小學減法的教案
發(fā)表時間:2020-10-19有理數的加減法。
一般給學生們上課之前,老師就早早地準備好了教案課件,大家應該要寫教案課件了。用心制定好教案課件的工作計劃,才能更好的在接下來的工作輕裝上陣!有哪些好的范文適合教案課件的?下面是小編為大家整理的“有理數的加減法”,歡迎您閱讀和收藏,并分享給身邊的朋友!
有理數的加減法(1)
一、學什么
1.探索有理數加法法則,理解有理數的加法法則
2.能熟練進行整數加法運算3.初步的分類思想
二、怎樣學
(一)有理數加法的探索
1.汽車在公路上行駛,規(guī)定向東為正,向西為負,據下列情況,分別列算式,并回答:汽車兩次運動后方向怎樣?離出發(fā)點多遠?
(1)向東行駛5千米后,又向東行駛2千米,
(2)向西行駛5千米后,又向西行駛2千米,
(3)向東行駛5千米后,又向西行駛2千米,
(4)向西行駛5千米后,又向東行駛2千米,
(5)向東行駛5千米后,又向西行駛5千米,
(6)向西行駛5千米后,靜止不動,
2.探索:兩個有理數相加,和的符號及絕對值怎樣確定?你能找到有理數相加的一般方法嗎?說一說:兩個有理數相加有多少種不同的情形?
議一議:在各種情形下,如何進行有理數的加法運算?
3.歸納:有理數加法法則:
①同號兩數相加,取相同的符號,并把絕對值相加.
②異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值.
③一個數與0相加,仍得這個數.
例1.計算
(1)(+8)+(+5)(2)(-8)+(-5)(3)(+8)+(-5)
(4)(-8)+(+5)(5)(-8)+(+8)(6)(+8)+0;
三、學怎樣:
計算:
(1)(+21)+(-31)(2)(-3.125)+(+3)(3)(-)+(+)
(4)(-3)+0.3(5)(-22)+0(6)│-7│+│-9│
有理數的加減法(2)
一、學什么:
1.使學生理解并掌握有理數的加法運算律。
2.能熟練運用有理數的加法運算律進行簡化計算。
3.通過操作、演算、討論等數學活動,增強學生自主探索、合作交流的意識。
二、怎么學:
1.在小學里我們知道,數的加法滿足交換律例如有7+8=8+7,還滿足結合律,例如有(7+8)+92=7+(8+92),引進了負數后這些運算律是否還成立呢?先計算下列各題:
(1)(-8)+(-9)和(-9)+(-8)
(2)4+(-7)和(-7)+4
(3)〔2+(-3)〕+(-8)和2+〔(-3)+(-8)〕
(4)10+〔(-10)+(-5)〕和〔10+(-10)〕+(-5)
小學已經學過的加法交換律與結合律在有理數范圍內
有理數的加法交換律、結合律(用字母表示)
例1(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+(-1.5)+3.6
(3)16+(-27)+(-56)+(+57)
思考:簡化加法運算一般方法:
三、學怎樣:
1.計算:(要求注理由)
(1)23+(-17)+6+(-22);(2)(-8)+10+2+(-2);(3)(-4)+(-3)+4+3
(4)(-8)+10+2+(-1)(5)5+(-6)+3+9+(-4)+(-7)
2.利用有理數的加法解下列各題
(1)飛機的飛行高度是1000米,上升300米,又下降500米,這時飛行高度是多少?
(2)存折中有450元,取出80元,又存入150元以后,存折中還有多少錢?
有理數的加減法(3)
一、學什么:
1。有理數加法的法則:
2.有理數加法運算律:交換律:
結合律:
二、怎樣學:有理數加法運算律的應用
例1計算
(1)(-11)+8+(-14)(2)
(3)0.35+(-0.6)+0.25+(-5.4)(4)
三、拓展延伸
1.10筐蘋果,以每筐30千克為準,超過的千克數記作正數,不足的千克數記作負數,記錄如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.
問:(1)10筐蘋果共超過(不足)多少千克?
(2)10筐蘋果共重多少千克?
2.農市場里一名攤販一周中每天的盈、虧情況(盈余為正,單位:元)如下:128.5,-25.6,-15,27,-7,36.3,97,該攤販一周內總的盈虧情況如何?
2.絕對值小于5的所有負整數的和為
3.已知是最小的正整數,是的相反數,的絕對值為3,則++=
4.某天股票A的開盤價是18元,上午11:30跌1.5元,下午收盤時又漲0.3元,則股票A這天的收盤價是元.
5.如果a0,則︱a︱+a=
二、計算
(1)(2)(-9)+4+(-5)+8;
(3)(-36.35)+(-7.25)+26.35+(+7)(4)
(5)(6)(-)+(+)+(+)+(-1)
三、解答題
1.倉庫內原存某種原料4500千克,一周內存入和領出情況如下(存入為正,單位:千克):
1500,-300,-670,400,-1700,-200,-250.問:第7天末倉庫內還存有這種原料多少千克?
2.某種袋裝奶粉標明凈含量為400g,檢查其中8袋,記錄如下表:
編號12345678
差值/g-4.5+50+500+2-5
請問這8袋被檢奶粉的總凈含量是多少?
3.一只電子跳騷從數軸上的原點出發(fā),第一次向右跳1個單位,第二次向左跳2個單位,第三次向右跳3個單位,第四次向左跳4個單位,…,按這樣的規(guī)律跳100次,跳騷到原點的距離是多少?
4.某出租車沿公路左右行駛,向左為正,向右為負,某天從A地出發(fā)后到收工回家所走的路線如下:(單位:千米)
⑴問收工時離出發(fā)點A多少千米?
⑵若該出租車每千米耗油0.3升,問從A地出發(fā)到收工共耗油多少升?
5.已知的相反數為-5,試求++(-)
有理數的加減法(6)綜合練習
一、填空題
1、數1.7,-17,0,,-0.001,-,2003和-1中,負數有個,其中負整數有,負分數有,非負整數有_____.
2、股民李金上星期六買進某公司的股票,每股27元,下表為本周內該股票的漲跌情況
星期一二三四五六
每股漲跌(單位:元)
(與前一天相比)-1.5-1+6.5+3.5+1-4
星期三收盤時.每股是元;本周內最高價是每股元;最低價是每股
元。
3、把(+4)-(-6)-(+8)+(-9)寫成省略加號的和的形式為。4、學校氣象小組觀測一周的溫度并記錄如下:
星期一二三四五六日周平均氣溫
氣溫℃-3-101-25
1
記錄表中星期日的氣溫記錄不小心被墨水涂掉,請你根據表中的數據寫出星期日的氣溫為℃。
5、用“”、“”、“=”號填空
(1);(2);
(3);(4)若a0,則a
6、寫出大于—4且小于3的所有整數為______________;
7、若有理數在數軸上對應的點的位置如圖,則的符號為_________.(填:正、負)
8、把下列各數填入相應的括號內:
-2.5,10,0.22,0,-,-20,+9.78,+68,π,+。
正整數{…}
負整數{…}
正分數{…}
負分數{…}
9、觀察下面的一列數,按某種規(guī)律在橫線上填上適當的數:,__,
二.選擇題
10.下列計算中,錯誤的是()
A、(+)+(-)=-B、(-)+(+)=-
C、(-)+(-)=-D、(+)+(-)=0
11.一個數的相反數比它的本身大,則這個數是()
A.正數B.負數C.0D.負數和0
7、兩個數的和為正數,那么這兩個數是()
A.正數B.負數C.一正一負D.至少一個為正數
12.下列說法正確的是()
A.數軸上表示4的點與表示6的點之間的距離是10
B.數軸上表示的點與表示的點之間的距離為
C.數軸上表示的點與表示的點之間的距離是10
D.數軸上表示的點與原點之間的距離是
三.計算與化簡.
(1)(2)
(3)—26+43—24+13—46(4)—21—12+33+12—67
(5)(6)
四、解答題
1.—2,-1,0,1,2,3,4,5,6這9個數分別填入下圖方陣的9個空格中,使得橫、豎、斜對角的3個數相加的和為6.
2.食品廠從生產的袋裝食品中抽出樣品20袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數來表示,記錄如下表:
與標準質量的差值(單位:克)-5-20136
袋數143453
(1)這批樣品的平均質量比標準質量多還是少?用你學過的方法合理解釋;
(2)若標準質量為450克,則抽樣檢測的總質量是多少?
3.某檢修小組乘坐一輛汽車沿一直的公路檢修線路,約定前進為正,后退為負,他們從出發(fā)到收工返回時,走過的路程記錄如下(單位:千米)
+8,-3,+12,-1,-6,+4,-7
那么收工時他們距離出發(fā)地有多遠?是前進還是后退了?
相關推薦
《有理數和加減法》教案
學生們有一個生動有趣的課堂,離不開老師辛苦準備的教案,大家開始動筆寫自己的教案課件了。用心制定好教案課件的工作計劃,才能更好地安排接下來的工作!你們會寫教案課件的范文嗎?請您閱讀小編輯為您編輯整理的《《有理數和加減法》教案》,歡迎大家閱讀,希望對大家有所幫助。
《有理數和加減法》教案
教案是教師對一節(jié)課的整體設想,創(chuàng)造性的教學設計,嚴謹、科學、有序的教學策略,能夠有效的提高教學效率。因此,編輯老師為各位老師準備了這篇七年級上冊數學一單元教案,希望可以幫助到您!
教學目標
1.理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算;
2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養(yǎng)學生的運算能力.
3.通過揭示有理數的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想.
教學建議
(一)重點、難點分析
本節(jié)重點是運用有理數的減法法則熟練進行減法運算。解有理數減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據有理數加法法則確定所求結果的符號和絕對值.理解有理數的減法法則是難點,突破的關鍵是轉化,變減為加.學習中要注意體會:小學遇到的小數減大數不會減的問題解決了,小數減大數的差是負數,在有理數范圍內,減法總可以實施.
(二)知識結構
(三)教法建議
1.教師指導學生閱讀教材后強調指出:由于把減數變?yōu)樗南喾磾?,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統(tǒng)一用加法來解決.
2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的.
3.因為任何減法運算都可以統(tǒng)一成加法運算,所以我們沒有必要再規(guī)定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶.
4.注意引入負數后,小的數減去大的數就可以進行了,其差可用負數表示。
秋高氣爽、瓜果飄香,在這個收獲的季節(jié),我們又迎來了一個充滿希望的新學期。因此,編輯老師為各位老師準備了這篇2015初一上冊數學第一單元教案,希望可以幫助到您!
教學目標
1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行有理數的除法運算;
2.了解倒數概念,會求給定有理數的倒數;
3.通過將除法運算轉化為乘法運算,培養(yǎng)學生的轉化的思想;通過有理數的除法運算,培養(yǎng)學生的運算能力。
教學建議
(一)重點、難點分析
本節(jié)教學的重點是熟練進行有理數的除法運算,教學難點是理解有理數的除法法則。
1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統(tǒng)一程序:一確定符號;二計算絕對值。
2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。
在有整除的情況下,應用第二個法則比較方便
在能整除的情況下,應用第二個法則比較方便。
教法建議
1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。
2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。
3.理解倒數的概念
(1)根據定義乘積為1的兩個數互為倒數。
(2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。
(3)倒數與相反數這兩個概念很容易混淆。要注意區(qū)分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。
4.關于倒數的求法要注意:
(1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.
(2)正數的倒數是正數,負數的倒數仍是負數.
(3)負倒數的定義:乘積是-1的兩個數互為負倒數.
課題:有理數的加減法(3)――減法
每個老師上課需要準備的東西是教案課件,規(guī)劃教案課件的時刻悄悄來臨了。此時就可以對教案課件的工作做個簡單的計劃,才能規(guī)范的完成工作!有沒有出色的范文是關于教案課件的?下面是由小編為大家整理的“課題:有理數的加減法(3)――減法”,歡迎您閱讀和收藏,并分享給身邊的朋友!
課題:有理數的加減法(3)――減法教學目標:
1.知識與技能:探索有理數減法法則,理解法則的合理性,能準確熟練地進行減法的運算。
2過程和方法:經歷有理數減法法則的探索,體驗減法到加法到的轉化。
3.情感、態(tài)度與價值觀通過減法到加法的轉化,滲透普遍聯(lián)系觀點和發(fā)展變化的觀點
教學重點:探索有理數減法法則,能準確熟練地進行減法的運算。
教學難點:準確熟練地進行減法的運算。
教學過程
一、課前預習問題:每天的最高氣溫與最低氣溫的差叫做日溫差。
如果某天最高氣溫是5℃,最低氣溫是-3℃,那么這天該地的日溫差是[5-(-3)]℃,其結果是多少呢?方法1:用溫度計觀察,其相差8格,則5-(-3)=8方法2:利用加法是減法的逆運算得:∵8+(-3)=5,∴5-(-3)=8顯然,兩種方法都比較繁。那么,有沒有更簡便的做法呢?二、自主探索
減號變加號
由上述分析可見,5-(-3)=8而我們知道:5+3=8?!?-(-3)=5+3減數變相反數上述過程告訴我們:有理數減法(subtraction)法則:
減去一個數,等于加上這個數的相反數。
即:a-b=a+(-b)
例1、填空(1)(-3)-5=(-3)+____(2)3-(-5)=3+____(3)3-5=3+____(4)(-3)-(-5)=(-3)+____例2、計算:1、0-(-22)2、8.5-(-1.5)
3、(+4)-164、(-)-
例3、根據天氣預報圖求圖中各城市的日溫差:呼和浩特:-4~4℃,北京0~8℃,天津-2~9℃,揚州1~10℃,長春-14~-5℃。
例4.|x|=3,|y|=4,求x-y的值
三.學習小結
這節(jié)課你學會了什么?
四、隨堂練習
A類1、計算:
(1)0-3(2)-5-8
(3)2.5-(-3.5)(4)8-12
(5)-5-9+3(6)10-17+8
(7)-8+12-16-23(8)-16-57+48+12-78
(9)8.26+8.74-111-29.3(10)-+(-)-(-)-
2、下列說法正確的是()A、兩數相減,被減數一定比差大
B、有理數的減法法則可用式子表達為a-b=a+(-b)C、有理數的減法和加法一樣,可運用交換律
D、如果a-b的結果為正數,那么a一定是正數。
B類3、使等式|x-7|=|x|+|-7|成立的有理數x是()A、任意一個正數B、任意一個非正數C、任意一個小于7的有理數D、任意一個有理數。4、若|a|=3,|b|=2,且ab,則a-b=_____5、算24點,請將下列各數適當添加運算符號,使之得出24。(1)-4,3,8,1(2)-3,-1,1,8
6、下表列出了國外幾個城市與北京的時差(帶正號的數表示同一時刻比北京時間早的時數)(1)如果現在北京的時間是7∶00,那么現在紐約的時間是多少?
城市
時差/時
紐約
-13
巴黎
-7
東京
+1
(2)小明現在想給遠在巴黎的姑媽打電話,你認為合適嗎?
板書設計
教后感
有理數的加減法4份導學案
每個老師不可缺少的課件是教案課件,大家在認真寫教案課件了。只有寫好教案課件計劃,可以更好完成工作任務!有哪些好的范文適合教案課件的?以下是小編為大家精心整理的“有理數的加減法4份導學案”,希望能為您提供更多的參考。
課題:1.3.1有理數的加法(1)
【學習目標】:
1、理解有理數加法意義,掌握有理數加法法則,會正確進行有理數加法運算;
2、會利用有理數加法運算解決簡單的實際問題;
【學習重點】:有理數加法法則
【學習難點】:異號兩數相加
【導學指導】
一、知識鏈接
1、正有理數及0的加法運算,小學已經學過,然而實際問題中做加法運算的數有可能超出正數范圍。例如,足球循環(huán)賽中,可以把進球數記為正數,失球數記為負數,它們的和叫做凈勝球數。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球。
于是紅隊的凈勝球數為4+(-2),
藍隊的凈勝球數為1+(-1)。
這里用到正數和負數的加法。那么,怎樣計算4+(-2)
下面我們一起借助數軸來討論有理數的加法。
二、自主探究
1、借助數軸來討論有理數的加法
1)如果規(guī)定向東為正,向西為負,那么一個人向東走4米,再向東走2米,兩次共向東走了米,這個問題用算式表示就是:
2)如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走4米,兩
次共向西走多少米?很明顯,兩次共向西走了米。
這個問題用算式表示就是:
如圖所示:
3)如果向西走2米,再向東走4米,那么兩次運動后,這個人從起點向東走了米,寫成算式就是這個問題用數軸表示如下圖所示:
4)利用數軸,求以下情況時這個人兩次運動的結果:
①先向東走3米,再向西走5米,這個人從起點向()走了()米;
②先向東走5米,再向西走5米,這個人從起點向()走了()米;
③先向西走5米,再向東走5米,這個人從起點向()走了()米。
寫出這三種情況運動結果的算式
5)如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人
從起點向東(或向西)運動了米。寫成算式就是
2、師生歸納兩個有理數相加的幾種情況。
3.你能從以上幾個算式中發(fā)現有理數加法的運算法則嗎?
有理數加法法則
(1)同號的兩數相加,取的符號,并把相加。
(2)絕對值不相等的異號兩數相加,取的加數的符號,并用較大的絕對值較小的絕對值.互為相反數的兩個數相加得;
(3)一個數同0相加,仍得。
4.新知應用
例1計算(自己動動手吧?。?br>
(1)(-3)+(-9);(2)(-4.7)+3.9.
例2(自己獨立完成)
【課堂練習】:
1.填空:(口答)
(1)(-4)+(-6)=;(2)3+(-8)=;
(4)7+(-7)=;(4)(-9)+1=;
(5)(-6)+0=;(6)0+(-3)=;
2.課本P18第1、2題
【要點歸納】:
有理數加法法則:
【拓展訓練】:
1.判斷題:
(1)兩個負數的和一定是負數;
(2)絕對值相等的兩個數的和等于零;
(3)若兩個有理數相加時的和為負數,這兩個有理數一定都是負數;
(4)若兩個有理數相加時的和為正數,這兩個有理數一定都是正數。
2.已知│a│=8,│b│=2;
(1)當a、b同號時,求a+b的值;
(2)當a、b異號時,求a+b的值。
【總結反思】: