高中對(duì)數(shù)函數(shù)教案
發(fā)表時(shí)間:2021-08-17高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)。
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
教學(xué)建議(dG15.cOM 工作總結(jié)之家)
教材分析
(1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).
(2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).
(3) 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).
教法建議
(1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
教學(xué)設(shè)計(jì)示例
對(duì)數(shù)函數(shù)
教學(xué)目標(biāo)
1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,掌握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2. 通過對(duì)數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.
3. 通過對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握?qǐng)D像和性質(zhì).
難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的圖像和性質(zhì).
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過程
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W(xué)生以其中一組為例寫出詳細(xì)的比較過程.
三.鞏固練習(xí)
練習(xí):若 ,求 的取值范圍.
四.小結(jié)
五.作業(yè) 略
板書設(shè)計(jì)
2.8對(duì)數(shù)函數(shù)
一. 概念
1. 定義 2.認(rèn)識(shí)
二.圖像與性質(zhì)
1.作圖方法
2.草圖
圖1 圖2
3.性質(zhì)
(1) 定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性
三.應(yīng)用
1.相關(guān)函數(shù)的研究
例1 例2
練習(xí)
探究活動(dòng)
延伸閱讀
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(一)
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(一)
教學(xué)目標(biāo):
1.掌握對(duì)數(shù)函數(shù)的概念,熟悉對(duì)數(shù)函數(shù)的圖象和性質(zhì);
2.通過觀察對(duì)數(shù)函數(shù)的圖象,發(fā)現(xiàn)并歸納對(duì)數(shù)函數(shù)的性質(zhì);
3.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想以及分析推理的能力.
教學(xué)重點(diǎn):
理解對(duì)數(shù)函數(shù)的定義,初步掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
教學(xué)難點(diǎn):
底數(shù)a對(duì)圖象的影響及對(duì)對(duì)數(shù)函數(shù)性質(zhì)的作用.
教學(xué)過程:
一、問題情境
在細(xì)胞分裂問題中,細(xì)胞個(gè)數(shù)y是分裂次數(shù) x的指數(shù)函數(shù)y=2x.因此,知道x的值(輸入值是分裂的次數(shù)),就能求出y的值(輸出值是細(xì)胞個(gè)數(shù)).
反之,知道了細(xì)胞個(gè)數(shù)y,如何確定分裂次數(shù) x? x=log2 y.
在這里,x與y之間是否存在函數(shù)的關(guān)系呢?
同樣地,前面提到的放射性物質(zhì),經(jīng)過的時(shí)間x(年)與物質(zhì)的剩余量y的關(guān)系為y=0.84 x.反之,寫成對(duì)數(shù)式為x=log0.84 y.
二、學(xué)生活動(dòng)
1.回顧指數(shù)與對(duì)數(shù)的關(guān)系;引出對(duì)數(shù)函數(shù)的定義,給出對(duì)數(shù)函數(shù)的定義域
2.通過觀察對(duì)數(shù)函數(shù)的圖象,發(fā)現(xiàn)并歸納對(duì)數(shù)函數(shù)的性質(zhì).
3.類比指數(shù)函數(shù)的定義、圖象、性質(zhì)得到對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì).
三、建構(gòu)數(shù)學(xué)
1.對(duì)數(shù)函數(shù)的定義:一般地,當(dāng)a>0且a≠1時(shí),函數(shù)y=logax叫做對(duì)數(shù)函數(shù),自變量是x;函數(shù)的定義域是(0,+∞).
值域:R.
2.對(duì)數(shù)函數(shù)y = logax (a>0且a≠1)的圖像特征和性質(zhì).
a
a>1
0<a<1
圖像
定義域
值域
性
質(zhì)
(1)恒過定點(diǎn):
(2)當(dāng)x>1時(shí),
當(dāng)0<x<1時(shí),
當(dāng)x>1時(shí),
當(dāng)0<x<1時(shí),
(3)在上是函數(shù)
在上是函數(shù)
3.對(duì)數(shù)函數(shù)y = logax (a>0且a≠1)與指數(shù)函數(shù)y =ax (a>0且a≠1)的關(guān)系——互為反函數(shù).
四、數(shù)學(xué)運(yùn)用
例2 比較大?。?/p>
(1); (2);(3).
2.練習(xí):
課本P85-1,2,3,4.
五、要點(diǎn)歸納與方法小結(jié)
(1)對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
(2)求定義域;
(3)利用單調(diào)性比較大小.
六、作業(yè)
課本 P87習(xí)題2,3,4.
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(三)
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(三)
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見問題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x≥1)的值域是 ;
(3)函數(shù)y=log2x(0<x<1)的值域是 .
3.情境問題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問題.
三、數(shù)學(xué)運(yùn)用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(二)
高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)》優(yōu)秀教學(xué)設(shè)計(jì)(二)
教學(xué)目標(biāo):
1.掌握對(duì)數(shù)函數(shù)的性質(zhì),能初步運(yùn)用性質(zhì)解決問題.
2.運(yùn)用對(duì)數(shù)函數(shù)的圖形和性質(zhì).
3.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)圖象的變換.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的定義及性質(zhì).
2.問題:如何解決與對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)有關(guān)的問題?
二、學(xué)生活動(dòng)
1.畫出、等函數(shù)的圖象,并與對(duì)數(shù)函數(shù)的圖象進(jìn)行對(duì)比,總結(jié)出圖象變換的一般規(guī)律.
2.探求函數(shù)圖象對(duì)稱變換的規(guī)律.
三、建構(gòu)數(shù)學(xué)
1.函數(shù)()的圖象是由函數(shù)的圖象
得到;
2.函數(shù)的圖象與函數(shù)的圖象關(guān)系是 ;
3.函數(shù)的圖象與函數(shù)的圖象關(guān)系是 .
四、數(shù)學(xué)運(yùn)用
例1 如圖所示曲線是對(duì)數(shù)函數(shù)y=logax的圖象,
已知a值取0.2,0.5,1.5,e,則相應(yīng)于C1,C2,
C3,C4的a的值依次為 .
例2 分別作出下列函數(shù)的圖象,并與函數(shù)y=log3x的圖象進(jìn)行比較,找出它們之間的關(guān)系
(1)y=log3(x-2); (2)y=log3(x+2);
(3)y=log3x-2; (4)y=log3x+2.
練習(xí):1.將函數(shù)y=logax的圖象沿x軸向右平移2個(gè)單位,再向下平移1個(gè)單位,所得到函數(shù)圖象的解析式為 .
2.對(duì)任意的實(shí)數(shù)a(a>0,a≠1),函數(shù)y=loga(x-1)+2的圖象所過的定點(diǎn)坐標(biāo)為 .
3.由函數(shù)y= log3(x+2),y =log3x的圖象與直線y=-1,y=1所圍成的封閉圖形的面積是 .
例3 分別作出下列函數(shù)的圖象,并與函數(shù)y=log2x的圖象進(jìn)行比較,找出它們之間的關(guān)系
(1) y=log2|x|; (2)y=|log2x|;
(3) y=log2(-x); (4)y=-log2x.
練習(xí) 結(jié)合函數(shù)y=log2|x|的圖象,完成下列各題:
(1)函數(shù)y=log2|x|的奇偶性為 ;
(2)函數(shù)y=log2|x|的單調(diào)增區(qū)間為 ,減區(qū)間為 .
(3)函數(shù)y=log2(x-2)2的單調(diào)增區(qū)間為 ,減區(qū)間為 .
(4)函數(shù)y=|log2x-1|的單調(diào)增區(qū)間為 ,減區(qū)間為 .
五、要點(diǎn)歸納與方法小結(jié)
(1)函數(shù)圖象的變換(平移變換和對(duì)稱變換)的規(guī)律;
(2)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
六、作業(yè)
1.課本P87-6,8,11.
高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案23
對(duì)數(shù)函數(shù)的運(yùn)用
教學(xué)目標(biāo):
使學(xué)生掌握對(duì)數(shù)形式復(fù)合函數(shù)的單調(diào)性的判斷及證明方法,掌握對(duì)數(shù)形式復(fù)合函數(shù)的奇偶性的判斷及證明方法,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí);認(rèn)識(shí)事物之間的內(nèi)在聯(lián)系及相互轉(zhuǎn)化,用聯(lián)系的觀點(diǎn)分析問題、解決問題.
教學(xué)重點(diǎn):
復(fù)合函數(shù)單調(diào)性、奇偶性的討論方法.
教學(xué)難點(diǎn):
復(fù)合函數(shù)單調(diào)性、奇偶性的討論方法.
教學(xué)過程:
[例1]設(shè)loga23<1,則實(shí)數(shù)a的取值范圍是
A.0<a<23B.23<a<1
C.0<a<23或a>1D.a>23
解:由loga23<1=logaa得
(1)當(dāng)0<a<1時(shí),由y=logax是減函數(shù),得:0<a<23
(2)當(dāng)a>1時(shí),由y=logax是增函數(shù),得:a>23,∴a>1
綜合(1)(2)得:0<a<23或a>1答案:C
[例2]三個(gè)數(shù)60.7,0.76,log0.76的大小順序是
A.0.76<log0.76<60.7B.0.76<60.7<log0.76
C.log0.76<60.7<0.76D.log0.76<0.76<60.7
解:由于60.7>1,0<0.76<1,log0.76<0答案:D
[例3]設(shè)0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小
解法一:作差法
|loga(1-x)|-|loga(1+x)|=|lg(1-x)lga|-|lg(1+x)lga|
=1|lga|(|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=-1|lga|[(lg(1-x)+lg(1+x)]=-1|lga|lg(1-x2)
由0<x<1,得lg(1-x2)<0,∴-1|lga|lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
lg(1+x)lg(1-x)=|log(1-x)(1+x)|
∵0<x<1∴0<1-x<1+x
∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x
由0<x<1∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1∴11+x>1-x>0
∴0<log(1-x)11+x<log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比較大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)loga1-x1+x=1|lg2a|lg(1-x2)lg1-x1+x
∵0<x<1,∴0<1-x2<1,0<1-x1+x<1
∴l(xiāng)g(1-x2)<0,lg1-x1+x<0
∴l(xiāng)oga2(1-x)>loga2(1+x)
即|loga(1-x)|>|loga(1+x)|
解法四:分類討論去掉絕對(duì)值
當(dāng)a>1時(shí),|loga(1-x)|-|loga(1+x)|
=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴l(xiāng)oga(1-x2)<0,∴-loga(1-x2)>0
當(dāng)0<a<1時(shí),由0<x<1,則有l(wèi)oga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴當(dāng)a>0且a≠1時(shí),總有|loga(1-x)|>|loga(1+x)|
[例4]已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.
解:依題意(a2-1)x2+(a+1)x+1>0對(duì)一切x∈R恒成立.
當(dāng)a2-1≠0時(shí),其充要條件是:
a2-1>0△=(a+1)2-4(a2-1)<0解得a<-1或a>53
又a=-1,f(x)=0滿足題意,a=1不合題意.
所以a的取值范圍是:(-∞,-1]∪(53,+∞)
[例5]已知f(x)=1+logx3,g(x)=2logx2,比較f(x)與g(x)的大小
解:易知f(x)、g(x)的定義域均是:(0,1)∪(1,+∞)
f(x)-g(x)=1+logx3-2logx2=logx(34x).
①當(dāng)x>1時(shí),若34x>1,則x>43,這時(shí)f(x)>g(x).
若34x<1,則1<x<43,這時(shí)f(x)<g(x)
②當(dāng)0<x<1時(shí),0<34x<1,logx34x>0,這時(shí)f(x)>g(x)
故由(1)、(2)可知:當(dāng)x∈(0,1)∪(43,+∞)時(shí),f(x)>g(x)
當(dāng)x∈(1,43)時(shí),f(x)<g(x)
[例6]解方程:2(9x-1-5)=[4(3x-1-2)]
解:原方程可化為
(9x-1-5)=[4(3x-1-2)]
∴9x-1-5=4(3x-1-2)即9x-1-43x-1+3=0
∴(3x-1-1)(3x-1-3)=0∴3x-1=1或3x-1=3
∴x=1或x=2經(jīng)檢驗(yàn)x=1是增根
∴x=2是原方程的根.
[例7]解方程log2(2-x-1)(2-x+1-2)=-2
解:原方程可化為:
log2(2-x-1)(-1)log2[2(2-x-1)]=-2
即:log2(2-x-1)[log2(2-x-1)+1]=2
令t=log2(2-x-1),則t2+t-2=0
解之得t=-2或t=1
∴l(xiāng)og2(2-x-1)=-2或log2(2-x-1)=1
解之得:x=-log254或x=-log23