數(shù)分課時(shí)第5課時(shí)總課時(shí)總第33課時(shí)
分課題對(duì)數(shù)函數(shù)的性質(zhì)課型新授課
教學(xué)目標(biāo)熟悉對(duì)數(shù)函數(shù)的圖象和性質(zhì),會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)求一些與對(duì)數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)的單調(diào)區(qū)間;對(duì)數(shù)形式函數(shù)單調(diào)區(qū)間及值域的求法。
重點(diǎn)對(duì)數(shù)函數(shù)的圖象的變換。
難點(diǎn)對(duì)數(shù)函數(shù)的圖象的變換。
一、復(fù)習(xí)引入
1、對(duì)數(shù)函數(shù)的概念及其與指數(shù)函數(shù)的關(guān)系
2、對(duì)數(shù)函數(shù)的圖象及性質(zhì)
3、與對(duì)數(shù)有關(guān)的復(fù)合函數(shù)及其性質(zhì)
4、課前練習(xí)
(1)已知,則的大小。
(2)函數(shù)且恒過定點(diǎn)。
(3)將函數(shù)的圖象向得到函數(shù)的圖象;
將明函數(shù)的圖象向得到函數(shù)的圖象。
(4)函數(shù)的定義域?yàn)椋蟮姆春瘮?shù)的定義域與值域分別。
二、例題分析
例1、畫出函數(shù)的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間。
例2、比較與圖像的關(guān)系,并討論函數(shù)與之間的關(guān)系。
變式:畫出的圖像,并利用函數(shù)圖像求函數(shù)的值域及單調(diào)區(qū)間。
例3、判斷函數(shù)的單調(diào)性,并證明。
例4、求函數(shù)在上的最值。
三、隨堂練習(xí)
1、已知函數(shù),,,的圖象如圖所示,
則下式中正確的是。
(1)(2)
(3)(4)
2、函數(shù)的奇偶性是。
3、在同一坐標(biāo)系中作出下列函數(shù)的圖像。
(1)(2)
四、回顧小結(jié)
1、函數(shù)圖像的作法;2、對(duì)數(shù)形式函數(shù)單調(diào)區(qū)間及值域的求法。
課后作業(yè)
班級(jí):高一()班姓名__________
一、基礎(chǔ)題
1、若函數(shù),則的大小關(guān)系為。
2、函數(shù)的單調(diào)遞增區(qū)間是_______________________。
3、下列函數(shù)在上為增函數(shù)是___________________。
(1)(2)(3)(4)
4、函數(shù)的定義域是。
二、提高題
5、已知函數(shù)。
(1)求的定義域;(2)判斷的奇偶性,并證明。
6、作出下列函數(shù)的圖像,并寫出函數(shù)的單調(diào)區(qū)間:
(1)(2)
三、能力題
7、對(duì)于任意,若函數(shù),試比較與的大小。
8、已知,,求的最大值及取最大值時(shí)的值。
探究:關(guān)于的兩方程,的根分別是,求的值。(圖象法)
得分:____________________
對(duì)數(shù)函數(shù)及其性質(zhì)
作為老師的任務(wù)寫教案課件是少不了的,大家正在計(jì)劃自己的教案課件了。各行各業(yè)都在開始準(zhǔn)備新的教案課件工作計(jì)劃了,才能更好的在接下來的工作輕裝上陣!你們清楚教案課件的范文有哪些呢?以下是小編為大家收集的“對(duì)數(shù)函數(shù)及其性質(zhì)”僅供參考,希望能為您提供參考!
§2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(1)
學(xué)習(xí)目標(biāo)
1.通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;
2.能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);
3.通過比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)數(shù)形結(jié)合的思想方法,學(xué)會(huì)研究函數(shù)性質(zhì)的方法.
舊知提示
復(fù)習(xí):若,則,其中稱為,其范圍為,稱為.
合作探究(預(yù)習(xí)教材P70-P72,找出疑惑之處)
探究1:元旦晚會(huì)前,同學(xué)們剪彩帶備用。現(xiàn)有一根彩帶,將其對(duì)折后,沿折痕剪開,可將所得的兩段放在一起,對(duì)折再剪段。設(shè)所得的彩帶的根數(shù)為,剪的次數(shù)為,試用表示.
新知:對(duì)數(shù)函數(shù)的概念
試一試:以下函數(shù)是對(duì)數(shù)函數(shù)的是()
A.B.C.D.E.
反思:對(duì)數(shù)函數(shù)定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別,如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù);對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制,且.
探究2:你能類比前面討論指數(shù)函數(shù)性質(zhì)的思路,提出研究對(duì)數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?
研究方法:畫出函數(shù)圖象,結(jié)合圖象研究函數(shù)性質(zhì).
研究內(nèi)容:定義域、值域、特殊點(diǎn)、單調(diào)性、最大(?。┲?、奇偶性.
作圖:在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象.
;
新知:對(duì)數(shù)函數(shù)的圖象和性質(zhì):
象
定義域
值域
過定點(diǎn)
單調(diào)性
思考:當(dāng)時(shí),時(shí),;時(shí),;
當(dāng)時(shí),時(shí),;時(shí),.
典型例題
例1求下列函數(shù)的定義域:(1);(2).
例2比較大?。?br>
(1);(2);(3);(4)與.
課堂小結(jié)
1.對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
2.求定義域;
3.利用單調(diào)性比大小.
知識(shí)拓展
對(duì)數(shù)函數(shù)凹凸性:函數(shù),是任意兩個(gè)正實(shí)數(shù).
當(dāng)時(shí),;當(dāng)時(shí),.
學(xué)習(xí)評(píng)價(jià)
1.函數(shù)的定義域?yàn)椋ǎ?br>
A.B.C.D.
2.函數(shù)的定義域?yàn)椋ǎ?br>
A.B.C.D.
3.函數(shù)的定義域是.
4.比較大?。?br>
(1)log67log76;(2);(3).
課后作業(yè)
1.不等式的解集是().
A.B.C.D.
2.若,則()
A.B.C.D.
3.當(dāng)a1時(shí),在同一坐標(biāo)系中,函數(shù)與的圖象是().
4.已知函數(shù)的定義域?yàn)?,函?shù)的定義域?yàn)?,則有()
A.B.C.D.
5.函數(shù)的定義域?yàn)?
6.若且,函數(shù)的圖象恒過定點(diǎn),則的坐標(biāo)是.
7.已知,則=.
8.求下列函數(shù)的定義域:
§2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(2)
學(xué)習(xí)目標(biāo)
1.解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡單應(yīng)用;2.進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì);
3.學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì).
舊知提示
復(fù)習(xí)1:對(duì)數(shù)函數(shù)圖象和性質(zhì).
a10a1
圖
性
質(zhì)(1)定義域:
(2)值域:
(3)過定點(diǎn):
(4)單調(diào)性:
復(fù)習(xí)2:比較兩個(gè)對(duì)數(shù)的大?。海?);(2).
復(fù)習(xí)3:(1)的定義域?yàn)椋?br>
(2)的定義域?yàn)?
復(fù)習(xí)4:右圖是函數(shù),,,的圖象,則底數(shù)之間的關(guān)系為.
合作探究(預(yù)習(xí)教材P72-P73,找出疑惑之處)
探究:如何由求出x?
新知:反函數(shù)
試一試:在同一平面直角坐標(biāo)系中,畫出指數(shù)函數(shù)及其反函數(shù)圖象,發(fā)現(xiàn)什么性質(zhì)?
反思:
(1)如果在函數(shù)的圖象上,那么P0關(guān)于直線的對(duì)稱點(diǎn)在函數(shù)的圖象上嗎?為什么?
(2)由上述過程可以得到結(jié)論:互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于對(duì)稱.
典型例題
例1求下列函數(shù)的反函數(shù):
(1);(2).
提高:①設(shè)函數(shù)過定點(diǎn),則過定點(diǎn).
②函數(shù)的反函數(shù)過定點(diǎn).
③己知函數(shù)的圖象過點(diǎn)(1,3)其反函數(shù)的圖象過點(diǎn)(2,0),則的表達(dá)式為.
小結(jié):求反函數(shù)的步驟(解x→習(xí)慣表示→定義域)
例2溶液酸堿度的測量問題:溶液酸堿度pH的計(jì)算公式,其中表示溶液中氫離子的濃度,單位是摩爾/升.
(1)分析溶液酸堿度與溶液中氫離子濃度之間的變化關(guān)系?
(2)純凈水摩爾/升,計(jì)算其酸堿度.
例3求下列函數(shù)的值域:(1);(2).
課堂小結(jié)
①函數(shù)模型應(yīng)用思想;②反函數(shù)概念.
知識(shí)拓展
函數(shù)的概念重在對(duì)于某個(gè)范圍(定義域)內(nèi)的任意一個(gè)自變量x的值,y都有唯一的值和它對(duì)應(yīng).對(duì)于一個(gè)單調(diào)函數(shù),反之對(duì)應(yīng)任意y值,x也都有惟一的值和它對(duì)應(yīng),從而單調(diào)函數(shù)才具有反函數(shù).反函數(shù)的定義域是原函數(shù)的值域,反函數(shù)的值域是原函數(shù)的定義域,即互為反函數(shù)的兩個(gè)函數(shù),定義域與值域是交叉相等.
學(xué)習(xí)評(píng)價(jià)
1.函數(shù)的反函數(shù)是().
A.B.C.D.
2.函數(shù)的反函數(shù)的單調(diào)性是().
A.在R上單調(diào)遞增B.在R上單調(diào)遞減
C.在上單調(diào)遞增D.在上單調(diào)遞減
3.函數(shù)的反函數(shù)是().
A.B.C.D.
4.函數(shù)的值域?yàn)椋ǎ?
A.B.C.D.
5.指數(shù)函數(shù)的反函數(shù)的圖象過點(diǎn),則a的值為.
6.點(diǎn)在函數(shù)的反函數(shù)圖象上,則實(shí)數(shù)a的值為.
課后作業(yè)
1.函數(shù)的反函數(shù)為()
A.B.C.D.
2.設(shè),,,,則的大小關(guān)系是()
A.B.C.D.
3.的反函數(shù)為.
4.函數(shù)的值域?yàn)?
5.已知函數(shù)的反函數(shù)圖象經(jīng)過點(diǎn),則.
6.設(shè),則滿足的值為.
7.求下列函數(shù)的反函數(shù).
(1)y=;(2)y=(a>0,a≠1,x>0);(3).
對(duì)數(shù)與對(duì)數(shù)函數(shù)
一位優(yōu)秀的教師不打無準(zhǔn)備之仗,會(huì)提前做好準(zhǔn)備,高中教師要準(zhǔn)備好教案,這是每個(gè)高中教師都不可缺少的。教案可以讓學(xué)生們能夠在上課時(shí)充分理解所教內(nèi)容,幫助高中教師能夠更輕松的上課教學(xué)。所以你在寫高中教案時(shí)要注意些什么呢?下面是小編精心收集整理,為您帶來的《對(duì)數(shù)與對(duì)數(shù)函數(shù)》,歡迎閱讀,希望您能閱讀并收藏。
學(xué)案14對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù):
(1)一般地,如果,那么實(shí)數(shù)叫做________________,記為________,其中叫做對(duì)數(shù)的_______,叫做________.
(2)以10為底的對(duì)數(shù)記為________,以為底的對(duì)數(shù)記為_______.
(3),.
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果,那么,
.
(2)對(duì)數(shù)的換底公式:.
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a10a1
圖
象
性
質(zhì)定義域:___________
值域:_____________
過點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x∈(0,1)時(shí)_________
x∈(1,+∞)時(shí)________x∈(0,1)時(shí)_________
x∈(1,+∞)時(shí)________
在___________上是增函數(shù)在__________上是減函數(shù)
【自我檢測】
1.的定義域?yàn)開________.
2.化簡:.
3.不等式的解集為________________.
4.利用對(duì)數(shù)的換底公式計(jì)算:.
5.函數(shù)的奇偶性是____________.
6.對(duì)于任意的,若函數(shù),則與的大小關(guān)系是___________________________.
二、課堂活動(dòng):
【例1】填空題:
(1).
(2)比較與的大小為___________.
(3)如果函數(shù),那么的最大值是_____________.
(4)函數(shù)的奇偶性是___________.
【例2】求函數(shù)的定義域和值域.
【例3】已知函數(shù)滿足.
(1)求的解析式;
(2)判斷的奇偶性;
(3)解不等式.
課堂小結(jié)
三、課后作業(yè)
1..
2.函數(shù)的定義域?yàn)開______________.
3.函數(shù)的值域是_____________.
4.若,則的取值范圍是_____________.
5.設(shè)則的大小關(guān)系是_____________.
6.設(shè)函數(shù),若,則的取值范圍為_________________.
7.當(dāng)時(shí),不等式恒成立,則的取值范圍為______________.
8.函數(shù)在區(qū)間上的值域?yàn)椋瑒t的最小值為____________.
9.已知.
(1)求的定義域;
(2)判斷的奇偶性并予以證明;
(3)求使的的取值范圍.
10.對(duì)于函數(shù),回答下列問題:
(1)若的定義域?yàn)?,求?shí)數(shù)的取值范圍;
(2)若的值域?yàn)?,求?shí)數(shù)的取值范圍;
(3)若函數(shù)在內(nèi)有意義,求實(shí)數(shù)的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
學(xué)案14對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù)
(1)以為底的的對(duì)數(shù),,底數(shù),真數(shù).
(2),.
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1),,.
(2).
3.對(duì)數(shù)函數(shù)
,.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a10a1
圖
象
性
質(zhì)定義域:(0,+∞)
值域:R
過點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x∈(0,1)時(shí)y<0
x∈(1,+∞)時(shí)y>0x∈(0,1)時(shí)y>0
x∈(1,+∞)時(shí)y<0
在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)
【自我檢測】
1.2.3.
4.5.奇函數(shù)6..
二、課堂活動(dòng):
【例1】填空題:
(1)3.
(2).
(3)0.
(4)奇函數(shù).
【例2】解:由得.所以函數(shù)的定義域是(0,1).
因?yàn)?,所以,?dāng)時(shí),,函數(shù)的值域?yàn)?;?dāng)時(shí),,函數(shù)的值域?yàn)椋?br>
【例3】解:(1),所以.
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以為奇函數(shù).
(3),所以當(dāng)時(shí),解得
當(dāng)時(shí),解得.
三、課后作業(yè)
1.2.
2..
3..
4..
5..
6..
7..
8..
9.解:(1)由得,函數(shù)的定義域?yàn)椋?1,1);
(2)因?yàn)槎x域關(guān)于原點(diǎn)對(duì)稱,所以
,所以函數(shù)是奇函數(shù).
(3)
當(dāng)時(shí),解得;當(dāng)時(shí),解得.
10.解:(1)由題可知的解集是,所以,解得
(2)由題可知取得大于0的一切實(shí)數(shù),所以,解得
(3)由題可知在上恒成立,令
解得或解得,綜上.
對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓上課時(shí)的教學(xué)氛圍非?;钴S,幫助高中教師有計(jì)劃有步驟有質(zhì)量的完成教學(xué)任務(wù)。那么怎么才能寫出優(yōu)秀的高中教案呢?下面是小編為大家整理的“對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用”,歡迎大家與身邊的朋友分享吧!
2.2.2對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用(2)
課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo)
記住對(duì)數(shù)函數(shù)的定義;掌握對(duì)數(shù)函數(shù)的圖象與性質(zhì).
二、預(yù)習(xí)內(nèi)容
1.對(duì)數(shù)函數(shù)的性質(zhì):
a10a1
圖
象
性
質(zhì)定義域:
值域:
過點(diǎn)(,),即當(dāng)時(shí),
時(shí)
時(shí)
時(shí)
時(shí)
在(,)上是增函數(shù)在(,)上是減函數(shù)
2.函數(shù)恒過的定點(diǎn)坐標(biāo)是()
A.B.C.D.
3.畫出函數(shù)y=x及y=的圖象,并且說明這兩個(gè)函數(shù)的相同性質(zhì)和不同性質(zhì).
課內(nèi)探究學(xué)案
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生理解對(duì)數(shù)函數(shù)的定義,進(jìn)一步掌握對(duì)數(shù)函數(shù)的圖像和性質(zhì)
2、通過定義的復(fù)習(xí),圖像特征的觀察、鞏固過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
教學(xué)重點(diǎn):對(duì)數(shù)函數(shù)的圖像和性質(zhì)
教學(xué)難點(diǎn):底數(shù)a的變化對(duì)函數(shù)性質(zhì)的影響
二、學(xué)習(xí)過程
探究點(diǎn)一
例1求下列函數(shù)的定義域:
(1);(2);(3)
解析:利用對(duì)數(shù)函數(shù)的定義域解.
解:略
點(diǎn)評(píng):本題主要考察了利用函數(shù)的定義域.
探究點(diǎn)二
例2.比較大小
1.,,2.
解析:利用對(duì)數(shù)函數(shù)的單調(diào)性解.
解:略
點(diǎn)評(píng):本題主要考察了利用函數(shù)的單調(diào)性比較對(duì)數(shù)的大?。?/p>
探究點(diǎn)三
例3求下列函數(shù)的反函數(shù)
①②
解析:利用對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)解.
解:略
點(diǎn)評(píng):本題主要考察了反函數(shù)的解法.
三、反思總結(jié)
四、當(dāng)堂檢測
1.求下列函數(shù)的定義域:
(1)y=(1-x)(2)y=
(3)y=
2.若求實(shí)數(shù)的取值范圍
課后練習(xí)與提高
1、函數(shù)的定義域是()
A、B、
C、D、
2、函數(shù)的值域是()
A、B、C、D、
3、若,那么滿足的條件是()
A、B、C、D、
4、已知函數(shù),判斷的奇偶性和單調(diào)性。