高中函數(shù)的應(yīng)用教案
發(fā)表時(shí)間:2021-04-08二次函數(shù)的應(yīng)用。
2.3二次函數(shù)的應(yīng)用
教學(xué)目標(biāo)設(shè)計(jì)
1.知識(shí)與技能:通過(guò)本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問(wèn)題。
能力訓(xùn)練要求
1、能夠分析實(shí)際問(wèn)題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問(wèn)題的最大(?。┲蛋l(fā)展學(xué)生解決問(wèn)題的能力,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。
2、通過(guò)觀察圖象,理解頂點(diǎn)的特殊性,會(huì)把實(shí)際問(wèn)題中的最值轉(zhuǎn)化為二次函數(shù)的最值問(wèn)題,通過(guò)動(dòng)手動(dòng)腦,提高分析解決問(wèn)題的能力,并體會(huì)一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。
情感與價(jià)值觀要求
1、在進(jìn)行探索的活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。
2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。
教學(xué)方法設(shè)計(jì)
由于本節(jié)課是應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開(kāi)展教學(xué)活動(dòng),解決問(wèn)題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。
教學(xué)過(guò)程
導(dǎo)學(xué)提綱
設(shè)計(jì)思路:最值問(wèn)題又是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題之一,它生活背景豐富,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過(guò)掌握求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。
(一)前情回顧:
1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸和最值
2.(1)求函數(shù)y=x2+2x-3的最值。
(2)求函數(shù)y=x2+2x-3的最值。(0≤x≤3)
3、拋物線在什么位置取最值?
(二)適當(dāng)點(diǎn)撥,自主探究
1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問(wèn)題
:請(qǐng)你畫(huà)一個(gè)周長(zhǎng)為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰(shuí)的面積最大?
2、在解決問(wèn)題中找出方法
:某工廠為了存放材料,需要圍一個(gè)周長(zhǎng)40米的矩形場(chǎng)地,問(wèn)矩形的長(zhǎng)和寬各取多少米,才能使存放場(chǎng)地的面積最大?
(問(wèn)題設(shè)計(jì)思路:把前面矩形的周長(zhǎng)40厘米改為40米,變成一個(gè)實(shí)際問(wèn)題,目的在于讓學(xué)生體會(huì)其應(yīng)用價(jià)值——我們要學(xué)有用的數(shù)學(xué)知識(shí)。學(xué)生在前面探究問(wèn)題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會(huì)有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問(wèn)題還要考慮定義域,畫(huà)圖象觀察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識(shí)解決問(wèn)題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)
3、在鞏固與應(yīng)用中提高技能
例1:小明的家門(mén)前有一塊空地,空地外有一面長(zhǎng)10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃,他買(mǎi)回了32米長(zhǎng)的不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?
(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)
解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x)米,設(shè)矩形面積為y米2,得到:
Y=x(32-2x)=-2x2+32x
[錯(cuò)解]由頂點(diǎn)公式得:
x=8米時(shí),y最大=128米2
而實(shí)際上定義域?yàn)?1≤x﹤16,由圖象或增減性可知x=11米時(shí),y最大=110米2
(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)
(三)總結(jié)交流:
(1)同學(xué)們經(jīng)歷剛才的探究過(guò)程,想想解決此類(lèi)問(wèn)題的思路是什么?.
引導(dǎo)學(xué)生分析解題循環(huán)圖:
(2)在探究發(fā)現(xiàn)這些判定方法的過(guò)程中運(yùn)用了什么樣的數(shù)學(xué)方法?
(四)掌握應(yīng)用:圖中窗戶(hù)邊框的上半部分是由四個(gè)全等扇形組成的半圓,下部分是矩形。如果制作一個(gè)窗戶(hù)邊框的材料總長(zhǎng)為15米,那么如何設(shè)計(jì)這個(gè)窗戶(hù)邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計(jì)思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個(gè)思考遞進(jìn)的空間。)www.lvshijia.net
(五)我來(lái)試一試:
如圖在Rt△ABC中,點(diǎn)P在斜邊AB上移動(dòng),PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:
(1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?
(2)當(dāng)AM平分∠CAB時(shí),矩形PMCN的面積.
(六)智力闖關(guān):
如圖,用長(zhǎng)20cm的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎樣圍才能使園子的面積最大?最大面積是多少?
作業(yè):課本隨堂練習(xí)、習(xí)題1,2,3
板書(shū)設(shè)計(jì)
二次函數(shù)的應(yīng)用——面積最大問(wèn)題
課后反思
二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題。本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過(guò)一系列問(wèn)題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過(guò)對(duì)一系列問(wèn)題串的解決與交流,讓學(xué)生通過(guò)掌握求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。
教材中設(shè)計(jì)先探索最大利潤(rùn)問(wèn)題,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻龋寣W(xué)生思維有一個(gè)拓展的空間,也有收獲快樂(lè)和成就感。在訓(xùn)練的過(guò)程中,通過(guò)學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對(duì)解題方法與解題模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
就整節(jié)課看,學(xué)生的積極性得以充分調(diào)動(dòng),特別是學(xué)困生,在獨(dú)立思考和小組合作中改變以往的配角地位,也能積極參與到課堂學(xué)習(xí)活動(dòng)中,今后繼續(xù)發(fā)揚(yáng)從學(xué)生出發(fā),從學(xué)生的需要出發(fā),把問(wèn)題梯度降低,設(shè)計(jì)讓學(xué)生在能力范圍內(nèi)掌握新知識(shí),有了足夠的熱身運(yùn)動(dòng)之后再去拓展延伸。
延伸閱讀
二次函數(shù)的一些應(yīng)用
20.5二次函數(shù)的一些應(yīng)用
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問(wèn)題解決問(wèn)題。
利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問(wèn)題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
在探索中體驗(yàn)數(shù)學(xué)來(lái)源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過(guò)合作學(xué)習(xí)獲得成功,樹(shù)立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。
教學(xué)過(guò)程:
(一)引入:
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:
(1)如何畫(huà)圖
(2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)
(3)所形成的三角形以及四邊形的面積
(4)對(duì)稱(chēng)軸
從上面的問(wèn)題導(dǎo)入今天的課題——二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE=SABC。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式.
(三)提高練習(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
讓班級(jí)中的上科院小院士來(lái)簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
(四)讓學(xué)生討論小結(jié)(略)
(五)作業(yè)布置
1、在直角坐標(biāo)平面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k-5)x-(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=-8.
(1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求POC的面積。
2、如圖,一個(gè)二次函數(shù)的圖象與直線y=x-1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CB⊥AB,CB=AB,求這個(gè)二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0.9cm,線段DE表示大橋拱內(nèi)橋長(zhǎng),DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱(chēng)軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系,如圖2。
(1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫(xiě)出函數(shù)定義域;
(2)如果DE與AB的距離OM=0.45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù):,計(jì)算結(jié)果精確到1米)
二次函數(shù)的概念
九年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)稿
課題26.1二次函數(shù)的概念課型新授課執(zhí)筆人
審核人級(jí)部審核講學(xué)時(shí)間第8周第1導(dǎo)學(xué)稿
教師寄語(yǔ)辛勤就有收獲,細(xì)心、認(rèn)真努力就會(huì)獲得喜悅。
學(xué)習(xí)目標(biāo)1.從實(shí)際情景中讓學(xué)生經(jīng)歷探索分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過(guò)程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法去描述變量之間的數(shù)量關(guān)系.2.理解二次函數(shù)的概念,掌握二次函數(shù)的一般形式.
教學(xué)重點(diǎn)二次函數(shù)的概念和解析式
教學(xué)難點(diǎn)會(huì)用待定系數(shù)法求二次函數(shù)的解析式
教學(xué)方法合作學(xué)習(xí)探究應(yīng)用
學(xué)生自主活動(dòng)材料
一.前置自學(xué)
(一)準(zhǔn)備知識(shí)
一次函數(shù)一般式:.正比例函數(shù)一般式:
反比例函數(shù)一般式:.
(二)嘗試探究
1.一個(gè)正方體的棱長(zhǎng)為x,表面積為y,則y與x的關(guān)系式為.
2.n邊形有個(gè)頂點(diǎn),從一個(gè)頂點(diǎn)出發(fā),可作條對(duì)角線.因此,n邊形的對(duì)角線總數(shù)d=.
3.某工廠一種產(chǎn)品現(xiàn)在年產(chǎn)量是20件,計(jì)劃今后兩年增加產(chǎn)量,如果每年都比上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計(jì)劃所定的x的值而確定,y與x之間的關(guān)系應(yīng)怎樣表示?這種產(chǎn)品的原產(chǎn)量是20件,一年后的產(chǎn)量是件,再經(jīng)過(guò)一年后的產(chǎn)量是件,即兩年后的產(chǎn)量為.
二.合作探究
1.思考:上述三個(gè)函數(shù)解析式具有哪些共同特征?這樣的函數(shù)的名稱(chēng)是什么?
2.歸納:我們把形如(其中a,b,c是常數(shù),)的函數(shù)叫做函數(shù).
其中x是自變量,a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng).
3.嘗試應(yīng)用(1)分別指出上述三個(gè)函數(shù)解析式中各項(xiàng)的系數(shù)、次數(shù).
(2)下列函數(shù)中,哪些是二次函數(shù)?若是請(qǐng)指出各項(xiàng)的系數(shù)?
(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2
(4)y=5x4-3x+1(5)y=x-2-x(6)+1
三.拓展提升
1.若函數(shù)+6為二次函數(shù),則m的值為。
2.下列函數(shù)中,哪些是二次函數(shù)?
(1)(2)(3)(4)
3.一個(gè)圓柱的高等于底面的半徑,寫(xiě)出它的表面積s與它半徑r之間的關(guān)系式:.
4.n只球隊(duì)參加比賽,每?jī)申?duì)之間進(jìn)行一次比賽,寫(xiě)出比賽場(chǎng)次數(shù)m與球隊(duì)數(shù)n之間的函數(shù)關(guān)系式:;若每?jī)申?duì)之間進(jìn)行兩次比賽呢?.
6.一個(gè)長(zhǎng)方形的長(zhǎng)是寬的2倍,寫(xiě)出這個(gè)長(zhǎng)方形的面積與寬之間的函數(shù)關(guān)系式:.
7.某種商品的價(jià)格是2元,準(zhǔn)備進(jìn)行兩次降價(jià)。如果每次降價(jià)的百分率都是x,經(jīng)過(guò)兩次降價(jià)后的價(jià)格y(單位:元)隨每次降價(jià)的百分率x的變化而變化,y與x之間的關(guān)系可以用怎樣的函數(shù)來(lái)表示?.
8.函數(shù)中,(1)m取什么值時(shí),此函數(shù)是正比例函數(shù)?(2)m取什么值時(shí),此函數(shù)是反比例函數(shù)?(3)m取什么值時(shí),此函數(shù)是二次函數(shù)?
四.當(dāng)堂反饋
1.下列函數(shù)中,哪些是二次函數(shù)?若是,分別指出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).
(1)y=x+(2)s=3-2t(3)y=(x+3)-x(4)y=-x(5)v=10πr
2.若函數(shù)為二次函數(shù),則m的值為.
認(rèn)識(shí)二次函數(shù)
為了促進(jìn)學(xué)生掌握上課知識(shí)點(diǎn),老師需要提前準(zhǔn)備教案,準(zhǔn)備教案課件的時(shí)刻到來(lái)了。在寫(xiě)好了教案課件計(jì)劃后,新的工作才會(huì)如魚(yú)得水!你們知道哪些教案課件的范文呢?以下是小編為大家收集的“認(rèn)識(shí)二次函數(shù)”但愿對(duì)您的學(xué)習(xí)工作帶來(lái)幫助。
34.1認(rèn)識(shí)二次函數(shù)(第1課時(shí))教案
教學(xué)任務(wù)分析
教學(xué)
目標(biāo)
知識(shí)與技能
1.通過(guò)對(duì)實(shí)際問(wèn)題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義;2.會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì);[
3.會(huì)根據(jù)公式確定圖象的頂點(diǎn)、開(kāi)口方向和對(duì)稱(chēng)軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單的實(shí)際問(wèn)題;
過(guò)程與方法
通過(guò)畫(huà)二次函數(shù)的圖象,提高動(dòng)手能力;
經(jīng)歷畫(huà)圖、觀察、分析、總結(jié)、歸納的過(guò)程,總結(jié)出二次函數(shù)的性質(zhì).
情感態(tài)度價(jià)值觀
體會(huì)數(shù)形結(jié)合的思想方法;
重點(diǎn)
二次函數(shù)的圖象和性質(zhì);
難點(diǎn)
函數(shù)性質(zhì)的應(yīng)用.
教學(xué)流程安排
活動(dòng)說(shuō)明
活動(dòng)目的
活動(dòng)1回顧一次函數(shù)
活動(dòng)2二次函數(shù)概念學(xué)習(xí)
活動(dòng)3解析
活動(dòng)4觀察
活動(dòng)5布置作業(yè)
為二次函數(shù)的學(xué)習(xí)做準(zhǔn)備
學(xué)二次函數(shù)的有關(guān)概念
鞏固二次函數(shù)
小結(jié)復(fù)習(xí)
加強(qiáng)練習(xí)
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
電腦、投影儀
課件資源、投影儀
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
活動(dòng)1:
1.我們以前學(xué)過(guò)函數(shù),函數(shù)是用來(lái)描述一個(gè)量與另一個(gè)量之間的對(duì)應(yīng)關(guān)系的,大家回憶一下,我們到現(xiàn)在都學(xué)過(guò)哪些函數(shù)?
2.請(qǐng)描述一下你對(duì)一次函數(shù)、反比例函數(shù)是如何理解的.
3.在現(xiàn)實(shí)生活中,我們除了接觸到一次函數(shù)、反函數(shù),我們還會(huì)遇到另外一種函數(shù)——二次函數(shù),現(xiàn)在我們就來(lái)認(rèn)識(shí)二次函數(shù).
活動(dòng)2:
我們看引言中正方體的表面積的問(wèn)題.
正方體的六個(gè)面是全等的正方形(圖26.1–1),設(shè)正方體的棱長(zhǎng)為x,表面積為y,顯然對(duì)于x的每一個(gè)值,y都有一個(gè)對(duì)應(yīng)值,即y是x的函數(shù),它們的具體關(guān)系可以表示為
y=6x2①
我們?cè)賮?lái)看幾個(gè)問(wèn)題.
問(wèn)題1多邊形的對(duì)角線數(shù)d與邊數(shù)n有什么關(guān)系?
問(wèn)題2某工廠一種產(chǎn)品現(xiàn)在的年產(chǎn)量是20件,計(jì)劃今后兩年增加產(chǎn)量.如果每年都比上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計(jì)劃所定的x的值而確定,y與x之間的關(guān)系應(yīng)怎么樣表示?
小組討論,引導(dǎo)學(xué)生找出其中的量與量之間的關(guān)系,列出函數(shù)式.
活動(dòng)3:解析
問(wèn)題1由圖26.1–2可以想出,如果多邊形有n條邊,那么它有________個(gè)頂點(diǎn).從一個(gè)頂點(diǎn)出發(fā),連接與這點(diǎn)不相鄰的各頂點(diǎn),可以作_________條對(duì)角線.
因?yàn)橄窬€段MN與NM那樣,連接相同兩頂點(diǎn)的對(duì)角線是同一條對(duì)角線,所以多邊形的對(duì)角線總數(shù)
,
即
.②
②式表示了多邊形的對(duì)角線數(shù)d與邊數(shù)n之間的關(guān)系,對(duì)于n的每一個(gè)值,d都有一個(gè)對(duì)應(yīng)值,即d是n的函數(shù).
問(wèn)題2這種產(chǎn)品的原產(chǎn)量是20件,一年后的產(chǎn)量是_________件,再經(jīng)過(guò)一年后的產(chǎn)量是_________件,即兩年后的產(chǎn)量為
y=20(1+x)2,
即
y=20x2+40x+20.③
③式表示了兩年后的產(chǎn)量y與計(jì)劃增產(chǎn)的倍數(shù)x之間的關(guān)系,對(duì)于x的每一個(gè)值,y都有一個(gè)對(duì)應(yīng)值,即y是x的函數(shù).
活動(dòng)4:觀察
函數(shù)①②③有什么共同點(diǎn)?與我們已學(xué)過(guò)的正比例函數(shù),反比例函數(shù)和一次函數(shù)有什么不同?
在上面的問(wèn)題中,函數(shù)都是用自變量的二次式表示的.一般地,形如
y=ax2+bx+c(a,b,c是常數(shù),a≠0)
的函數(shù),叫做二次函數(shù)(quadraticfunction).其中,x是自變量,a,b,c分別是函數(shù)表達(dá)式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).
現(xiàn)在我們學(xué)習(xí)過(guò)的函數(shù)有:一次函數(shù)y=ax+b(a≠0),其中包括正比例函數(shù)y=kx(k≠0),反比例函數(shù)和二次函數(shù)y=ax2+bx+c(a≠0).
可以發(fā)現(xiàn),這些函數(shù)的名稱(chēng)都反映了函數(shù)表達(dá)式與自變量的關(guān)系.
活動(dòng)5:練習(xí)
1.一個(gè)圓柱的高等于底面半徑,寫(xiě)出它的表面積S與半徑r之間的關(guān)系式.
2.n支球隊(duì)參加比賽,每?jī)申?duì)之間進(jìn)行一場(chǎng)比賽.寫(xiě)出比賽場(chǎng)次數(shù)m與球隊(duì)數(shù)n之間的關(guān)系式.
活動(dòng)6:小結(jié)
學(xué)生討論,總結(jié)出本節(jié)所學(xué)的知識(shí).
師引導(dǎo)設(shè)問(wèn)
學(xué)生回答
師引導(dǎo)設(shè)問(wèn)
學(xué)生活動(dòng):一般地,形如y=kx+b(k、b是常數(shù),k≠0)的函數(shù)是一次函數(shù),例如:y=2x+1,y=x等都是一次函數(shù).形如y=(k≠0)的函數(shù)就是反函數(shù),例如:y=.
引導(dǎo)設(shè)問(wèn)
學(xué)生解答,教師點(diǎn)評(píng)
學(xué)生解答教師點(diǎn)評(píng)
學(xué)生解答教師巡視指導(dǎo)
學(xué)生解答教師點(diǎn)評(píng)
學(xué)生回答教師點(diǎn)評(píng)
學(xué)生解答教師點(diǎn)評(píng)
并給予鼓勵(lì)
生回答問(wèn)題,教師點(diǎn)評(píng).
學(xué)生討論
回憶到現(xiàn)在都學(xué)過(guò)的函數(shù)
回憶一次函數(shù)、反比例函數(shù)的概念
引出二次函數(shù)
從實(shí)際情境中感受二次函數(shù)
認(rèn)識(shí)二次函數(shù)
加深對(duì)二次函數(shù)的認(rèn)識(shí)
學(xué)二次函數(shù)的概念
加深一次函數(shù)、正比例函數(shù)、反比例函數(shù)、二次函數(shù)的認(rèn)識(shí)
對(duì)二次函數(shù)的概念進(jìn)行鞏固
總結(jié)本節(jié)知識(shí)