小學(xué)一年級數(shù)學(xué)的教案
發(fā)表時間:2020-11-24八年級數(shù)學(xué)復(fù)習(xí)資料:一次函數(shù)。
八年級數(shù)學(xué)復(fù)習(xí)資料:一次函數(shù)
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)
相關(guān)推薦
八年級數(shù)學(xué)下冊《一次函數(shù)》教學(xué)反思
八年級數(shù)學(xué)下冊《一次函數(shù)》教學(xué)反思
今天上完一次函數(shù)的圖像這節(jié)課,頗有感慨。一次函數(shù)的圖像在本章起著很重要的作用,因為只有掌握了函數(shù)圖象的畫法,學(xué)生才能夠畫出函數(shù)圖像,從而從圖像中學(xué)習(xí)一次函數(shù)的性質(zhì),也為后一節(jié)的一次函數(shù)與二元一次方程,一次函數(shù)與一次不等式打下基礎(chǔ).
我在設(shè)計本節(jié)課時,仔細(xì)研究了新課標(biāo),認(rèn)為本節(jié)的重點是:
1、通過列表、描點、連線教會學(xué)生會畫一次函數(shù)的圖像,并與學(xué)生一起總結(jié)一次函數(shù)的圖像,畫一次函數(shù)圖像需要幾個點,一次函數(shù)的圖像有什么特征;
2、讓學(xué)生理解圖像上的點的坐標(biāo)與函數(shù)表達(dá)式之間的關(guān)系。教學(xué)環(huán)節(jié)設(shè)計分為三步:1、通過復(fù)習(xí)再次理解函數(shù)圖像的概念,并通過舉例讓學(xué)生了解,讓學(xué)生明確函數(shù)圖像的重要作用。2、通過實例向?qū)W生展示如何畫一次函數(shù)圖像,并從中總結(jié)出畫函數(shù)圖像的一般步驟.先由學(xué)生歸納,后由老師總結(jié)出畫函數(shù)的三個步驟:1、列表,2、描點,3、連線。
3,讓學(xué)生練習(xí)如何畫圖,并從中發(fā)現(xiàn)學(xué)生可能存在的問題,作個別指導(dǎo),并抽出典型問題進(jìn)行講解。
4,通過課件一步步和學(xué)生探討畫一次函數(shù)圖像的步驟。展示不同函數(shù)之間的關(guān)系。特別是平行,平移的關(guān)系,由課件很直觀的展示出來。有助于學(xué)生的理解。
在教學(xué)過程中總會有這有那的一些不盡人意的地方,有時候是語言表達(dá)不當(dāng)或不嚴(yán)密。例如這節(jié)課我在組織教學(xué)時,就只給學(xué)生講了一次函數(shù)的k相同時,函數(shù)圖像是平行關(guān)系,但是我沒有引導(dǎo)學(xué)生發(fā)現(xiàn)怎樣得到這些互相平行的直線。我在講課中沒組織好課堂,學(xué)生有些沉悶不與老師配合,有極少同學(xué)不愿意動手畫函數(shù)圖像,也有一些同學(xué)認(rèn)為太簡單,不愿畫。如何使語言更加生動從而吸引學(xué)生的注意力是以后備課需要仔細(xì)研究、推敲的地方。此外,還是沒能改掉不好的習(xí)慣,我由于講得太多,課堂練習(xí)較少,同學(xué)們自主學(xué)習(xí)的時間還是太少,以后盡可能少講,由學(xué)生自已完成知識的建構(gòu)。
八年級數(shù)學(xué)下冊《一次函數(shù)》教學(xué)設(shè)計
八年級數(shù)學(xué)下冊《一次函數(shù)》教學(xué)設(shè)計
教學(xué)目標(biāo):
1、理解一次函數(shù)與正比例函數(shù)的概念以及它們之間的關(guān)系;
2、能根據(jù)問題信息寫出一次函數(shù)的表達(dá)式,并會運用一次函數(shù)解決簡單的實際問題;
3、經(jīng)歷一次函數(shù)概念的認(rèn)識,和利用一次函數(shù)解決實際問題的過程,逐步認(rèn)識利用函數(shù)觀點認(rèn)識現(xiàn)實世界的意識和能力。
教學(xué)重點:一次函數(shù)的概念以及一次函數(shù)和正比例函數(shù)的關(guān)系。
教學(xué)難點:理解一次函數(shù)和正比例函數(shù)的關(guān)系。
教學(xué)方法:引導(dǎo)發(fā)現(xiàn)、探究指導(dǎo)
學(xué)習(xí)方法:自主學(xué)習(xí)、合作學(xué)習(xí)
教學(xué)工具:多媒體
教學(xué)過程:
一、情景引入
母親節(jié)快到了,紅紅想送一大束康乃馨給媽媽,花店老板告訴她,若買10支以及10支以下,每支3元,買10支以上,超過的部分打8折,如果紅紅買了x支康乃馨(x10),付給老板y元錢,請寫出y與x之間的函數(shù)關(guān)系式。
二、探究新知
1、下列問題中,變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,請寫出函數(shù)解析式?
(1)有人發(fā)現(xiàn),在20~25時蟋蟀每分鳴叫次數(shù)c與溫度t(單位:)有關(guān)且c的值約是t的7倍與35的差;
(2)一種計算成年人標(biāo)準(zhǔn)體重G(單位:kg)的方法是,以厘米為單位量出身高值h,再減常數(shù)105,所得差是G的值;
(3)某城市的市內(nèi)電話的月收費額y(單位:元)包括月租費22元和撥打電話xmin的計時費(按0.1元/min收取);
(4)把一個長10cm,寬5cm的矩形的長減少xcm,寬不變,矩形面積y(單位:cm2)隨x的值而變化.
2、這些函數(shù)解析式有哪些共同特征?
3、你能仿照正比例函數(shù)的概念,歸納總結(jié)出一次函數(shù)的概念嗎?
4、一次函數(shù)和正比例函數(shù)有什么關(guān)系?
三、展示歸納(學(xué)生做后,解答過程學(xué)生說老師寫,發(fā)動學(xué)生糾正和完善并總結(jié)歸納出一次函數(shù)的概念)
1、學(xué)生先用獨立思考,在進(jìn)行小組討論,老師準(zhǔn)備板書,巡回指導(dǎo),了解情況;
2、學(xué)生逐一回答,其他學(xué)生逐一補充完善;
3、教師火龍點睛,強調(diào)關(guān)鍵。
四、練習(xí)鞏固(過渡語:了解了一次函數(shù)的概念之后下面老師就來檢驗一下同學(xué)們,看看同學(xué)們能判斷一個函數(shù)是一次函數(shù)嗎?)(每個練習(xí)先讓學(xué)生做,教師巡回指導(dǎo),然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,教師強調(diào)關(guān)鍵地方,在進(jìn)行下一個練習(xí)。)
練習(xí)1下列函數(shù)中哪些是一次函數(shù),哪些又是正比例函數(shù)?
(1)y=-8x;(2)y=-;(3)y=5x+6;(4)y=-0.5x-1;
(5)y=-1;(6)y=-13;(7)y=2(x-4);(8)y=
練習(xí)2已知一次函數(shù)y=kx+b,當(dāng)x=1時,y=5;當(dāng)x=-1時,y=1.求k和b的值.
五、小結(jié)與歸納(由學(xué)生來陳述,百花齊放。教師不做限定,沒說到的,教師補充。)
1、通過本節(jié)課的學(xué)習(xí),你有何收獲?
2、反思一下你所獲得的經(jīng)驗,與同學(xué)交流!
六、作業(yè):必做題:教科書第91頁第3題;
選做題:請寫出若干個變量y與x之間的函數(shù)解析式,讓同桌判斷是否是一次函數(shù);如果是,請說出其一次項系數(shù)與常數(shù)項.
七、板書設(shè)計(以課堂生成為準(zhǔn))
八、課后反思:
在上一節(jié)課,學(xué)生整體感受了研究函數(shù)的一般思路與方法,但在具體知識理解的深度上還是不夠,尤其作業(yè)上學(xué)生對概念中的自變量的次數(shù)理解不夠到位。在這節(jié)課的學(xué)習(xí)中,應(yīng)當(dāng)促進(jìn)學(xué)生從整體把握的高度深刻的理解一次函數(shù)與正比例函數(shù)的概念以及它們之間的關(guān)系。在概念的學(xué)習(xí)中,教師對學(xué)生提供的經(jīng)驗性材料太少,僅從正面入手不足以使學(xué)生真正理解概念,還必須從側(cè)面和反面來理解概念,通過多舉例,多練習(xí)來鞏固概念。
教學(xué)中,需要分清并抓住本質(zhì)現(xiàn)象,鼓勵學(xué)生用自己的語言闡述自己的看法,學(xué)生在經(jīng)歷大量源自實際背景下的解析式的分析比較后,抽象概括出它們的一般結(jié)構(gòu),從而形成一次函數(shù)的概念,教師在強調(diào)概念需要注意和容易出錯的地方。在知識的獲取過程中,始終交織著舊知與新知、變與不變、相同與不同的對立與統(tǒng)一,這些都觸動著學(xué)生對數(shù)學(xué)學(xué)習(xí)的情感。另外,課前備學(xué)生是十分必要的,只有充分了解學(xué)生,課時盡量關(guān)注每一個學(xué)生,做到心中有學(xué)生,使每一個學(xué)生都參與課堂活動中來,讓他們感受到自己是這節(jié)課的主角,從而學(xué)習(xí)數(shù)學(xué)的積極性提高,降低兩極分化。
八年級數(shù)學(xué)下冊《一次函數(shù)》知識點總結(jié)
八年級數(shù)學(xué)下冊《一次函數(shù)》知識點總結(jié)
一.常量、變量:
在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一切實數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對于與實際問題有關(guān)系的,自變量的取值范圍應(yīng)使實際問題有意義。
四、函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
五、用描點法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)
注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點:(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法(2)圖像法(3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b=0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y=kx。
(2)性質(zhì):當(dāng)k0時,直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k0時,直線y=kx經(jīng)過二,四象限,從左向右下降,即隨著x的增大y反而減小。
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。
1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時函數(shù)y=ax+b的值為0.
2.求ax+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=ax+b與x軸交點的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時函數(shù)y=ax+b的值大于0.
4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=ax+b在x軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍.
十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)
一次函數(shù)
概念如果y=kx+b(k、b是常數(shù),k≠0),那么y叫x的一次函數(shù).當(dāng)b=0時,一次函數(shù)y=kx(k≠0)也叫正比例函數(shù).
圖像一條直線
性質(zhì)k>0時,y隨x的增大(或減小)而增大(或減小);
k<0時,y隨x的增大(或減小)而減小(或增大).
直線y=kx+b(k≠0)的位置與k、b符號之間的關(guān)系.(1)k0,b>0圖像經(jīng)過一、二、三象限;
(2)k0,b<0圖像經(jīng)過一、三、四象限;
(3)k0,b=0圖像經(jīng)過一、三象限;
(4)k<0,b>0圖像經(jīng)過一、二、四象限;
(5)k<0,b<0圖像經(jīng)過二、三、四象限;
(6)k<0,b=0圖像經(jīng)過二、四象限。
一次函數(shù)表達(dá)式的確定求一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)時,需要由兩個點來確定;求正比例函數(shù)y=kx(k≠0)時,只需一個點即可.
5.一次函數(shù)與二元一次方程組:
解方程組
從“數(shù)”的角度看,自變量(x)為何值時兩個函數(shù)的值相等.并
求出這個函數(shù)值
解方程組
從“形”的角度看,確定兩直線交點的坐標(biāo).