簡單的教案小學(xué)
發(fā)表時(shí)間:2020-09-22高一數(shù)學(xué)簡單組合體的三視圖教案。
空間幾何體的三視
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀
(1)提高學(xué)生空間想象力
(2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫出簡單組合體的三視圖
難點(diǎn):識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比
2.教學(xué)用具:多媒體課件、實(shí)物模型
四、教學(xué)基本流程
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖)。
(二)給出三視圖的定義
1、從幾何體的前面向后面正投影,得到的投影圖稱為幾何體的正視圖(主視圖)。
2、從幾何體的左面向右面正投影,得到的投影圖稱為幾何體的側(cè)視圖(左視圖)。
3、從幾何體的上面向下面正投影,得到的投影圖稱為幾何體的俯視圖。
(三)通過多媒體課件展示長方體的三視圖,并給出三視圖之間的投影規(guī)律。
雖然在畫三視圖時(shí)取消了投影軸和投影間的連線,但三視圖間的投影規(guī)律和相對位置關(guān)系仍應(yīng)保持。三視圖的位置關(guān)系為:俯視圖在主視圖的下方、左視圖在主視圖的右方。按照這種位置配置視圖時(shí),國家標(biāo)準(zhǔn)規(guī)定一律不標(biāo)注視圖的名稱。對應(yīng)上圖還可以看出:
主視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
左視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
由此可得出三視圖之間的投影規(guī)律為:主、俯視圖——長對正;主、左視圖——高平齊;俯、左視圖——寬相等
(四)基本幾何體的三視圖
1、球的三視圖
2、圓柱的三視圖
3、圓錐的三視圖
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
(五)簡單組合體的三視圖
桌面上擺放幾個(gè)簡單組合體,請學(xué)生畫出它們的三視圖
畫組合體的三視圖的步驟:應(yīng)認(rèn)清組合體的結(jié)構(gòu),把組合體分解成幾個(gè)簡單的基本幾何體,再按簡單幾何體畫三視圖。
(六)三視圖與幾何體之間的相互轉(zhuǎn)化。
1.投影出示圖片(課本P15,圖1.2-6)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
圓臺
2.請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
四棱柱
3.三視圖對于認(rèn)識空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.思考:若只給出一組正,側(cè)視圖,那么它還可能是什么幾何體?
正四棱臺
三棱臺
(七)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖:
三視圖之間的投影規(guī)律:
正視圖與俯視圖------長對正
正視圖與側(cè)視圖------高平齊
俯視圖與側(cè)視圖------寬相等
畫幾何體的三視圖時(shí),能看得見的輪廓線或棱用實(shí)線表示,不能看得見的輪廓線或棱用虛線表示。
(八)課后作業(yè)
課本P22習(xí)題1.2A組1、2
相關(guān)知識
高一數(shù)學(xué)下冊《空間幾何體的三視圖和直觀圖》知識點(diǎn)人教版
一名愛崗敬業(yè)的教師要充分考慮學(xué)生的理解性,高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓學(xué)生更好的消化課堂內(nèi)容,幫助高中教師掌握上課時(shí)的教學(xué)節(jié)奏。高中教案的內(nèi)容要寫些什么更好呢?小編特地為大家精心收集和整理了“高一數(shù)學(xué)下冊《空間幾何體的三視圖和直觀圖》知識點(diǎn)人教版”,僅供參考,歡迎大家閱讀。
高一數(shù)學(xué)下冊《空間幾何體的三視圖和直觀圖》知識點(diǎn)人教版
1.多面體的結(jié)構(gòu)特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
(3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。
三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>
(2)畫幾何體的高
在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
高一數(shù)學(xué)橢圓的簡單幾何性質(zhì)
一位優(yōu)秀的教師不打無準(zhǔn)備之仗,會(huì)提前做好準(zhǔn)備,高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓學(xué)生們有一個(gè)良好的課堂環(huán)境,減輕高中教師們在教學(xué)時(shí)的教學(xué)壓力。寫好一份優(yōu)質(zhì)的高中教案要怎么做呢?以下是小編為大家精心整理的“高一數(shù)學(xué)橢圓的簡單幾何性質(zhì)”,僅供參考,歡迎大家閱讀。
學(xué)習(xí)重點(diǎn):1.掌握橢圓的定義、方程及標(biāo)準(zhǔn)方程的推導(dǎo);
2.掌握焦點(diǎn)、焦點(diǎn)位置與方程關(guān)系、焦距。
學(xué)習(xí)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。
一課前自主預(yù)習(xí)
1.如果平面內(nèi)的動(dòng)點(diǎn)P與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|),那么動(dòng)點(diǎn)的軌跡是_________.橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離的和為_________.
2.橢圓的標(biāo)準(zhǔn)方程是___________________________,其中分母的大小決定了焦點(diǎn)所在的_________.
3.橢圓(ab0)中,其對稱軸為_________,對稱中心為_________,x的取值范圍是_________,y的取值范圍是_________.
4.橢圓(ab0)的長軸長為_________,短軸長為_________.
二例題講解
例1.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-4,0),(4,0),橢圓上一點(diǎn)P到兩焦點(diǎn)距離之和等于10;
(2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-2)、(0,2),并且橢圓經(jīng)過點(diǎn).
例2已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,并且橢圓經(jīng)過點(diǎn)P1(,1)、P2(-,-),試求橢圓的方程.
例3.已知A、B兩點(diǎn)的坐標(biāo)分別為(0,-5)和(0,5),直線MA與MB的斜率之積為,求M的軌跡方程
三課堂練習(xí)
1.下列各組兩個(gè)橢圓中,其焦點(diǎn)相同的是()
2方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是()
A.-16m25B.C.D.
3.在橢圓的標(biāo)準(zhǔn)方程中,a=6,b=,則橢圓的標(biāo)準(zhǔn)方程是()
A.=1B.=1C.=1D.以上都不對
4.橢圓4x2+9y2=1的焦點(diǎn)坐標(biāo)是()
A.(±,0)B.(0,±)C.(±,0)D.(±,0)
5.已知橢圓的長軸長為20,橢圓的短軸長為16,則橢圓上的點(diǎn)到橢圓中心距離的取值范圍是()
A.[6,10]B.[6,8]C.[8,10]D.[16,20]
6.已知橢圓過點(diǎn)P(,-4)和Q(-,3),則橢圓的標(biāo)準(zhǔn)方程是_________.
7.已知橢圓短軸的一個(gè)端點(diǎn)為B,F1、F2是橢圓的兩個(gè)焦點(diǎn),且△BF1F2是周長為18的正三角形,則橢圓的標(biāo)準(zhǔn)方程為_________________.
8.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)a=,b=1,焦點(diǎn)在x軸上;(2)焦點(diǎn)為F1(0,-3),F2(0,3),且a=5
(3)兩個(gè)焦點(diǎn)分別是F1(-2,0)、F2(2,0),且過P(2,3)點(diǎn)
(4)經(jīng)過點(diǎn)P(-2,0)和Q(0,-3);(5)a+b=10,c=。
(參考答案):課前自主預(yù)習(xí)1.橢圓常數(shù)2.或(ab0)坐標(biāo)軸
3.x軸、y軸原點(diǎn)-a≤x≤a-b≤y≤b4.2a2b
課堂練習(xí)DBDCC6x2+=17.+=1或+=1
高一數(shù)學(xué)簡單旋轉(zhuǎn)體教案
第一章:立體幾何初步
1.1簡單旋轉(zhuǎn)體
一、教學(xué)目標(biāo)
1.知識與技能
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會(huì)用語言概述球、圓柱、圓錐、圓臺、棱柱、棱錐、棱臺的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出球、柱、錐、臺的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價(jià)值觀
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出球、柱、錐、臺的結(jié)構(gòu)特征。
難點(diǎn):球、柱、錐、臺的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評價(jià)。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有球、柱、錐、臺結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3.課本P7,習(xí)題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
六、布置作業(yè)
課外練習(xí)課本P6B組題
高一數(shù)學(xué)教案:《函數(shù)的簡單性質(zhì)》教學(xué)設(shè)計(jì)(三)
高一數(shù)學(xué)教案:《函數(shù)的簡單性質(zhì)》教學(xué)設(shè)計(jì)(三)
教學(xué)目標(biāo):
1.進(jìn)一步認(rèn)識函數(shù)的性質(zhì),從形與數(shù)兩個(gè)方面引導(dǎo)學(xué)生理解掌握函數(shù)奇偶性的概念,能準(zhǔn)確地判斷所給函數(shù)的奇偶性;
2.通過函數(shù)的奇偶性概念的教學(xué),揭示函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,培養(yǎng)學(xué)生從特殊到一般的概括能力,并滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法;
3.引導(dǎo)學(xué)生從生活中的對稱聯(lián)想到數(shù)學(xué)中的對稱,師生共同探討、研究,從代數(shù)的角度給予嚴(yán)密的代數(shù)形式表達(dá)、推理,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、認(rèn)真、科學(xué)的探究精神.
教學(xué)重點(diǎn):
函數(shù)奇偶性的概念及函數(shù)奇偶性的判斷.
教學(xué)難點(diǎn):
函數(shù)奇偶性的概念的理解與證明.
教學(xué)過程:
一、問題情境
1.情境.
復(fù)習(xí)函數(shù)的單調(diào)性的概念及運(yùn)用.
教師小結(jié):函數(shù)的單調(diào)性從代數(shù)的角度嚴(yán)謹(jǐn)?shù)乜坍嬃撕瘮?shù)的圖象在某范圍內(nèi)的變化情況,便于我們正確地畫出相關(guān)函數(shù)的圖象,以便我們進(jìn)一步地從整體的角度,直觀而又形象地反映出函數(shù)的性質(zhì).在畫函數(shù)的圖象的時(shí)候,我們有時(shí)還要注意一個(gè)問題,就是對稱(見P41).
2.問題.
MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0
觀察函數(shù)y=x2和y=x(1)(x≠0)的圖象,從對稱的角度你發(fā)現(xiàn)了什么?
二、學(xué)生活動(dòng)
1.畫出函數(shù)y=x2和y=x(1)(x≠0)的圖象
2.利用折紙的方法驗(yàn)證函數(shù)y=x2圖象的對稱性
3.理解函數(shù)奇偶性的概念及性質(zhì).
三、數(shù)學(xué)建構(gòu)
1.奇、偶函數(shù)的定義:
一般地,如果對于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=f(x),那么稱函數(shù)y=f(x)是偶函數(shù);
如果對于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=-f(x),那么稱函數(shù)y=f(x)是奇函數(shù);
2.函數(shù)的奇偶性:
如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),我們就說函數(shù)f(x)具有奇偶性,而如果一個(gè)函數(shù)既不是奇函數(shù),也不是偶函數(shù)(常說該函數(shù)是非奇非偶函數(shù)),則說該函數(shù)不具有奇偶性.
3.奇、偶函數(shù)的性質(zhì):
偶函數(shù)的圖象關(guān)于y軸對稱,奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
四、數(shù)學(xué)運(yùn)用
(一)例題
例1 判斷函數(shù)f(x)=x3+5x的奇偶性.
例2 判定下列函數(shù)是否為偶函數(shù)或奇函數(shù):
(1)f(x)=x2-1; (2)f(x)=2x;
(3)f(x)=2|x|; (4)f(x)=(x-1)2.
小結(jié):1.判斷函數(shù)是否為偶函數(shù)或奇函數(shù),首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,如函數(shù)f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定義.
2.判定函數(shù)是否具有奇偶性,一定要對定義域內(nèi)的任意的一個(gè)x進(jìn)行討論,而不是某一特定的值.如函數(shù)f(x)=x2-x-1,有f(1)=-1,f(-1)=1,顯然有f(-1)=-f(1),但函數(shù)f(x)=x2-x-1不具有奇偶性,再如函數(shù)f(x)=x3-x2-x+2,有f(-1)=f(1)=1,同樣函數(shù)f(x)=x3-x2-x+2也不具有奇偶性.
小結(jié):判斷分段函數(shù)是否為具有奇偶性,應(yīng)先畫出函數(shù)的圖象,獲取直觀的印象,再利用定義分段討論.
(二)練習(xí)
1.判斷下列函數(shù)的奇偶性:
2.已知奇函數(shù)f(x)在y軸右邊的圖象如圖所示,試畫出函數(shù)f(x)在y軸左邊的圖象.
3.已知函數(shù)f(x+1)是偶函數(shù),則函數(shù)f(x)的對稱軸是 .
4.對于定義在R上的函數(shù)f(x),下列判斷是否正確:
(1)若f(2)=f(-2),則f(x)是偶函數(shù);
(2)若f(2)≠f(-2),則f(x)不是偶函數(shù);
(3)若f(2)=f(-2),則f(x)不是奇函數(shù).
五、回顧小結(jié)
1.奇、偶函數(shù)的定義及函數(shù)的奇偶性的定義.
2.奇、偶函數(shù)的性質(zhì)及函數(shù)的奇偶性的判斷.
六、作業(yè)
課堂作業(yè):課本44頁5,6題.