排列組合高中教案
發(fā)表時(shí)間:2020-12-01排列組合二項(xiàng)式定理1。
排列組合二項(xiàng)式定理1教學(xué)目標(biāo)
(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結(jié)論;
(2)能結(jié)合樹(shù)形圖來(lái)幫助理解加法原理與乘法原理;
(3)正確區(qū)分加法原理與乘法原理,哪一個(gè)原理與分類有關(guān),哪一個(gè)原理與分步有關(guān);
(4)能應(yīng)用加法原理與乘法原理解決一些簡(jiǎn)單的應(yīng)用問(wèn)題,提高學(xué)生理解和運(yùn)用兩個(gè)原理的能力;
(5)通過(guò)對(duì)加法原理與乘法原理的學(xué)習(xí),培養(yǎng)學(xué)生周密思考、細(xì)心分析的良好習(xí)慣。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)是加法原理與乘法原理,難點(diǎn)是準(zhǔn)確區(qū)分加法原理與乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個(gè)原理是學(xué)習(xí)排列組合內(nèi)容的基礎(chǔ),貫穿整個(gè)內(nèi)容之中,一方面它是推導(dǎo)排列數(shù)與組合數(shù)的基礎(chǔ);另一方面它的結(jié)論與其思想在方法本身又在解題時(shí)有許多直接應(yīng)用。
兩個(gè)原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問(wèn)題,其區(qū)別在于:運(yùn)用加法原理的前提條件是,做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說(shuō),完成這件事的各種方法是相互獨(dú)立的;運(yùn)用乘法原理的前提條件是,做一件事有n個(gè)驟,只要在每個(gè)步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說(shuō),完成這件事的各個(gè)步驟是相互依存的。簡(jiǎn)單的說(shuō),如果完成一件事情的所有方法是屬于分類的問(wèn)題,每次得到的是最后結(jié)果,要用加法原理;如果完成一件事情的方法是屬于分步的問(wèn)題,每次得到的該步結(jié)果,就要用乘法原理。
三、教法建議
關(guān)于兩個(gè)計(jì)數(shù)原理的教學(xué)要分三個(gè)層次:
第一是對(duì)兩個(gè)計(jì)數(shù)原理的認(rèn)識(shí)與理解.這里要求學(xué)生理解兩個(gè)計(jì)數(shù)原理的意義,并弄清兩個(gè)計(jì)數(shù)原理的區(qū)別.知道什么情況下使用加法計(jì)數(shù)原理,什么情況下使用乘法計(jì)數(shù)原理.(建議利用一課時(shí)).
第二是對(duì)兩個(gè)計(jì)數(shù)原理的使用.可以讓學(xué)生做一下習(xí)題(建議利用兩課時(shí)):
①用0,1,2,……,9可以組成多少個(gè)8位號(hào)碼;
②用0,1,2,……,9可以組成多少個(gè)8位整數(shù);
③用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位整數(shù);
④用0,1,2,……,9可以組成多少個(gè)有重復(fù)數(shù)字的4位整數(shù);
⑤用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位奇數(shù);
⑥用0,1,2,……,9可以組成多少個(gè)有兩個(gè)重復(fù)數(shù)字的4位整數(shù)等等.
第三是使學(xué)生掌握兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用,這個(gè)過(guò)程應(yīng)該貫徹整個(gè)教學(xué)中,每個(gè)排列數(shù)、組合數(shù)公式及性質(zhì)的推導(dǎo)都要用兩個(gè)計(jì)數(shù)原理,每一道排列、組合問(wèn)題都可以直接利用兩個(gè)原理求解,另外直接計(jì)算法、間接計(jì)算法都是兩個(gè)原理的一種體現(xiàn).教師要引導(dǎo)學(xué)生認(rèn)真地分析題意,恰當(dāng)?shù)姆诸?、分?用好、用活兩個(gè)基本計(jì)數(shù)原理.
教學(xué)設(shè)計(jì)示例
加法原理和乘法原理
教學(xué)目標(biāo)
正確理解和掌握加法原理和乘法原理,并能準(zhǔn)確地應(yīng)用它們分析和解決一些簡(jiǎn)單的問(wèn)題,從而發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):加法原理和乘法原理.
難點(diǎn):加法原理和乘法原理的準(zhǔn)確應(yīng)用.
教學(xué)用具
投影儀.
教學(xué)過(guò)程設(shè)計(jì)
(一)引入新課
從本節(jié)課開(kāi)始,我們將要學(xué)習(xí)中學(xué)代數(shù)內(nèi)容中一個(gè)獨(dú)特的部分——排列、組合、二項(xiàng)式定理.它們研究對(duì)象獨(dú)特,研究問(wèn)題的方法不同一般.雖然份量不多,但是與舊知識(shí)的聯(lián)系很少,而且它還是我們今后學(xué)習(xí)概率論的基礎(chǔ),統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)以及生物的選種等都與它直接有關(guān).至于在日常的工作、生活上,只要涉及安排調(diào)配的問(wèn)題,就離不開(kāi)它.
今天我們先學(xué)習(xí)兩個(gè)基本原理.
(二)講授新課
1.介紹兩個(gè)基本原理
先考慮下面的問(wèn)題:
問(wèn)題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個(gè)班次,汽車有2個(gè)班次,輪船有3個(gè)班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.
這個(gè)問(wèn)題可以總結(jié)為下面的一個(gè)基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.
請(qǐng)大家再來(lái)考慮下面的問(wèn)題(打出片子——問(wèn)題2):
問(wèn)題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)下圖),從A村經(jīng)B村去C村,共有多少種不同的走法?
這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達(dá)B村后,再?gòu)腂村到C村又各有2種不同的走法,因此,從A村經(jīng)B村去C村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.
2.淺釋兩個(gè)基本原理
兩個(gè)基本原理的用途是計(jì)算做一件事完成它的所有不同的方法種數(shù).
比較兩個(gè)基本原理,想一想,它們有什么區(qū)別?
兩個(gè)基本原理的區(qū)別在于:一個(gè)與分類有關(guān),一個(gè)與分步有關(guān).
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個(gè)數(shù)中的所有合數(shù).第一類辦法是找含因數(shù)2的合數(shù),共有4個(gè);第二類辦法是找含因數(shù)3的合數(shù),共有2個(gè);第三類辦法是找含因數(shù)5的合數(shù),共有1個(gè).
1~10中一共有N=4+2+1=7個(gè)合數(shù).
題2:在前面的問(wèn)題2中,步行從A村到B村的北路需要8時(shí),中路需要4時(shí),南路需要6時(shí),B村到C村的北路需要5時(shí),南路需要3時(shí),要求步行從A村到C村的總時(shí)數(shù)不超過(guò)12時(shí),共有多少種不同的走法?
第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.
題2中的合數(shù)是4,6,8,9,10這五個(gè),其中6既含有因數(shù)2,也含有因數(shù)3;10既含有因數(shù)2,也含有因數(shù)5.題中的分析是錯(cuò)誤的.
從A村到C村總時(shí)數(shù)不超過(guò)12時(shí)的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.
(此時(shí)給出題1和題2的目的是為了引導(dǎo)學(xué)生找出應(yīng)用兩個(gè)基本原理的注意事項(xiàng),這樣安排,不但可以使學(xué)生對(duì)兩個(gè)基本原理的理解更深刻,而且還可以培養(yǎng)學(xué)生的學(xué)習(xí)能力)
進(jìn)行分類時(shí),要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨(dú)完成這件事.只有滿足這個(gè)條件,才能直接用加法原理,否則不可以.
如果完成一件事需要分成幾個(gè)步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨(dú)立,即相對(duì)于前一步的每一種方法,下一步都有m種不同的方法,那么計(jì)算完成這件事的方法數(shù)時(shí),就可以直接應(yīng)用乘法原理.
也就是說(shuō):類類互斥,步步獨(dú)立.
(在學(xué)生對(duì)問(wèn)題的分析不是很清楚時(shí),教師及時(shí)地歸納小結(jié),能使學(xué)生在應(yīng)用兩個(gè)基本原理時(shí),思路進(jìn)一步清晰和明確,不再簡(jiǎn)單地認(rèn)為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯(lián)系就用乘法.從而深入理解兩個(gè)基本原理中分類、分步的真正含義和實(shí)質(zhì))
(三)應(yīng)用舉例
現(xiàn)在我們已經(jīng)有了兩個(gè)基本原理,我們可以用它們來(lái)解決一些簡(jiǎn)單問(wèn)題了.
例1書架上放有3本不同的數(shù)學(xué)書,5本不同的語(yǔ)文書,6本不同的英語(yǔ)書.
(1)若從這些書中任取一本,有多少種不同的取法?
(2)若從這些書中,取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各一本,有多少種不同的取法?
(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?
(讓學(xué)生思考,要求依據(jù)兩個(gè)基本原理寫出這3個(gè)問(wèn)題的答案及理由,教師巡視指導(dǎo),并適時(shí)口述解法)
(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數(shù)學(xué)書中任取1本,有3種方法;第二類辦法是從5本不同的語(yǔ)文書中任取1本,有5種方法;第三類辦法是從6本不同的英語(yǔ)書中任取一本,有6種方法.根據(jù)加法原理,得到的取法種數(shù)是
N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.
(2)從書架上任取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,需要分成三個(gè)步驟完成,第一步取1本數(shù)學(xué)書,有3種方法;第二步取1本語(yǔ)文書,有5種方法;第三步取1本英語(yǔ)書,有6種方法.根據(jù)乘法原理,得到不同的取法種數(shù)是N=m1×m2×m3=3×5×6=90.故,從書架上取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,有90種不同的方法.
(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數(shù)學(xué)書、語(yǔ)文書各取1本,需要分兩個(gè)步驟,有3×5種方法;第二類辦法是數(shù)學(xué)書、英語(yǔ)書各取1本,需要分兩個(gè)步驟,有3×6種方法;第三類辦法是語(yǔ)文書、英語(yǔ)書各取1本,有5×6種方法.一共得到不同的取法種數(shù)是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.
例2由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?
解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法.根據(jù)乘法原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.
答:可以組成100個(gè)三位整數(shù).
教師的連續(xù)發(fā)問(wèn)、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問(wèn)題能力有所提高.教師在第二個(gè)例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對(duì)兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對(duì)于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ).
(四)歸納小結(jié)
歸納什么時(shí)候用加法原理、什么時(shí)候用乘法原理:
分類時(shí)用加法原理,分步時(shí)用乘法原理.
應(yīng)用兩個(gè)基本原理時(shí)需要注意分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的.
(五)課堂練習(xí)
P222:練習(xí)1~4.
(對(duì)于題4,教師有必要對(duì)三個(gè)多項(xiàng)式乘積展開(kāi)后各項(xiàng)的構(gòu)成給以提示)
(六)布置作業(yè)
P222:練習(xí)5,6,7.
補(bǔ)充題:
1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不同的志愿,求該生填寫志愿的方式的種數(shù).
(提示:需要按三個(gè)志愿分成三步,共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?
(提示:可以用下面方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會(huì)英語(yǔ)和日語(yǔ)中的一門,其中8人會(huì)英語(yǔ),5人會(huì)日語(yǔ),(1)從中任選一個(gè)會(huì)外語(yǔ)的人,有多少種選法?(2)從中選出會(huì)英語(yǔ)與會(huì)日語(yǔ)的各1人,有多少種不同的選法?
(提示:由于8+5=1310,所以10人中必有3人既會(huì)英語(yǔ)又會(huì)日語(yǔ).
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
數(shù)學(xué)教案-排列、組合、二項(xiàng)式定理-基本原理
擴(kuò)展閱讀
排列、組合、二項(xiàng)式定理-基本原理
作為杰出的教學(xué)工作者,能夠保證教課的順利開(kāi)展,高中教師要準(zhǔn)備好教案,這是高中教師需要精心準(zhǔn)備的。教案可以保證學(xué)生們?cè)谏险n時(shí)能夠更好的聽(tīng)課,幫助高中教師有計(jì)劃有步驟有質(zhì)量的完成教學(xué)任務(wù)。所以你在寫高中教案時(shí)要注意些什么呢?考慮到您的需要,小編特地編輯了“排列、組合、二項(xiàng)式定理-基本原理”,大家不妨來(lái)參考。希望您能喜歡!
排列、組合、二項(xiàng)式定理-基本原理教學(xué)目標(biāo)(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結(jié)論;
(2)能結(jié)合樹(shù)形圖來(lái)幫助理解加法原理與乘法原理;
(3)正確區(qū)分加法原理與乘法原理,哪一個(gè)原理與分類有關(guān),哪一個(gè)原理與分步有關(guān);
(4)能應(yīng)用加法原理與乘法原理解決一些簡(jiǎn)單的應(yīng)用問(wèn)題,提高學(xué)生理解和運(yùn)用兩個(gè)原理的能力;
(5)通過(guò)對(duì)加法原理與乘法原理的學(xué)習(xí),培養(yǎng)學(xué)生周密思考、細(xì)心分析的良好習(xí)慣。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)是加法原理與乘法原理,難點(diǎn)是準(zhǔn)確區(qū)分加法原理與乘法原理。
加法原理、乘法原理本身是輕易理解的,甚至是不言自明的。這兩個(gè)原理是學(xué)習(xí)排列組合內(nèi)容的基礎(chǔ),貫穿整個(gè)內(nèi)容之中,一方面它是推導(dǎo)排列數(shù)與組合數(shù)的基礎(chǔ);另一方面它的結(jié)論與其思想在方法本身又在解題時(shí)有許多直接應(yīng)用。
兩個(gè)原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問(wèn)題,其區(qū)別在于:運(yùn)用加法原理的前提條件是,做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說(shuō),完成這件事的各種方法是相互獨(dú)立的;運(yùn)用乘法原理的前提條件是,做一件事有n個(gè)驟,只要在每個(gè)步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說(shuō),完成這件事的各個(gè)步驟是相互依存的。簡(jiǎn)單的說(shuō),假如完成一件事情的所有方法是屬于分類的問(wèn)題,每次得到的是最后結(jié)果,要用加法原理;假如完成一件事情的方法是屬于分步的問(wèn)題,每次得到的該步結(jié)果,就要用乘法原理。
三、教法建議
關(guān)于兩個(gè)計(jì)數(shù)原理的教學(xué)要分三個(gè)層次:
第一是對(duì)兩個(gè)計(jì)數(shù)原理的熟悉與理解.這里要求學(xué)生理解兩個(gè)計(jì)數(shù)原理的意義,并弄清兩個(gè)計(jì)數(shù)原理的區(qū)別.知道什么情況下使用加法計(jì)數(shù)原理,什么情況下使用乘法計(jì)數(shù)原理.(建議利用一課時(shí)).
第二是對(duì)兩個(gè)計(jì)數(shù)原理的使用.可以讓學(xué)生做一下習(xí)題(建議利用兩課時(shí)):
①用0,1,2,……,9可以組成多少個(gè)8位號(hào)碼;
②用0,1,2,……,9可以組成多少個(gè)8位整數(shù);
③用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位整數(shù);
④用0,1,2,……,9可以組成多少個(gè)有重復(fù)數(shù)字的4位整數(shù);
⑤用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位奇數(shù);
⑥用0,1,2,……,9可以組成多少個(gè)有兩個(gè)重復(fù)數(shù)字的4位整數(shù)等等.
第三是使學(xué)生把握兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用,這個(gè)過(guò)程應(yīng)該貫徹整個(gè)教學(xué)中,每個(gè)排列數(shù)、組合數(shù)公式及性質(zhì)的推導(dǎo)都要用兩個(gè)計(jì)數(shù)原理,每一道排列、組合問(wèn)題都可以直接利用兩個(gè)原理求解,另外直接計(jì)算法、間接計(jì)算法都是兩個(gè)原理的一種體現(xiàn).教師要引導(dǎo)學(xué)生認(rèn)真地分析題意,恰當(dāng)?shù)姆诸悺⒎植?用好、用活兩個(gè)基本計(jì)數(shù)原理.
教學(xué)設(shè)計(jì)示例
加法原理和乘法原理
教學(xué)目標(biāo)
正確理解和把握加法原理和乘法原理,并能準(zhǔn)確地應(yīng)用它們分析和解決一些簡(jiǎn)單的問(wèn)題,從而發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):加法原理和乘法原理.
難點(diǎn):加法原理和乘法原理的準(zhǔn)確應(yīng)用.
教學(xué)用具
投影儀.
教學(xué)過(guò)程設(shè)計(jì)
(一)引入新課
從本節(jié)課開(kāi)始,我們將要學(xué)習(xí)中學(xué)代數(shù)內(nèi)容中一個(gè)獨(dú)特的部分——排列、組合、二項(xiàng)式定理.它們研究對(duì)象獨(dú)特,研究問(wèn)題的方法不同一般.雖然份量不多,但是與舊知識(shí)的聯(lián)系很少,而且它還是我們今后學(xué)習(xí)概率論的基礎(chǔ),統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)以及生物的選種等都與它直接有關(guān).至于在日常的工作、生活上,只要涉及安排調(diào)配的問(wèn)題,就離不開(kāi)它.
今天我們先學(xué)習(xí)兩個(gè)基本原理.
(二)講授新課
1.介紹兩個(gè)基本原理
先考慮下面的問(wèn)題:
問(wèn)題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個(gè)班次,汽車有2個(gè)班次,輪船有3個(gè)班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有423=9種不同的走法.
這個(gè)問(wèn)題可以總結(jié)為下面的一個(gè)基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1m2…mn種不同的方法.
請(qǐng)大家再來(lái)考慮下面的問(wèn)題(打出片子——問(wèn)題2):
問(wèn)題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)下圖),從A村經(jīng)B村去C村,共有多少種不同的走法?
這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達(dá)B村后,再?gòu)腂村到C村又各有2種不同的走法,因此,從A村經(jīng)B村去C村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.
2.淺釋兩個(gè)基本原理
兩個(gè)基本原理的用途是計(jì)算做一件事完成它的所有不同的方法種數(shù).
比較兩個(gè)基本原理,想一想,它們有什么區(qū)別?
兩個(gè)基本原理的區(qū)別在于:一個(gè)與分類有關(guān),一個(gè)與分步有關(guān).
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個(gè)數(shù)中的所有合數(shù).第一類辦法是找含因數(shù)2的合數(shù),共有4個(gè);第二類辦法是找含因數(shù)3的合數(shù),共有2個(gè);第三類辦法是找含因數(shù)5的合數(shù),共有1個(gè).
1~10中一共有N=4+2+1=7個(gè)合數(shù).
題2:在前面的問(wèn)題2中,步行從A村到B村的北路需要8時(shí),中路需要4時(shí),南路需要6時(shí),B村到C村的北路需要5時(shí),南路需要3時(shí),要求步行從A村到C村的總時(shí)數(shù)不超過(guò)12時(shí),共有多少種不同的走法?
第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.
題2中的合數(shù)是4,6,8,9,10這五個(gè),其中6既含有因數(shù)2,也含有因數(shù)3;10既含有因數(shù)2,也含有因數(shù)5.題中的分析是錯(cuò)誤的.
從A村到C村總時(shí)數(shù)不超過(guò)12時(shí)的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.
(此時(shí)給出題1和題2的目的是為了引導(dǎo)學(xué)生找出應(yīng)用兩個(gè)基本原理的注重事項(xiàng),這樣安排,不但可以使學(xué)生對(duì)兩個(gè)基本原理的理解更深刻,而且還可以培養(yǎng)學(xué)生的學(xué)習(xí)能力)
進(jìn)行分類時(shí),要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨(dú)完成這件事.只有滿足這個(gè)條件,才能直接用加法原理,否則不可以.
假如完成一件事需要分成幾個(gè)步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨(dú)立,即相對(duì)于前一步的每一種方法,下一步都有m種不同的方法,那么計(jì)算完成這件事的方法數(shù)時(shí),就可以直接應(yīng)用乘法原理.
也就是說(shuō):類類互斥,步步獨(dú)立.
(在學(xué)生對(duì)問(wèn)題的分析不是很清楚時(shí),教師及時(shí)地歸納小結(jié),能使學(xué)生在應(yīng)用兩個(gè)基本原理時(shí),思路進(jìn)一步清楚和明確,不再簡(jiǎn)單地認(rèn)為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯(lián)系就用乘法.從而深入理解兩個(gè)基本原理中分類、分步的真正含義和實(shí)質(zhì))
(三)應(yīng)用舉例
現(xiàn)在我們已經(jīng)有了兩個(gè)基本原理,我們可以用它們來(lái)解決一些簡(jiǎn)單問(wèn)題了.
例1書架上放有3本不同的數(shù)學(xué)書,5本不同的語(yǔ)文書,6本不同的英語(yǔ)書.
(1)若從這些書中任取一本,有多少種不同的取法?
(2)若從這些書中,取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各一本,有多少種不同的取法?
(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?
(讓學(xué)生思考,要求依據(jù)兩個(gè)基本原理寫出這3個(gè)問(wèn)題的答案及理由,教師巡視指導(dǎo),并適時(shí)口述解法)
(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數(shù)學(xué)書中任取1本,有3種方法;第二類辦法是從5本不同的語(yǔ)文書中任取1本,有5種方法;第三類辦法是從6本不同的英語(yǔ)書中任取一本,有6種方法.根據(jù)加法原理,得到的取法種數(shù)是
N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.
(2)從書架上任取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,需要分成三個(gè)步驟完成,第一步取1本數(shù)學(xué)書,有3種方法;第二步取1本語(yǔ)文書,有5種方法;第三步取1本英語(yǔ)書,有6種方法.根據(jù)乘法原理,得到不同的取法種數(shù)是N=m1×m2×m3=3×5×6=90.故,從書架上取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,有90種不同的方法.
(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數(shù)學(xué)書、語(yǔ)文書各取1本,需要分兩個(gè)步驟,有3×5種方法;第二類辦法是數(shù)學(xué)書、英語(yǔ)書各取1本,需要分兩個(gè)步驟,有3×6種方法;第三類辦法是語(yǔ)文書、英語(yǔ)書各取1本,有5×6種方法.一共得到不同的取法種數(shù)是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.
例2由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字答應(yīng)重復(fù))?
解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字答應(yīng)重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法.根據(jù)乘法原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.
答:可以組成100個(gè)三位整數(shù).
教師的連續(xù)發(fā)問(wèn)、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問(wèn)題能力有所提高.教師在第二個(gè)例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對(duì)兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對(duì)于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ).
(四)歸納小結(jié)
歸納什么時(shí)候用加法原理、什么時(shí)候用乘法原理:
分類時(shí)用加法原理,分步時(shí)用乘法原理.
應(yīng)用兩個(gè)基本原理時(shí)需要注重分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的.
(五)課堂練習(xí)
P222:練習(xí)1~4.
(對(duì)于題4,教師有必要對(duì)三個(gè)多項(xiàng)式乘積展開(kāi)后各項(xiàng)的構(gòu)成給以提示)
(六)布置作業(yè)
P222:練習(xí)5,6,7.
補(bǔ)充題:
1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不同的志愿,求該生填寫志愿的方式的種數(shù).
(提示:需要按三個(gè)志愿分成三步,共有m(m1)(m2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?
(提示:可以用下面方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×99×99×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會(huì)英語(yǔ)和日語(yǔ)中的一門,其中8人會(huì)英語(yǔ),5人會(huì)日語(yǔ),(1)從中任選一個(gè)會(huì)外語(yǔ)的人,有多少種選法?(2)從中選出會(huì)英語(yǔ)與會(huì)日語(yǔ)的各1人,有多少種不同的選法?
(提示:由于8+5=1310,所以10人中必有3人既會(huì)英語(yǔ)又會(huì)日語(yǔ).
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
二項(xiàng)式定理
一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓講的知識(shí)能夠輕松被學(xué)生吸收,幫助高中教師營(yíng)造一個(gè)良好的教學(xué)氛圍。您知道高中教案應(yīng)該要怎么下筆嗎?以下是小編為大家精心整理的“二項(xiàng)式定理”,僅供參考,歡迎大家閱讀。
1.5.1二項(xiàng)式定理教學(xué)目標(biāo):
知識(shí)與技能:進(jìn)一步掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的通項(xiàng)公式
過(guò)程與方法:能解決二項(xiàng)展開(kāi)式有關(guān)的簡(jiǎn)單問(wèn)題
情感、態(tài)度與價(jià)值觀:教學(xué)過(guò)程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問(wèn)題的解決方法。
教學(xué)重點(diǎn):二項(xiàng)式定理及通項(xiàng)公式的掌握及運(yùn)用
教學(xué)難點(diǎn):二項(xiàng)式定理及通項(xiàng)公式的掌握及運(yùn)用
授課類型:新授課
課時(shí)安排:3課時(shí)
教具:多媒體、實(shí)物投影儀
內(nèi)容分析:
二項(xiàng)式定理是初中乘法公式的推廣,是排列組合知識(shí)的具體運(yùn)用,是學(xué)習(xí)概率的重要基礎(chǔ).這部分知識(shí)具有較高應(yīng)用價(jià)值和思維訓(xùn)練價(jià)值.中學(xué)教材中的二項(xiàng)式定理主要包括:定理本身,通項(xiàng)公式,楊輝三角,二項(xiàng)式系數(shù)的性質(zhì)等.
通過(guò)二項(xiàng)式定理的學(xué)習(xí)應(yīng)該讓學(xué)生掌握有關(guān)知識(shí),同時(shí)在求展開(kāi)式、其通項(xiàng)、證恒等式、近似計(jì)算等方面形成技能或技巧;進(jìn)一步體會(huì)過(guò)程分析與特殊化方法等等的運(yùn)用;重視學(xué)生正確情感、態(tài)度和世界觀的培養(yǎng)和形成.
二項(xiàng)式定理本身是教學(xué)重點(diǎn),因?yàn)樗呛竺嬉磺薪Y(jié)果的基礎(chǔ).通項(xiàng)公式,楊輝三角,特殊化方法等意義重大而深遠(yuǎn),所以也應(yīng)該是重點(diǎn).
二項(xiàng)式定理的證明是一個(gè)教學(xué)難點(diǎn).這是因?yàn)椋C明中符號(hào)比較抽象、需要恰當(dāng)?shù)剡\(yùn)用組合數(shù)的性質(zhì)2、需要用到不太熟悉的數(shù)學(xué)歸納法.
在教學(xué)中,努力把表現(xiàn)的機(jī)會(huì)讓給學(xué)生,以發(fā)揮他們的自主精神;盡量創(chuàng)造讓學(xué)生活動(dòng)的機(jī)會(huì),以讓學(xué)生在直接體驗(yàn)中建構(gòu)自己的知識(shí)體系;盡量引導(dǎo)學(xué)生的發(fā)展和創(chuàng)造意識(shí),以使他們能在再創(chuàng)造的氛圍中學(xué)習(xí).
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
⑴;
⑵
⑶的各項(xiàng)都是次式,
即展開(kāi)式應(yīng)有下面形式的各項(xiàng):,,,,,
展開(kāi)式各項(xiàng)的系數(shù):上面?zhèn)€括號(hào)中,每個(gè)都不取的情況有種,即種,的系數(shù)是;恰有個(gè)取的情況有種,的系數(shù)是,恰有個(gè)取的情況有種,的系數(shù)是,恰有個(gè)取的情況有種,的系數(shù)是,有都取的情況有種,的系數(shù)是,
∴.
二、講解新課:
二項(xiàng)式定理:
⑴的展開(kāi)式的各項(xiàng)都是次式,即展開(kāi)式應(yīng)有下面形式的各項(xiàng):
,,…,,…,,
⑵展開(kāi)式各項(xiàng)的系數(shù):
每個(gè)都不取的情況有種,即種,的系數(shù)是;
恰有個(gè)取的情況有種,的系數(shù)是,……,
恰有個(gè)取的情況有種,的系數(shù)是,……,
有都取的情況有種,的系數(shù)是,
∴,
這個(gè)公式所表示的定理叫二項(xiàng)式定理,右邊的多項(xiàng)式叫的二項(xiàng)展開(kāi)式,⑶它有項(xiàng),各項(xiàng)的系數(shù)叫二項(xiàng)式系數(shù),
⑷叫二項(xiàng)展開(kāi)式的通項(xiàng),用表示,即通項(xiàng).
⑸二項(xiàng)式定理中,設(shè),則
三、講解范例:
例1.展開(kāi).
解一:.
解二:
.
例2.展開(kāi).
解:
.
例3.求的展開(kāi)式中的倒數(shù)第項(xiàng)
解:的展開(kāi)式中共項(xiàng),它的倒數(shù)第項(xiàng)是第項(xiàng),
.
例4.求(1),(2)的展開(kāi)式中的第項(xiàng).
解:(1),
(2).
點(diǎn)評(píng):,的展開(kāi)后結(jié)果相同,但展開(kāi)式中的第項(xiàng)不相同
例5.(1)求的展開(kāi)式常數(shù)項(xiàng);
(2)求的展開(kāi)式的中間兩項(xiàng)
解:∵,
∴(1)當(dāng)時(shí)展開(kāi)式是常數(shù)項(xiàng),即常數(shù)項(xiàng)為;
(2)的展開(kāi)式共項(xiàng),它的中間兩項(xiàng)分別是第項(xiàng)、第項(xiàng),
,
例6.(1)求的展開(kāi)式的第4項(xiàng)的系數(shù);
(2)求的展開(kāi)式中的系數(shù)及二項(xiàng)式系數(shù)
解:的展開(kāi)式的第四項(xiàng)是,
∴的展開(kāi)式的第四項(xiàng)的系數(shù)是.
(2)∵的展開(kāi)式的通項(xiàng)是,
∴,,
∴的系數(shù),的二項(xiàng)式系數(shù).
例7.求的展開(kāi)式中的系數(shù)
分析:要把上式展開(kāi),必須先把三項(xiàng)中的某兩項(xiàng)結(jié)合起來(lái),看成一項(xiàng),才可以用二項(xiàng)式定理展開(kāi),然后再用一次二項(xiàng)式定理,,也可以先把三項(xiàng)式分解成兩個(gè)二項(xiàng)式的積,再用二項(xiàng)式定理展開(kāi)
解:(法一)
,
顯然,上式中只有第四項(xiàng)中含的項(xiàng),
∴展開(kāi)式中含的項(xiàng)的系數(shù)是
(法二):
∴展開(kāi)式中含的項(xiàng)的系數(shù)是.
例8.已知的展開(kāi)式中含項(xiàng)的系數(shù)為,求展開(kāi)式中含項(xiàng)的系數(shù)最小值
分析:展開(kāi)式中含項(xiàng)的系數(shù)是關(guān)于的關(guān)系式,由展開(kāi)式中含項(xiàng)的系數(shù)為,可得,從而轉(zhuǎn)化為關(guān)于或的二次函數(shù)求解
解:展開(kāi)式中含的項(xiàng)為
∴,即,
展開(kāi)式中含的項(xiàng)的系數(shù)為
,
∵,∴,
∴
,∴當(dāng)時(shí),取最小值,但,
∴時(shí),即項(xiàng)的系數(shù)最小,最小值為,此時(shí).
例9.已知的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列,
(1)證明展開(kāi)式中沒(méi)有常數(shù)項(xiàng);(2)求展開(kāi)式中所有的有理項(xiàng)
解:由題意:,即,∴舍去)
∴
①若是常數(shù)項(xiàng),則,即,
∵,這不可能,∴展開(kāi)式中沒(méi)有常數(shù)項(xiàng);
②若是有理項(xiàng),當(dāng)且僅當(dāng)為整數(shù),
∴,∴,
即展開(kāi)式中有三項(xiàng)有理項(xiàng),分別是:,,
例10.求的近似值,使誤差小于.
解:,
展開(kāi)式中第三項(xiàng)為,小于,以后各項(xiàng)的絕對(duì)值更小,可忽略不計(jì),
∴,
一般地當(dāng)較小時(shí)
四、課堂練習(xí):
1.求的展開(kāi)式的第3項(xiàng).
2.求的展開(kāi)式的第3項(xiàng).
3.寫出的展開(kāi)式的第r+1項(xiàng).
4.求的展開(kāi)式的第4項(xiàng)的二項(xiàng)式系數(shù),并求第4項(xiàng)的系數(shù).
5.用二項(xiàng)式定理展開(kāi):
(1);(2).
6.化簡(jiǎn):(1);(2)
7.展開(kāi)式中的第項(xiàng)為,求.
8.求展開(kāi)式的中間項(xiàng)
答案:1.
2.
3.
4.展開(kāi)式的第4項(xiàng)的二項(xiàng)式系數(shù),第4項(xiàng)的系數(shù)
5.(1);
(2).
6.(1);
(2)
7.展開(kāi)式中的第項(xiàng)為
8.展開(kāi)式的中間項(xiàng)為
五、小結(jié):二項(xiàng)式定理的探索思路:觀察——?dú)w納——猜想——證明;二項(xiàng)式定理及通項(xiàng)公式的特點(diǎn)
六、課后作業(yè):P36習(xí)題1.3A組1.2.3.4
七、板書設(shè)計(jì)(略)
八、教學(xué)反思:
(a+b)n=
這個(gè)公式表示的定理叫做二項(xiàng)式定理,公式右邊的多項(xiàng)式叫做(a+b)n的,其中(r=0,1,2,……,n)叫做,叫做二項(xiàng)展開(kāi)式的通項(xiàng),它是展開(kāi)式的第項(xiàng),展開(kāi)式共有個(gè)項(xiàng).
掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的通項(xiàng)公式,并能用它們解決與二項(xiàng)展開(kāi)式有關(guān)的簡(jiǎn)單問(wèn)題。
培養(yǎng)歸納猜想,抽象概括,演繹證明等理性思維能力。教材的探求過(guò)程將歸納推理與演繹推理有機(jī)結(jié)合起來(lái),是培養(yǎng)學(xué)生數(shù)學(xué)探究能力的極好載體,教學(xué)過(guò)程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問(wèn)題的解決方法。
二項(xiàng)式定理是指
這樣一個(gè)展開(kāi)式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展開(kāi)式的一般形式,在初等數(shù)學(xué)中它各章節(jié)的聯(lián)系似乎不太多,而在高等數(shù)學(xué)中它是許多重要公式的共同基礎(chǔ),根據(jù)二項(xiàng)式定理的展開(kāi),才求得y=xn的導(dǎo)數(shù)公式y(tǒng)′=nxn-1,同時(shí)=e≈2.718281…也正是由二項(xiàng)式定理的展開(kāi)規(guī)律所確定,而e在高等數(shù)學(xué)中的地位更是舉足輕重,概率中的正態(tài)分布,復(fù)變函數(shù)中的歐拉公式eiθ=cosθ+isinθ,微分方程中二階變系數(shù)方程及高階常系數(shù)方程的解由e的指數(shù)形式來(lái)表達(dá).且直接由e的定義建立的y=lnx的導(dǎo)數(shù)公式y(tǒng)=與積分公式=dxlnx+c是分析學(xué)中用的最多的公式之一.而由y=xn的各階導(dǎo)數(shù)為基礎(chǔ)建立的泰勒公式;f(x)=f(x0)+(x-x0)2+…(x-x0)n+(θ∈(0,1))以及由此建立的冪級(jí)數(shù)理論,更是廣泛深入到高等數(shù)學(xué)的各個(gè)分支中.
怎樣使二項(xiàng)式定理的教學(xué)生動(dòng)有趣
正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),課本上先給出一個(gè)(a+b)4用組合知識(shí)來(lái)求展開(kāi)式的系數(shù)的例子.然后推廣到一般形式,再用數(shù)學(xué)歸納法證明,因?yàn)樽C明寫得很長(zhǎng),上課時(shí)的板書幾乎占了整個(gè)黑板,所以課必然上得累贅,學(xué)生必然感到被動(dòng).那么多的算式學(xué)生看都不及細(xì)看,記也感到吃力,又怎能發(fā)揮主體作用?
怎樣才能使得在這節(jié)課上學(xué)生獲得主動(dòng)?采用課前預(yù)習(xí);自學(xué)輔導(dǎo);還是學(xué)生討論,或讀,議、講,練,或目標(biāo)教學(xué),還是設(shè)置發(fā)現(xiàn)情境?看來(lái)這些辦法遇到真正困難時(shí)都會(huì)無(wú)能為力,因?yàn)檫@些方法都無(wú)法改變算式的冗長(zhǎng),證法的呆板,課堂上的新情境與學(xué)生的認(rèn)知結(jié)構(gòu)中的圖式不協(xié)調(diào)的事實(shí).
而MM教育方式即數(shù)學(xué)方法論的教育方式卻能根據(jù)習(xí)題理論注意到充分利用數(shù)學(xué)方法與數(shù)學(xué)技術(shù)把所要證明或計(jì)算的形式變換得十分簡(jiǎn)潔,心理學(xué)家皮亞杰一再?gòu)?qiáng)調(diào)“認(rèn)識(shí)起因于主各體之間的相互作用”[1]只有客體的形式與學(xué)生主體認(rèn)知結(jié)構(gòu)中的圖式取得某種一致的時(shí)候,才能完成認(rèn)識(shí)的主動(dòng)建構(gòu),也就是學(xué)生獲得真正的理解.
MM教育方式遵循“興趣與能力的同步發(fā)展規(guī)律”和“教,學(xué),研互相促進(jìn)的規(guī)律”[2]在教學(xué)中追求簡(jiǎn)易,重視直觀,并巧妙地在應(yīng)用抽象使問(wèn)題變得十分有趣,學(xué)生學(xué)得生動(dòng)主動(dòng),充分發(fā)揮其課堂上的主體作用.
二項(xiàng)式定理導(dǎo)學(xué)案
古人云,工欲善其事,必先利其器。作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生能夠在課堂積極的參與互動(dòng),幫助高中教師能夠井然有序的進(jìn)行教學(xué)。寫好一份優(yōu)質(zhì)的高中教案要怎么做呢?下面是小編精心為您整理的“二項(xiàng)式定理導(dǎo)學(xué)案”,供大家參考,希望能幫助到有需要的朋友。
第11課時(shí)
1.3.1二項(xiàng)式定理(一)
學(xué)習(xí)目標(biāo)
1.用兩個(gè)計(jì)數(shù)原理分析的展開(kāi)式,歸納地得出二項(xiàng)式定理,并能用計(jì)數(shù)原理證明;
2.掌握二項(xiàng)展開(kāi)式的通項(xiàng)公式;能應(yīng)用它解決簡(jiǎn)單問(wèn)題.
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
試試:用多項(xiàng)式乘法法則得到下列式子的展開(kāi)式,并說(shuō)出未合并同類項(xiàng)之前的項(xiàng)數(shù)與各項(xiàng)的形式.
(1);(2);(3)。
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P29~P31,找出疑惑之處)
問(wèn)題:如何利用兩個(gè)計(jì)數(shù)原理得到
的展開(kāi)式?你能由此猜想一下
的展開(kāi)式是什么嗎?
◆應(yīng)用示例
例1.求的展開(kāi)式。
例2.展開(kāi),并求第3項(xiàng)二項(xiàng)式系數(shù)和第6項(xiàng)系數(shù)。
例3.(1)求的展開(kāi)式的第4項(xiàng)的系數(shù);
(2)求的展開(kāi)式中的系數(shù)。
◆反饋練習(xí)(課本P31練1-4)
1.寫出的展開(kāi)式.
2.求的展開(kāi)式的第3項(xiàng).
3.寫出的展開(kāi)式的第項(xiàng).
4.的展開(kāi)式的第6項(xiàng)的系數(shù)是()
A、B、C、D、
三、當(dāng)堂檢測(cè)
1.求的展開(kāi)式。
2.求的展開(kāi)式中的系數(shù)。
3.求二項(xiàng)式的展開(kāi)式中的常數(shù)項(xiàng)。
四、課后作業(yè)
1.用二項(xiàng)式定理展開(kāi):.
3.求下列各式的二項(xiàng)展開(kāi)式中指定各項(xiàng)的系數(shù):(1)的含的項(xiàng);
(2)的常數(shù)項(xiàng)。
二項(xiàng)式定理學(xué)案
俗話說(shuō),居安思危,思則有備,有備無(wú)患。高中教師在教學(xué)前就要準(zhǔn)備好教案,做好充分的準(zhǔn)備。教案可以更好的幫助學(xué)生們打好基礎(chǔ),幫助高中教師營(yíng)造一個(gè)良好的教學(xué)氛圍。那么,你知道高中教案要怎么寫呢?以下是小編收集整理的“二項(xiàng)式定理學(xué)案”,僅供參考,歡迎大家閱讀。
§1.5.1二項(xiàng)式定理
一、知識(shí)要點(diǎn)
1.二項(xiàng)式定理:
2.通項(xiàng):
3.二項(xiàng)式系數(shù)與項(xiàng)的系數(shù):
二、典型例題
例1.展開(kāi)下列各式:
⑴⑵
例2.求的展開(kāi)式中第4項(xiàng)的二項(xiàng)式系數(shù)和系數(shù).
例3.求的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng).
例4.已知在的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng).
⑴求;⑵求含的項(xiàng)的系數(shù);⑶求展開(kāi)式中所有的有理項(xiàng).
三、鞏固練習(xí)
1.的展開(kāi)式為.
2.的展開(kāi)式中第3項(xiàng)的二項(xiàng)式系數(shù)是,第3項(xiàng)的系數(shù)為.
3.寫出的展開(kāi)式第項(xiàng)()為.
4.的展開(kāi)式中含的項(xiàng)為.
5.的展開(kāi)式中的常數(shù)項(xiàng)為.
四、課堂小結(jié)
五、課后反思
六、課后作業(yè)
1.展開(kāi)式中項(xiàng)的系數(shù)為.
2.的展開(kāi)式中,含的項(xiàng)的系數(shù)是.
3.在展開(kāi)式中,項(xiàng)的系數(shù)是15,則實(shí)數(shù)=.
4.化簡(jiǎn)=.
5.的展開(kāi)式中的常數(shù)項(xiàng)為.
6.若的展開(kāi)式中,第2項(xiàng)小于第1項(xiàng),且不小于第3項(xiàng),則的取值范圍是.
7.展開(kāi)式中,含項(xiàng)的系數(shù)為.
8.若的展開(kāi)式中的第3項(xiàng)與第5項(xiàng)的系數(shù)相等,求展開(kāi)式中的系數(shù).
9.二項(xiàng)式的展開(kāi)式中第2,3,4項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中的常數(shù)項(xiàng).
10.求展開(kāi)式中的所有的含的有理項(xiàng).
訂正欄: