高中語文必修一教案
發(fā)表時(shí)間:2020-02-19高一數(shù)學(xué)必修21-4章教案(蘇教版)。
俗話說,居安思危,思則有備,有備無患。高中教師要準(zhǔn)備好教案,這是每個(gè)高中教師都不可缺少的。教案可以讓上課時(shí)的教學(xué)氛圍非常活躍,讓高中教師能夠快速的解決各種教學(xué)問題。我們要如何寫好一份值得稱贊的高中教案呢?以下是小編為大家收集的“高一數(shù)學(xué)必修21-4章教案(蘇教版)”供大家參考,希望能幫助到有需要的朋友。
4.2.2直線與圓的方程的應(yīng)用(兩個(gè)課時(shí))
一、教學(xué)目標(biāo)
1、知識與技能
(1)理解直線與圓的位置關(guān)系的幾何性質(zhì);
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
(3)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.
2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.
3、情態(tài)與價(jià)值觀
讓學(xué)生通過觀察圖形,理解并掌握直線與圓的方程的應(yīng)用,培養(yǎng)學(xué)生分析問題與解決問題的能力.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用.
三、教學(xué)設(shè)想
問題設(shè)計(jì)意圖師生活動(dòng)
1.你能說出直線與圓的位置關(guān)系嗎?啟發(fā)并引導(dǎo)學(xué)生回顧直線與圓的位置關(guān)系,從而引入新課.師:啟發(fā)學(xué)生回顧直線與圓的位置關(guān)系,導(dǎo)入新課.
生:回顧,說出自己的看法.
2.解決直線與圓的位置關(guān)系,你將采用什么方法?
理解并掌握直線與圓的位置關(guān)系的解決辦法與數(shù)學(xué)思想.師:引導(dǎo)學(xué)生通過觀察圖形,回顧所學(xué)過的知識,說出解決問題的方法.
生:回顧、思考、討論、交流,得到解決問題的方法.
問題設(shè)計(jì)意圖師生活動(dòng)
3.閱讀并思考教科書上的例4,你將選擇什么方法解決例4的問題
指導(dǎo)學(xué)生從直觀認(rèn)識過渡到數(shù)學(xué)思想方法的選擇.師:指導(dǎo)學(xué)生觀察教科書上的圖形特征,利用平面直角坐標(biāo)系求解.
生:自學(xué)例4,并完成練習(xí)題1、2.
師:分析例4并展示解題過程,啟發(fā)學(xué)生利用坐標(biāo)法求,注意給學(xué)生留有總結(jié)思考的時(shí)間.
4.你能分析一下確定一個(gè)圓的方程的要點(diǎn)嗎?使學(xué)生加深對圓的方程的認(rèn)識.教師引導(dǎo)學(xué)生分析圓的方程中,若橫坐標(biāo)確定,如何求出縱坐標(biāo)的值.
5.你能利用“坐標(biāo)法”解決例5嗎?鞏固“坐標(biāo)法”,培養(yǎng)學(xué)生分析問題與解決問題的能力.師:引導(dǎo)學(xué)生建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示相應(yīng)的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題.
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,探求解決問題的方法.
6.完成教科書第140頁的練習(xí)題2、3、4.使學(xué)生熟悉平面幾何問題與代數(shù)問題的轉(zhuǎn)化,加深“坐標(biāo)法”的解題步驟.教師指導(dǎo)學(xué)生閱讀教材,并解決課本第140頁的練習(xí)題2、3、4.教師要注意引導(dǎo)學(xué)生思考平面幾何問題與代數(shù)問題相互轉(zhuǎn)化的依據(jù).
7.你能說出練習(xí)題蘊(yùn)含了什么思想方法嗎?反饋學(xué)生掌握“坐標(biāo)法”解決問題的情況,鞏固所學(xué)知識.學(xué)生獨(dú)立解決第141頁習(xí)題4.2A第8題,教師組織學(xué)生討論交流.
8.小結(jié):
(1)利用“坐標(biāo)法”解決問對知識進(jìn)行歸納概括,體會(huì)利師:指導(dǎo)學(xué)生完成練習(xí)題.
生:閱讀教科書的例3,并完成第
問題設(shè)計(jì)意圖師生活動(dòng)
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?
(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?
(4)建立不同的平面直角坐標(biāo)系,對解決問題有什么直接的影響呢?用“坐標(biāo)法”解決實(shí)際問題的作用.教師引導(dǎo)學(xué)生自己歸納總結(jié)所學(xué)過的知識,組織學(xué)生討論、交流、探究.
相關(guān)閱讀
高一數(shù)學(xué)必修一教案人教版
高一數(shù)學(xué)必修一教案人教版 篇1
教學(xué)目的:
(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡單集合的并集與交集;
(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;
(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對理解抽象概念的作用。
教學(xué)重點(diǎn):
集合的交集與并集、補(bǔ)集的概念;
教學(xué)難點(diǎn):
集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;
【知識點(diǎn)】
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
第4 / 7頁
A與B的所有元素來表示。 A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的'公共元素組成的集合。
拓展:求下列各圖中集合A與B的并集與交集A
說明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,不能說兩個(gè)集合沒有交集
3、補(bǔ)集
全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。
補(bǔ)集:對于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補(bǔ)集(complementary set),簡稱為集合A的補(bǔ)集,
記作:CUA
即:CUA={x|x∈U且x∈A}
補(bǔ)集的Venn圖表示
說明:補(bǔ)集的概念必須要有全集的限制
4、求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。
5、集合基本運(yùn)算的一些結(jié)論:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=?
若A∩B=A,則A?B,反之也成立
若A∪B=B,則A?B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
¤例題精講:
【例1】設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。
【例2】設(shè)A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:
(1)A?(B?C);(2)A??A(B?C)。
【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實(shí)數(shù)m的取值范圍。
XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求
CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。
高一數(shù)學(xué)必修一教案人教版 篇2
目標(biāo):
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
重點(diǎn):
集合的基本概念
教學(xué)過程:
1、引入
(1)章頭導(dǎo)言
(2)集合論與集合論的創(chuàng)始者—————康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)
2、講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關(guān)概念:
1、集合的概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象。
(2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說這個(gè)整體是由這些對象的全體構(gòu)成的集合。
(3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素。
集合通常用大寫的`拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……
2、元素與集合的關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a(bǔ)∈A顛倒過來寫。
3、集合中元素的特性
(1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了。
(2)互異性:集合中的元素一定是不同的
(3)無序性:集合中的元素沒有固定的順序。
4、集合分類
根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個(gè)元素的集合叫做有限集
(3)含有無窮個(gè)元素的集合叫做無限集
注:應(yīng)區(qū)分符號的含義
5、常用數(shù)集及其表示方法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合。記作N
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合。記作Z
(4)有理數(shù)集:全體有理數(shù)的集合。記作Q
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合。記作R
注:
(1)自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
課堂練習(xí):
教材第5頁練習(xí)A、B
小結(jié):
本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)
課后作業(yè):
第十頁習(xí)題1—1B第3題
高一數(shù)學(xué)必修一教案人教版 篇3
一、教材
首先談?wù)勎覍滩牡睦斫?,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨(dú)立思考探索。
三、教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過程與方法
在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀
在猜想論證的過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
四、教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線平行與垂直的'判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過程
下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)必修一教案人教版 篇4
教學(xué)目標(biāo)
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一數(shù)學(xué)必修一教案人教版 篇5
一、說課內(nèi)容:
蘇教版高一年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?
設(shè)計(jì)意圖復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
設(shè)計(jì)意圖通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:
(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。
(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
設(shè)計(jì)意圖這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
設(shè)計(jì)意圖理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識——應(yīng)用數(shù)學(xué)的意識
高一數(shù)學(xué)必修一詳細(xì)教案
時(shí)光飛逝,時(shí)間在慢慢推演,我們的教學(xué)工作又將續(xù)寫新的篇章,讓我們對今后的教學(xué)工作做個(gè)計(jì)劃吧。想必許多人都在為如何寫好教學(xué)計(jì)劃而煩惱吧,以下是小編收集整理的2025新教材高一英語教學(xué)工作計(jì)劃,希望能夠幫助到大家。
高一數(shù)學(xué)必修一詳細(xì)教案 篇1
一、說課內(nèi)容:
蘇教版高一年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?
設(shè)計(jì)意圖復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
設(shè)計(jì)意圖通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:
(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。
(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
設(shè)計(jì)意圖這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
設(shè)計(jì)意圖理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識——應(yīng)用數(shù)學(xué)的意識
高一數(shù)學(xué)必修一詳細(xì)教案 篇2
學(xué)習(xí)目標(biāo):
(1)理解函數(shù)的概念
(2)會(huì)用集合與對應(yīng)語言來刻畫函數(shù),
(3)了解構(gòu)成函數(shù)的要素。
重點(diǎn):
函數(shù)概念的理解
難點(diǎn):
函數(shù)符號y=f(x)的理解
知識梳理:
自學(xué)課本P29—P31,填充以下空格。
1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對于A內(nèi) ,按照確定的對應(yīng)法則f,都有 與它對應(yīng),則這種對應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。
2、對函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。
3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要
。
4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):
① ;② 。
5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a
(1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。
完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。
例題解析
題型一:函數(shù)的概念
例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )
練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。
題型二:相同函數(shù)的判斷問題
例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與
④ 與 其中表示同一函數(shù)的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數(shù)的定義域和值域問題
例3:求函數(shù)f(x)= 的定義域
練習(xí):課本P33練習(xí)A組 4.
例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。
當(dāng)堂檢測
1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的'是( A )
A、 B、
C、 D、
2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個(gè)命題:
① 函數(shù)就是兩個(gè)數(shù)集之間的對應(yīng)關(guān)系;
② 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;
③ 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);
④ 定義域和對應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.
其中正確的有( B )
A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)
4、下列函數(shù)完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )
6、設(shè) ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數(shù) ,求 的值.( )
高一數(shù)學(xué)必修一詳細(xì)教案 篇3
教學(xué)目標(biāo)
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一數(shù)學(xué)必修一詳細(xì)教案 篇4
教學(xué)目標(biāo)與解析
1、教學(xué)目標(biāo)
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
2、目標(biāo)解析
(1)理解函數(shù)的概念就是指能用集合與對應(yīng)的語言刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
問題診斷分析在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
教學(xué)過程
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積S與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個(gè)函數(shù)相等的條件是什么?
高一數(shù)學(xué)必修一詳細(xì)教案 篇5
一、教學(xué)目標(biāo)
1.知識與技能:
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價(jià)值觀:
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。
問題:請根據(jù)某種標(biāo)準(zhǔn)對以上空間物體進(jìn)行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺;
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
①有兩個(gè)面互相平行;
②其余各面都是平行四邊形;
③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。
2、棱錐、棱臺的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺:且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺、球的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結(jié)構(gòu)特征:
(1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。
(2)實(shí)物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
高一數(shù)學(xué)必修一詳細(xì)教案 篇6
一、教學(xué)內(nèi)容與教學(xué)目標(biāo)
本學(xué)期共要學(xué)習(xí)兩本書,即3、4、模塊,每個(gè)模塊共有3個(gè)單元,每個(gè)單元由Welcometotheunit、Reading、WordPower、Grammar&usage、Task、Project和Self—assessment共七個(gè)部分組成。高中英語新課程的總目標(biāo)是使學(xué)生在義務(wù)教育階段英語學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步明確英語學(xué)習(xí)的目的,發(fā)展自主學(xué)習(xí)和合作學(xué)習(xí)的能力;形成有效的英語學(xué)習(xí)策略;培養(yǎng)學(xué)習(xí)的綜合語言運(yùn)用能力。綜合語言運(yùn)用能力的形成建立在語言技能、語言知識、情感態(tài)度、學(xué)習(xí)策略和文化意識等素養(yǎng)整合發(fā)展的基礎(chǔ)上。語言技能和語言知識是綜合語言運(yùn)用能力的基礎(chǔ)。情感態(tài)度是影響學(xué)生學(xué)習(xí)和發(fā)展的重要因素。學(xué)習(xí)策略是提高學(xué)習(xí)效率、發(fā)展自主學(xué)習(xí)能力的先決條件。文化意識則是得體運(yùn)用語言的保障。
二、學(xué)情分析
我本期繼續(xù)擔(dān)任學(xué)校高一146班的英語教學(xué)工作,該班本期60人,男多女少,尤其是調(diào)皮男生較多,課堂上需要花費(fèi)不少精力維持課堂紀(jì)律。學(xué)生英語基礎(chǔ)普遍較差。從上期期末考試情況來看,存在以下三方面問題:
①在思想上、態(tài)度上放松或放棄的現(xiàn)象有所表露,讀,不會(huì)讀,就談不上聽得懂,看得懂,從而導(dǎo)致破罐子破摔的現(xiàn)象。
②基礎(chǔ)知識不夠扎實(shí),靈活運(yùn)用語言的技能非常薄弱。
③運(yùn)用能力不夠強(qiáng)實(shí)。學(xué)生的閱讀能力、理解能力、分析能力、判斷能力、應(yīng)變能力等均不能較好地適應(yīng)考查要求。
如何改進(jìn)我們目前的英語課堂教學(xué),提高課堂教學(xué)質(zhì)量,需要我校高一英語教師的認(rèn)真研究。語言學(xué)習(xí)的關(guān)鍵在于語言知識的積累,只有通過學(xué)習(xí)者親身的體驗(yàn)和摸索,才能學(xué)會(huì)并掌握語言知識,從而達(dá)到在交際中靈活使用語言的目的。
三、課程建議
1、根據(jù)高中學(xué)生學(xué)業(yè)發(fā)展的需求,高中英語課程應(yīng)該著重提高學(xué)生用英語獲取信息、處理信息、分析問題和解決問題的能力,特別注重提高學(xué)生用英語進(jìn)行思維和表達(dá)的能力;形成跨文化交際的意識和基本的`跨文化交際能力;進(jìn)一步拓寬國際視野,增強(qiáng)愛國主義精神和民族使命感,形成健全的情感、態(tài)度、價(jià)值觀,為未來發(fā)展和終身學(xué)習(xí)奠定良好的基礎(chǔ)。
2、高中英語教學(xué)要鼓勵(lì)學(xué)生通過積極嘗試、自我探究、自我發(fā)現(xiàn)和主動(dòng)實(shí)踐等學(xué)習(xí)方式,形成具有高中特點(diǎn)的英語學(xué)習(xí)的過程與方法。
3、優(yōu)化學(xué)習(xí)方式,提高自主學(xué)習(xí)能力?;顒?dòng)設(shè)計(jì)有利于使學(xué)生通過觀察、體驗(yàn)、探究等積極主動(dòng)的學(xué)習(xí)方法,充分發(fā)揮自己的學(xué)習(xí)潛能。
4、課程設(shè)計(jì)有利于學(xué)生學(xué)會(huì)運(yùn)用多種媒體和信息資源,拓寬學(xué)習(xí)渠道,形成具有個(gè)性的學(xué)習(xí)方法和風(fēng)格。
5、關(guān)注學(xué)生情感,提高人文素養(yǎng)。在英語學(xué)習(xí)的過程中,提高獨(dú)立思考和判斷的能力,發(fā)展與人溝通和合作的能力,增進(jìn)跨文化理解和跨文化交際的能力。
6、評價(jià)要有利于學(xué)生的發(fā)展,對學(xué)生的學(xué)習(xí)起到促進(jìn)作用。四、新教材使用建議
根據(jù)新課程改革的精神,教師要善于結(jié)合教學(xué)實(shí)際的需求,靈活地和創(chuàng)造性地使用教材,對教材的內(nèi)容、編排順序和教學(xué)方法等方面進(jìn)行適當(dāng)?shù)娜∩峄蛘{(diào)整。
1、對教材內(nèi)容進(jìn)行適當(dāng)?shù)难a(bǔ)充或刪減。教師在使用教材的過程中,可以根據(jù)需要對教材內(nèi)容進(jìn)行適當(dāng)補(bǔ)充,以使教材的內(nèi)容更加符合學(xué)生的需要和貼近學(xué)生的實(shí)際生活。在對教材適當(dāng)補(bǔ)充時(shí),教師還可以根據(jù)實(shí)際情況對教材內(nèi)容進(jìn)行適當(dāng)?shù)娜∩?。對教材進(jìn)行取舍時(shí),不應(yīng)該影響教材的完整性和系統(tǒng)性。
2、替換教學(xué)內(nèi)容和活動(dòng)。教師可以根據(jù)教學(xué)實(shí)際需要,對教材中不太合適的內(nèi)容或活動(dòng)進(jìn)行替換。例如:某一單元閱讀理解練習(xí)題設(shè)計(jì)得不合理或不適合自己的學(xué)生,則可以用自己設(shè)計(jì)的練習(xí)題進(jìn)行替換。
3、擴(kuò)展教學(xué)內(nèi)容或活動(dòng)步驟。教材中,某些教學(xué)活動(dòng)的過高或過低現(xiàn)象時(shí)有發(fā)生,如果認(rèn)為某些活動(dòng)過難,可以增加幾個(gè)準(zhǔn)備性或提示的步驟,從而降低活動(dòng)的難度;如果活動(dòng)太容易,教師可以對原有的活動(dòng)進(jìn)行延伸,比如:在閱讀理解的基礎(chǔ)上展開討論或辯論、增加詞匯訓(xùn)練或進(jìn)行寫作訓(xùn)練等。
4、調(diào)整教學(xué)順序。根據(jù)學(xué)生的實(shí)際情況對教材內(nèi)容的順序進(jìn)行適當(dāng)?shù)恼{(diào)整有利于提高教學(xué)效果。比如:現(xiàn)實(shí)生活中發(fā)生了某件重要的事情,教材中有一個(gè)內(nèi)容相關(guān)的單元,如果在延續(xù)性和難度等方面沒有太大的問題,就可以提前學(xué)習(xí)這個(gè)單元。把教材內(nèi)容與現(xiàn)實(shí)生活聯(lián)系起來,有利于激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),也有利于提高學(xué)生的學(xué)習(xí)效果。
5、調(diào)整教學(xué)方法。由于客觀條件的差異、學(xué)生現(xiàn)有水平的差異以及教學(xué)實(shí)際情況的差異,有時(shí)教材推薦或建議的教學(xué)方法不一定適合實(shí)際教學(xué)的需要。在這種情況下要注意調(diào)整教學(xué)方法。
五、教學(xué)進(jìn)度
1、第一階段第1—9周M3
2、第10周期中復(fù)習(xí)(統(tǒng)練)
3、第二階段第11——17周M4
4、第18周期末復(fù)習(xí)(檢測)
高一數(shù)學(xué)必修一詳細(xì)教案 篇7
教學(xué)目標(biāo)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
教學(xué)重難點(diǎn)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
教學(xué)過程
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的'夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀測站A.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東。
高一數(shù)學(xué)必修一詳細(xì)教案 篇8
高一上學(xué)期是高中教育的起始階段,教學(xué)就顯得極為重要,為了使學(xué)生圓滿完成各項(xiàng)學(xué)習(xí)任務(wù),盡快適應(yīng)新的環(huán)境,在各方面能夠健康發(fā)展,把英語教學(xué)質(zhì)量上的去,必須有一個(gè)切實(shí)可行的教學(xué)計(jì)劃。具體制定如下:
一、指導(dǎo)思想
以學(xué)校工作計(jì)劃為指導(dǎo)思想,全面貫徹落實(shí)新課程改革和素質(zhì)教育的精神,全體成員將積極主動(dòng)地展開教育研究工作,落實(shí)學(xué)科教育常規(guī),營造良好的教研氛圍,不斷改革課堂教學(xué),探究科學(xué)有效的教學(xué)形成。針對我校高一新生普遍英語底子差,基礎(chǔ)薄的實(shí)際,打算在高一階段的英語教學(xué)中,本著低起點(diǎn),爬坡走,抓習(xí)慣的原則,長期不懈地抓好學(xué)生學(xué)習(xí)英語興趣和習(xí)慣的形式。
二、所教班級基本情況
本學(xué)期我擔(dān)任高一(13)、(14)班的英語教學(xué),這三個(gè)班都是普通班班,經(jīng)過初中階段的教學(xué),學(xué)生具有一定的基礎(chǔ),但是整體水平較差,單詞記憶不理想,語法基礎(chǔ)更為薄弱,聽說讀寫的基本能力也需要進(jìn)一步提高。學(xué)生類別較多,既有普通文化課生,又有美術(shù)特長生,音樂和體育特長生。學(xué)生構(gòu)成來源復(fù)雜,大多數(shù)來自農(nóng)村,普遍英語底子差,基礎(chǔ)薄弱,英語教學(xué)必須分層分類要求,漸序前進(jìn),打好基礎(chǔ)。
三、教學(xué)內(nèi)容
高一必修一、二共十個(gè)單元。上學(xué)期的教學(xué)任務(wù)是完成必修一至必修二的第三單元的教學(xué)。
具體安排:對于十個(gè)單元,每一單元至少用9課時(shí),課本教學(xué)擬按照如下模式進(jìn)行:
1、引入和熱身需要1課時(shí);
2、閱讀兩篇文章及處理語言點(diǎn)共需要3課時(shí);
3、聽力(含檢查訓(xùn)練)1課時(shí);
4、寫作1課時(shí);
5、語法1課時(shí)
6、單元檢測2課時(shí)。
四、主要教學(xué)工作
1、全面做好初高銜接工作。
高中學(xué)段和初中學(xué)段在教學(xué)對象,教學(xué)內(nèi)容,教學(xué)要求,教學(xué)方式和學(xué)習(xí)方式方面均存在著一定差異。因此,幫助高中學(xué)生了解這些差異,引導(dǎo)他們盡快適應(yīng)高中的學(xué)習(xí)與生活。是在新學(xué)期高一教師面前的迫在眉睫的任務(wù)。為了使學(xué)生打牢基礎(chǔ)不至于出現(xiàn)知識斷層,在開新課之前,用一周左右的時(shí)間搞好初高中之間的銜接,為高一英語教學(xué)計(jì)劃順利實(shí)施,并開好新課做好準(zhǔn)備。
時(shí)間安排:1周左右
課時(shí)安排:
第一課時(shí):音標(biāo)。目的是培養(yǎng)學(xué)生的拼讀單詞和自學(xué)單詞的習(xí)慣能力。
第二課時(shí):詞類與句子成分。奠定語法基礎(chǔ)。構(gòu)建師生共同知識基礎(chǔ),利于后續(xù)教學(xué)的開展。
第三課時(shí):語法線索:整體梳理初中所學(xué)語法現(xiàn)象。
第四課時(shí):教材編排特點(diǎn)分析、學(xué)習(xí)要求和學(xué)習(xí)方法指導(dǎo)。
第五課時(shí):測驗(yàn)學(xué)生的口語、閱讀、寫作等內(nèi)容,初步了解學(xué)生的`英語水平。
2、認(rèn)真研究新課程標(biāo)準(zhǔn),認(rèn)真鉆研新教材,在集體備課的基礎(chǔ)上認(rèn)真?zhèn)浜谜n、上好課,認(rèn)真自習(xí)輔導(dǎo)和批改作業(yè)。
3、單詞是學(xué)生的難點(diǎn),薄弱點(diǎn),直接影響綜合能力的提高,在教學(xué)中要重視詞匯教學(xué),狠抓單詞的記憶與鞏固以及對詞匯的意義與用法的掌握。使學(xué)生掌握科學(xué)的單詞記憶方法和養(yǎng)成勤查字典的習(xí)慣。要求早讀或晚讀時(shí)間由朗讀較好的學(xué)生帶讀,每個(gè)單元的單詞都要進(jìn)行聽寫,以督促學(xué)生的自覺性。
4、為了提高學(xué)生的聽說水平,從高一就開始對學(xué)生進(jìn)行聽說訓(xùn)練。除了利用上課時(shí)間外,還要求堅(jiān)持每周利用課余時(shí)間給學(xué)生聽錄音。
5、堅(jiān)持每兩周一次作文訓(xùn)練,訓(xùn)練題材、方法力求多樣化,并能及時(shí)進(jìn)行講評。鼓勵(lì)學(xué)生寫英語日記,對個(gè)別較差的學(xué)生盡量多批改,多指導(dǎo)。
6、閱讀理解能力的培養(yǎng)是高中教學(xué)的重點(diǎn),也是高考的重頭戲。在單元教學(xué)中專門抽出一節(jié)作為閱讀課,并且有計(jì)劃的指導(dǎo)學(xué)生掌握科學(xué)的閱讀方法。
7、集體備課是提高教學(xué)質(zhì)量和整體教學(xué)水平的有力保證,有利于經(jīng)驗(yàn)豐富的教師與年輕教師互為補(bǔ)充,共同提高。因此集中集體辦公有利于教師之間的溝通、學(xué)習(xí)、研究。
8、加強(qiáng)聽評課。聽課、評課,取長補(bǔ)短。教師教學(xué)各有風(fēng)格,教師間應(yīng)互相聽課,可以聽本校的,也可以外校聽課,做到取人之長,補(bǔ)己之短,共同提高。
9、開展英語課外活動(dòng),提高學(xué)習(xí)興趣:
1)開展英語課外活動(dòng):如開展英語口語(講演)競賽、書法比賽、寫作比賽、英語朗誦比賽、英語歌詠比賽、英文歌曲比賽等,以促進(jìn)教學(xué)。
2)利用現(xiàn)代化教學(xué)媒體創(chuàng)設(shè)語言環(huán)境。如利用飯前、飯后時(shí)間讓學(xué)生收聽英語錄音,利用周末時(shí)間讓學(xué)生觀看經(jīng)典的英文影片等。
高一數(shù)學(xué)函數(shù)教案4
第三課時(shí)(2.1,2.2)
教學(xué)目的:1.初步掌握分段函數(shù)與簡單的復(fù)合函數(shù),會(huì)求它們的解析式,定義域,值域.
2.會(huì)畫函數(shù)的圖象,掌握數(shù)形結(jié)合思想,分類討論思想.
重點(diǎn)難點(diǎn):分段函數(shù)的概念及其圖象的畫法.
教學(xué)過程:
一、復(fù)習(xí)函數(shù)的概念,函數(shù)的表示法
二、例題
例1.已知.求f(f(f(-1)))
(從里往外“拆”)
例2.已知f(x)=x2-1g(x)=求f[g(x)]
(介紹復(fù)合函數(shù)的概念)
例3.若函數(shù)的定義域?yàn)閇-1,1],求函數(shù)的定義域。
例3.作出函數(shù)的圖像
(先化為分段函數(shù),再作圖象)
例5.作函數(shù)y=|x-2|(x+1)的圖像.
(先化為分段函數(shù),再作圖象.圖象見課件第一頁)
例6.作出函數(shù)的圖象
(用列表法先作第一象限的圖象,再根據(jù)對稱性作第三象限的圖象.圖象見課件第二頁,進(jìn)一步介紹函數(shù)的圖象,見課件第三頁)
三、課堂練習(xí)課本P56習(xí)題2.13,6
四、作業(yè)課本P56習(xí)題2.14,5,《精析精練》P65智能達(dá)標(biāo)訓(xùn)練
高一數(shù)學(xué)教案必修一數(shù)學(xué)知識網(wǎng)絡(luò)詳細(xì)
高一數(shù)學(xué)必修1知識網(wǎng)絡(luò)
集合
函數(shù)
附:
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對數(shù)的真數(shù)大于零;4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)中;余切函數(shù)中;6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若均為某區(qū)間上的增(減)函數(shù),則在這個(gè)區(qū)間上也為增(減)函數(shù)
2、若為增(減)函數(shù),則為減(增)函數(shù)
3、若與的單調(diào)性相同,則是增函數(shù);若與的單調(diào)性不同,則是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個(gè)奇函數(shù)在處有定義,則,如果一個(gè)函數(shù)既是奇函數(shù)又是偶函數(shù),則(反之不成立)
2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。
4、兩個(gè)函數(shù)和復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)的定義域關(guān)于原點(diǎn)對稱,則可以表示為,該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。
表1指數(shù)函數(shù)對數(shù)數(shù)函數(shù)
定義域
值域
圖象
性質(zhì)過定點(diǎn)過定點(diǎn)
減函數(shù)增函數(shù)減函數(shù)增函數(shù)
表2冪函數(shù)
奇函數(shù)
偶函數(shù)
第一象限性質(zhì)減函數(shù)增函數(shù)過定點(diǎn)