一元二次方程高中教案
發(fā)表時間:2020-11-123.3解一元一次方程(第2課時)。
3.3解一元一次方程(第2課時)
──去括號
教學(xué)內(nèi)容
課本第98頁至第100頁.
教學(xué)目標(biāo)
1.知識與技能
進一步掌握列一元一次方程解應(yīng)用題的方法步驟.
2.過程與方法
通過分析行程問題中順流速度、逆流速度、水流速度、靜水中的速度的關(guān)系,以及零件配套問題中的等量關(guān)系,進一步經(jīng)歷運用方程解決實際問題的過程,體會方程模型的作用.
3.情感態(tài)度與價值觀
培養(yǎng)學(xué)生自主探究和合作交流意識和能力,體會數(shù)學(xué)的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:分析問題中的數(shù)量關(guān)系,找出能夠表示問題全部含義的相等關(guān)系,列出一元一次方程,并會解方程.
2.難點:找出能夠表示問題全部含義的相等關(guān)系,列出方程.
3.關(guān)鍵:找出能夠表示問題全部含義的相等關(guān)系.
教學(xué)過程
一、復(fù)習(xí)提問
1.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間
可變形為:速度=.
2.相遇問題或追及問題中所走路程的關(guān)系?
相遇問題:雙方所走的路程之和=全部路程+原來兩者間的距離.(原來兩者間的距離)
追及問題:快速行進路程=慢速行進路程+原來兩者間的距離
或快速行進路程-慢速行進路程=原路程(原來兩者間的距離).
二、新授
例2:一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時,已知水流的速度是3千米/時,求船在靜水中的平均速度.
分析:(1)順流行駛的速度、逆流行駛的速度、水流速度,船在靜水中的速度之間的關(guān)系如何?
順流行駛速度=船在靜水中的速度+水流速度
逆流行駛速度=船在靜水中的速度-水流速度
(2)設(shè)船在靜水中的平均速度為x千米/時,由此填空(課本第97頁).
(3)問題中的相等關(guān)系是什么?
解:一般情況下,船返回是按原路線行駛的,因此可以認為這船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括號,得2x+6=2.5x-7.5
移項及合并,得-0.5x=-13.5
系數(shù)化為1,得x=27
答:船在靜水中的平均速度為27千米/時.
說明:課本中,移項及合并,得0.5x=13.5是把含x的項移到方程右邊,常數(shù)項移到左邊后合并,得13.5=0.5x,再根據(jù)a=b就是b=a,即把方程兩邊同時對調(diào),這不是移項.
例3:某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母,為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?
分析:
已知條件:(1)分配生產(chǎn)螺釘和生產(chǎn)螺母人數(shù)共22名.
(2)每人每天平均生產(chǎn)螺釘1200個,或螺母2000個.
(3)一個螺釘要配兩個螺母.
(4)為使每天的產(chǎn)品剛好配套,應(yīng)使生產(chǎn)的螺母數(shù)量與螺釘數(shù)量之間有什么樣關(guān)系?
螺母的數(shù)量應(yīng)是螺釘數(shù)量的兩倍,這正是相等關(guān)系.
解:設(shè)分配x人生產(chǎn)螺釘,則(22-x)人生產(chǎn)螺母,由已知條件(2)得,每天共生產(chǎn)螺釘1200x個,生產(chǎn)螺母2000(22-x)個,由相等關(guān)系,列方程
2×1200x=2000(22-x)
去括號,得2400x=44000-2000x
移項,合并,得4400x=44000
x=10
所以生產(chǎn)螺母的人數(shù)為22-x=12
答:應(yīng)分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母.
本題的關(guān)鍵是要使每天生產(chǎn)的螺釘、螺母配套,弄清螺釘與螺母之間的數(shù)量關(guān)系.
三、鞏固練習(xí)
課本第102頁第7題.
解法1:本題求兩個問題,若設(shè)無風(fēng)時飛機的航速為x千米/時,那么與例1類似,可得順風(fēng)飛行的速度為(x+24)千米/時,逆風(fēng)飛行的速度為(x-24)千米/時,根據(jù)順風(fēng)飛行路程=逆風(fēng)飛行路程,列方程:
2(x+24)=3(x-24)
去括號,得x+68=3x-72
移項,合并,得-x=-140
系數(shù)化為1,得x=840
兩城之間的航程為3(x-24)=2448
答:無風(fēng)時飛機的航速為840千米/時,兩城間的航程為2448千米.
解法2:如果設(shè)兩城之間的航程為x千米,你會列方程嗎?這時相等關(guān)系是什么?
分析:由兩城間的航程x千米和順風(fēng)飛行需2小時,逆風(fēng)飛行需要3小時,可得順風(fēng)飛行的速度為千米/時,逆風(fēng)飛行的速度為千米/時.
在這個問題中,飛機在無風(fēng)時的速度是不變的,即飛機在順風(fēng)飛行和逆風(fēng)飛行中,無風(fēng)時的速度相等,根據(jù)這個相等關(guān)系,列方程:
-24=+24
化簡,得x-24=+24
移項,合并,得x=48
系數(shù)化為1,得x=2448即兩城之間航程為2448千米.
無風(fēng)時飛機的速度為=840(千米/時)
比較兩種方法,第一種方法容易列方程,所以正確設(shè)元也很關(guān)鍵.
四、課堂小結(jié)
通過以上問題的討論,我們進一步體會到列方程解決實際問題的關(guān)鍵是正確地建立方程中的等量關(guān)系.另外在求出x值后,一定要檢驗它是否合理,雖然不必寫出檢驗過程,但這一步絕不是可有可無的.
五、作業(yè)布置
1.課本第103頁習(xí)題3.3第11、14題.
2.選用課時作業(yè)設(shè)計.
第二課時作業(yè)設(shè)計
一、填空題.
1.行程問題有三個基本量分別是______,_______,_______,它們之間的關(guān)系有_________,________,_________.
2.A、B兩地相距480千米,一列慢車從A地開出,每小時走60千米,一列快車從B地開出,每小時走65千米.
(1)兩車同時開出,相向而行,x小時相遇,則列方程為________.
(2)兩車同時開出,相背而行,x小時之后,兩車相距620千米,則列方程為_______.
(3)慢車先開出1小時,相背而行,慢車開出x小時后,兩車相距620千米,則列方程為________.
二、解答題.
3.一架飛機在兩城市之間飛行,無風(fēng)時飛機每小時飛行552千米,在一次往返飛行中,飛機順風(fēng)飛行用去5小時,逆風(fēng)飛行用了6小時,求這次飛行時的風(fēng)速?
4.2001年對甲、乙兩所學(xué)校學(xué)生的身體素質(zhì)進行測評,結(jié)果兩校學(xué)生達標(biāo)人數(shù)共1500人,2002年甲校達標(biāo)人數(shù)增加10%,乙校學(xué)生達標(biāo)人數(shù)增加15%,兩校達標(biāo)總?cè)藬?shù)比2001年增加12%,問2001年兩校學(xué)生達標(biāo)人數(shù)各多少?
答案:
一、1.略2.(1)60x+65x=480(2)65x+60x+480=620(3)60x+65(x-1)=620-480
二、3.24千米/時,設(shè)這次飛行風(fēng)速為x千米/時,5(552+x)=6(552-x)
4.900人,600人,
設(shè)甲校2001年學(xué)生達標(biāo)x人,(1500-x)·15%+10%x=12%×1500.
相關(guān)閱讀
3.3解一元一次方程
每個老師在上課前需要規(guī)劃好教案課件,大家在細心籌備教案課件中。只有寫好教案課件計劃,才能促進我們的工作進一步發(fā)展!你們到底知道多少優(yōu)秀的教案課件呢?以下是小編為大家收集的“3.3解一元一次方程”但愿對您的學(xué)習(xí)工作帶來幫助。
3.3解一元一次方程
一、學(xué)習(xí)目標(biāo)
1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。
2.通過討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問題,培養(yǎng)學(xué)生觀察、歸納和概括能力。
二、重點:解一元一次方程中去分母的方法;培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題、解決問題的能力。
難點:去分母法則的正確運用。
三、學(xué)習(xí)過程:(一)、復(fù)習(xí)導(dǎo)入
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
2、回顧:解一元一次方程的一般步驟及每一步的依據(jù)
3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹造林,原計劃每天植樹60棵,實際每天植樹80棵,結(jié)果比預(yù)計時間提前4天完成植樹任務(wù),則計劃植樹_____棵。
(二)學(xué)生自學(xué)p99--100
根據(jù)等式性質(zhì),方程兩邊同乘以,得
即得不含分母的方程:4x-3x=960
X=960
像這樣在方程兩邊同時乘以,去掉分數(shù)的分母的變形過程叫做。依據(jù)是
(三)例題:
例1解方程:
解:去分母,得依據(jù)
去括號,得依據(jù)
移項,得依據(jù)
合并同類項,得依據(jù)
系數(shù)化為1,得依據(jù)
注意:1)、分數(shù)線具有
2)、不含分母的項也要乘以(即不要漏乘)
討論:小明是個“小馬虎”下面是他做的題目,我們看看對不對?如果不對,請幫他改正。
(1)方程去分母,得
(2)方程去分母,得
(3)方程去分母,得
(4)方程去分母,得
通過這幾節(jié)課的學(xué)習(xí),你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?
解一元一次方程的一般步驟是:
1.依據(jù);
2.依據(jù);
3.依據(jù);
4.化成的形式;依據(jù);
5.兩邊同除以未知數(shù)的系數(shù),得到方程的解;依據(jù);
練一練:見P101練習(xí)解下列方程:(1)(2)
(3)思考:如何求方程
小明的解法:解:去百分號,得同學(xué)看看有沒有異議?
四、小結(jié):談?wù)勥@節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問題。
五、課堂檢測:
1、去分母時,在方程的左右兩邊同時乘以各個分母的_____________,從而去掉分母,去分母時,每一項都要乘,不要漏乘,特別是不含分母的項,注意含分母的項約去分母分子必須加括號,由于分數(shù)線具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
(4)=+1(5)
六、作業(yè)P102:3,10.
4.2解一元一次方程(2)
作為老師的任務(wù)寫教案課件是少不了的,大家正在計劃自己的教案課件了。各行各業(yè)都在開始準(zhǔn)備新的教案課件工作計劃了,才能更好的在接下來的工作輕裝上陣!你們清楚教案課件的范文有哪些呢?以下是小編為大家收集的“4.2解一元一次方程(2)”僅供參考,希望能為您提供參考!
4.2解一元一次方程(2)
教學(xué)目標(biāo)
1.使學(xué)生掌握移項的概念,并能利用移項解簡單的一元一次方程;
2.培養(yǎng)學(xué)生觀察、分析、概括和轉(zhuǎn)化的能力,提高他們的運算能力.
教學(xué)重點:
移項解一元一次方程。
教學(xué)難點:
移項的概念
教學(xué)方法:
啟發(fā)式教學(xué)
教學(xué)過程:
(一)情境創(chuàng)設(shè)
(二):探索新知
解方程:(1)3x-5=4.(2)7x=5x-4
在分析本題時,教師應(yīng)向?qū)W生提出如下問題:
1.怎樣才能將此方程化為ax=b的形式?
2.上述變形的根據(jù)是什么?
解:3x-5=4,
方程兩邊都加上,得
3x-5+5=4+5,
(本題的解答過程應(yīng)找多名學(xué)生分別口述,教師嚴格、規(guī)范板書,并請學(xué)生口算檢驗)
解方程7x=5x-4.
針對(1),(2)題的分析與解答,教師可提出以下幾個問題:
(1)將方程3x-5=4,變形為3x=4+5這一過程中,什么變化了?怎樣變化的?
(2)將方程7x=5x-4,變形為7x-5x=-4這一過程中,什么變化了?怎樣變化的?
我們將方程中某一項改變后,從方程的一邊移到另一邊,這種變形叫做移項.利用移項,我們可以將(2)題按以下步驟來書寫.
解:
移項,得,
合并同類項,得
未知數(shù)x的系數(shù)化1,得
(至此,應(yīng)讓學(xué)生總結(jié)出解諸如例1、例2這樣的一元一次方程的步驟,并強調(diào)移項要變號).
(三)自學(xué)例題:
解方程:x-3=4-x
解:移項,得
和并同類項,得
系數(shù)化為1
練習(xí):1(A)組
(1)方程3x+6=2x-8移項后,得
(2)方程2x-0.3=1.2+3x移項,得
(3)下列方程變形正確的是()
A若3X+2=1,則3X=3
B若-X+1=0,則-X=1
C若X-1=3X,則-1=3X-X
D若-=O,則X=4
(4)用移項法解下列方程:
(A)10y+7=12y-5-3y(B)0.5x+=x+2
(C)=+x(D)9+x=2x+12-4x
(四):教學(xué)小結(jié):
解一元一次方程
老師職責(zé)的一部分是要弄自己的教案課件,大家在著手準(zhǔn)備教案課件了。是時候?qū)ψ约航贪刚n件工作做個新的規(guī)劃了,未來工作才會更有干勁!有多少經(jīng)典范文是適合教案課件呢?為滿足您的需求,小編特地編輯了“解一元一次方程”,僅供參考,希望能為您提供參考!
課題3.3解一元一次方程—去括號與去分母課時本學(xué)期
第課時日期
課型新授主備人復(fù)備人審核人
學(xué)習(xí)
目標(biāo)知識與能力:進一步掌握列一元一次方程解應(yīng)用題的方法步驟.
過程與方法:通過分析行程問題中順流速度、逆流速度、水流速度、靜水中的速度的關(guān)系,以及零件配套問題中的等量關(guān)系,進一步經(jīng)歷運用方程解決實際問題的過程,體會方程模型的作用.
情感態(tài)度與價值觀:培養(yǎng)學(xué)生自主探究和合作交流意識和能力,體會數(shù)學(xué)的應(yīng)用價值.
重點
難點重點:分析問題中的數(shù)量關(guān)系,找出能夠表示問題全部含義的相等關(guān)系,列出一元一次方程,并會解方程.
難點:找出能夠表示問題全部含義的相等關(guān)系,列出方程.
關(guān)鍵:找出能夠表示問題全部含義的相等關(guān)系.
教學(xué)流程師生活動時間復(fù)備標(biāo)注
一、復(fù)習(xí)引入:1.解方程:5X+2(3X-3)=11-(X+5)
2.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間,可變形為:速度=.
3.相遇問題或追及問題中所走路程的關(guān)系?
相遇問題:雙方所走的路程之和=全部路程+原來兩者間的距離.(原來兩者間的距離)
追及問題:快速行進路程=慢速行進路程+原來兩者間的距離;或快速行進路程-慢速行進路程=原路程(原來兩者間的距離)
二、新授:
例2:一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時,已知水流的速度是3千米/時,求船在靜水中的平均速度.
分析:(1)順流行駛的速度、逆流行駛的速度、水流速度,船在靜水中的速度之間的關(guān)系如何?
順流行駛速度=船在靜水中的速度+水流速度
逆流行駛速度=船在靜水中的速度-水流速度
(2)設(shè)船在靜水中的平均速度為x千米/時,由此填空(課本第97頁).
(3)問題中的相等關(guān)系是什么?
解:一般情況下,船返回是按原路線行駛的,因此可以認為這船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括號,得2x+6=2.5x-7.5
移項及合并,得-0.5x=-13.5
系數(shù)化為1,得x=27
答:船在靜水中的平均速度為27千米/時.
說明:課本中,移項及合并,得0.5x=13.5是把含x的項移到方程右邊,常數(shù)項移到左邊后合并,得13.5=0.5x,再根據(jù)a=b就是b=a,即把方程兩邊同時對調(diào),這不是移項.
例3:某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母,為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?
分析:
已知條件:(1)分配生產(chǎn)螺釘和生產(chǎn)螺母人數(shù)共22名.
(2)每人每天平均生產(chǎn)螺釘1200個,或螺母2000個.
(3)一個螺釘要配兩個螺母.(4)為使每天的產(chǎn)品剛好配套,應(yīng)使生產(chǎn)的螺母數(shù)量與螺釘數(shù)量之間有什么樣關(guān)系?
螺母的數(shù)量應(yīng)是螺釘數(shù)量的兩倍,這正是相等關(guān)系.
解:設(shè)分配x人生產(chǎn)螺釘,則(22-x)人生產(chǎn)螺母,由已知條件(2)得,每天共生產(chǎn)螺釘1200x個,生產(chǎn)螺母2000(22-x)個,由相等關(guān)系,列方程
2×1200x=2000(22-x)
去括號,得2400x=44000-2000x
移項,合并,得4400x=44000
x=10
所以生產(chǎn)螺母的人數(shù)為22-x=12
答:應(yīng)分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母.
本題的關(guān)鍵是要使每天生產(chǎn)的螺釘、螺母配套,弄清螺釘與螺母之間的數(shù)量關(guān)系.
三、鞏固練習(xí)課本第102頁第7題.
解法1:本題求兩個問題,若設(shè)無風(fēng)時飛機的航速為x千米/時,那么與例1類似,可得順風(fēng)飛行的速度為(x+24)千米/時,逆風(fēng)飛行的速度為(x-24)千米/時,根據(jù)順風(fēng)飛行路程=逆風(fēng)飛行路程,列方程:
2(x+24)=3(x-24)
去括號,得x+68=3x-72
移項,合并,得-x=-140
系數(shù)化為1,得x=840
兩城之間的航程為3(x-24)=2448
答:無風(fēng)時飛機的航速為840千米/時,兩城間的航程為2448千米.
解法2:如果設(shè)兩城之間的航程為x千米,你會列方程嗎?這時相等關(guān)系是什么?
分析:由兩城間的航程x千米和順風(fēng)飛行需2小時,逆風(fēng)飛行需要3小時,可得順風(fēng)飛行的速度為千米/時,逆風(fēng)飛行的速度為千米/時.
在這個問題中,飛機在無風(fēng)時的速度是不變的,即飛機在順風(fēng)飛行和逆風(fēng)飛行中,無風(fēng)時的速度相等,根據(jù)這個相等關(guān)系,列方程:
-24=+24
化簡,得x-24=+24
移項,合并,得x=48
系數(shù)化為1,得x=2448即兩城之間航程為2448千米.無風(fēng)時飛機的速度為=840(千米/時)
比較兩種方法,第一種方法容易列方程,所以正確設(shè)元也很關(guān)鍵.
四、課堂達標(biāo)練習(xí)
1.名校課堂59頁3、4、7、
五、課堂小結(jié):通過以上問題的討論,我們進一步體會到列方程解決實際問題的關(guān)鍵是正確地建立方程中的等量關(guān)系.另外在求出x值后,一定要檢驗它是否合理,雖然不必寫出檢驗過程,但這一步絕不是可有可無的.
六、作業(yè):課本第102頁習(xí)題3.3第5、題.
課件出示問題1:
教師引導(dǎo),啟發(fā)學(xué)生找出相等關(guān)系并列出相應(yīng)代數(shù)式,從而得出方程
教師點撥進一步對此題進行鞏固,培養(yǎng)學(xué)生歸納概括的能力
解答過程按課本,可由學(xué)生口述,教師板書.