高中不等式教案
發(fā)表時間:2020-11-06高三數(shù)學下冊《基本不等式》知識點。
高三數(shù)學下冊《基本不等式》知識點
不等式的性質:
①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)abb
(2)ab,bcac(傳遞性)
(3)aba+cb+c(c∈R)
(4)c0時,abacbc
c0a=bac
運算性質有:
(1)ab,cda+cb+d。
(2)ab0,cd0acbd。
(3)ab0anbn(n∈N,n1)。
(4)ab0(n∈N,n1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:“”和“”即推出關系和等價關系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
②關于不等式的性質的考察,主要有以下三類問題:
(1)根據(jù)給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數(shù)的性質,函數(shù)性質,判斷實數(shù)值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
練習題:
1)3-(a-5)3a-4
(a3)
2)-6分之5x+33分之2x+1x=1又3分之1)jab88.cOm
3)3-4[1-3(2-x)]大于等于59
(x小于等于-3)
4)6(1-3分之1x)大于等于2+5分之1(10——15x)(x大于等于-2)
5)6分之7x-133分之3x-8(x-3)
6)4x-1015x-(8x-2)x=-4)
7)x-2-2分之2-x3分之x-2
(x2)
8)x-6分之2-x-3分之4x-3大于等于0(x小于等于4)
9)3分之x-2分之x-11
10)2(5-3x)3(4x+2)
11)1-2分之1x2
12)7x-2(x-3)16
13)3(2x-1)4(x-1)
14)2-6(x-5)大于等于4(3-2x)
15)7+3x5+4x
16)5-x(x+3)2-x(x-1)
17)x-2(x+2分之1)小于等于1-3(1-x)
18)3(x-1)+2(1-3x)5
19)3分之1x-1x-3分之1
20)6(1-3分之2x)2+5分之1(10-15x)
延伸閱讀
七年級下冊數(shù)學知識點:不等式與不等式組
七年級下冊數(shù)學知識點:不等式與不等式組
一、目標與要求
1.感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2.經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結合思想;
3.通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。
二、知識框架
三、重點
理解并掌握不等式的性質;
正確運用不等式的性質;
建立方程解決實際問題,會解ax+b=cx+d類型的一元一次方程;
尋找實際問題中的不等關系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
四、難點
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識點、概念總結
1.不等式:用符號,,≤,≥表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)≥,≤連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)G(x)與不等式G(x)F(x)同解。
(2)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,那么不等式F(x)G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果xy,那么yy;(對稱性)
(2)如果xy,yz;那么xz;(傳遞性)
(3)如果xy,而z為任意實數(shù)或整式,那么x+zy+z;(加法則)
(4)如果xy,z0,那么xzyz;如果xy,z0,那么xz
(5)如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要條件)
(7)如果xy0,mn0,那么xmyn
(8)如果xy0,那么x的n次冪y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質2、3)
(2)去括號
(3)移項(運用不等式性質1)
(4)合并同類項
(5)將未知數(shù)的系數(shù)化為1(運用不等式性質2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成
了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
初中數(shù)學知識點總結:方程與不等式
每個老師上課需要準備的東西是教案課件,到寫教案課件的時候了。需要我們認真規(guī)劃教案課件工作計劃,可以更好完成工作任務!你們知道多少范文適合教案課件?下面是小編為大家整理的“初中數(shù)學知識點總結:方程與不等式”,僅供您在工作和學習中參考。
初中數(shù)學知識點總結:方程與不等式
1、方程與方程組
一元一次方程:在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關系
大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“”,讀作“diaota”,而=b2-4ac,這里可以分為3種情況:
I當0時,一元二次方程有2個不相等的實數(shù)根;
II當=0時,一元二次方程有2個相同的實數(shù)根;
III當0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)
2、不等式與不等式組
不等式:用符號〉,=,〈號連接的式子叫不等式。不等式的兩邊都加上或減去同一個整式,不等號的方向不變。不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解。一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;
例如:AB,A+CB+C
在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;
例如:AB,A-CB-C
在不等式中,如果乘以同一個正數(shù),不等號不改向;
例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一個負數(shù),不等號改向;例如:AB,A*C(C0)
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
不等式的基本性質
課題:§5.2不等式的基本性質
教學目標:
知識目標:掌握不等式的基本性質.
能力目標:通過不等式基本性質的探索,培養(yǎng)學生觀察、猜想、驗證的能力.
情感目標:經(jīng)歷不等式基本性質的探索過程,初步體會不等式與等式的異同.
教學重、難點:
1、重點:掌握不等式的基本性質.
2、難點:不等式的基本性質2和3.
教學準備:
教師準備:課件.
教學設計過程:
一、創(chuàng)設情境,探究新知:
1、合作學習
(1)已知a<b和b<c,在數(shù)軸上表示如圖5-9.
由數(shù)軸上a和c的位置關系,你能得出什么結論?你那舉幾個具體的例子說明嗎?
(2)觀察:用“”或“”填空,并找一找其中的規(guī)律.
①53,5+2____3+2,5-2____3-2;
②–13,-1+2____3+2,-1-3____3-3;
③6>2,6×5____2×5,6×(-5)____2×(-5);
④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6)
會發(fā)現(xiàn):當不等式兩邊加或減去同一個數(shù)時,不等號的方向不變
當不等式的兩邊同乘同一個正數(shù)時,不等號的方向_不變;而乘同一個負數(shù)時,不等號的方向改變.
2、歸納
不等式的基本性質1若a<b和b<c,則a<c.
這個性質也叫做不等式的傳遞性.
不等式的基本性質2不等式的兩邊都加上(或減去)同一個數(shù),所得到的不等式仍成立。
即
如果a>b,那么a+c>b+c,a-c>b-c;
如果a<b,那么a+c<b+c,a-c<b-c.
不等式的基本性質3不等式的兩邊都乘以(或除以)同一個正數(shù),所得的不等式仍成立;不等式的兩邊都乘以(或除以)同一個負數(shù),必須把不等號的方向改變,所得的不等式成立.
即
如果a>b,且c>0,那么ac>bc,>;
如果a>b,且c<0,那么ac<bc,<;
3、做一做P104
4、試一試
(1)若-m5,則m___-5.
(2)如果x/y0那么xy___0.
(3)如果a-1,那么a-b___-1-b.
5、做一做P105
6、講解例題
已知a<0,試比較2a與a的大小.
分析比較2a與a的大小,可以利用不等式的基本性質,也可以利用數(shù)軸,直接得出2a與a的大小.
二、鞏固反思:
1、P106T1、T2“
2、探究活動
比較等式與不等式的基本性質.
例如,等式是否有與不等式的基本性質1類似的傳遞性?不等式是否有與等式的基本性質類似的移項法則?你可以用列表的方式進行對比.(請與你的伙伴交流)
三、小結:
通過這節(jié)課的學習,你有哪些收獲?
四、作業(yè):
1、作業(yè)題P107
2、預習5.3