一元二次方程高中教案
發(fā)表時間:2020-09-16七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納北師大版。
七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納北師大版
1.一元一次方程
1)概念:在一個方程中,只含有一個未知數(shù),而且方程中的代數(shù)式都是整式,未知數(shù)的指數(shù)都是1,這樣的方程叫做一元一次方程.
2)方程的解:使方程左、右兩邊的值相等的未知數(shù)的值,叫做方程的解.
3)等式的基本性質(zhì)1:等式兩邊同時加(或減)同一個代數(shù)式,所得結(jié)果仍是等式。
等式的基本性質(zhì)2:等式兩邊同時乘同一個數(shù)(或除以同一個不為0的數(shù)),所得結(jié)果仍是等式.
4)利用等式的基本性質(zhì)解一元一次方程:利用等式的性質(zhì)把方程ax+b=0(a≠0)進行變形,最后化為x=-b/a的形式,它一般先運用基本性質(zhì)1,將ax+b=0變形為ax=-b,然后運用基本性質(zhì)2,將ax=-b變形為x=-b/a即可。
2.求解一元一次方程
1)移項:方程中任何一項,都可以在改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.(注意:移項要變號)
2)解一元一次方程的基本思想:根據(jù)等式的基本性質(zhì)把一元一次方程化簡為ax=b(a,b為常數(shù),且a≠0)的形式,再得到方程的解為x=b/a.
3)解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1
3.列一元一次方程解應(yīng)用題
步驟:審清題意、找出等量關(guān)系、設(shè)未知數(shù)、列一元一次方程、解一元一次方程、檢驗解的合理性、寫出答案.
擴展閱讀
七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納
七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納
【第一部分】知識點分布
1、一元一次方程的解(重點)
2、一元一次方程的應(yīng)用(難點)
3、求解一元一次方程及其在實際問題中的應(yīng)用(考點)
【第二部分】關(guān)于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質(zhì)
(1)用等號“=”表示相等關(guān)系的式子叫做等式。
(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。
【第一部分】知識點分布
1、一元一次方程的解(重點)
2、一元一次方程的應(yīng)用(難點)
3、求解一元一次方程及其在實際問題中的應(yīng)用(考點)
【第二部分】關(guān)于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質(zhì)
(1)用等號“=”表示相等關(guān)系的式子叫做等式。
(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)運用等式的性質(zhì)時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近x=a(a常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a(a是常數(shù))的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×?xí)r間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進價指商品的買入價,也稱成本價。
(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。
(5)盈虧問題:利潤=售價-成本;售價=進價+利潤;售價=進價+進價×利潤率;
(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。
(7)應(yīng)用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×?xí)r間;
儲蓄利潤問題:利息=本金×利率×?xí)r間;
本息和=本金+利息。
(4)運用等式的性質(zhì)時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近x=a(a常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a(a是常數(shù))的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×?xí)r間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進價指商品的買入價,也稱成本價。
(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。
(5)盈虧問題:利潤=售價-成本;售價=進價+利潤;售價=進價+進價×利潤率;
(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。
(7)應(yīng)用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×?xí)r間;
儲蓄利潤問題:利息=本金×利率×?xí)r間;
本息和=本金+利息。
七年級上冊《一元一次方程》知識點歸納
老師職責(zé)的一部分是要弄自己的教案課件,大家在認真準(zhǔn)備自己的教案課件了吧。只有規(guī)劃好了教案課件新的工作計劃,新的工作才會如魚得水!你們知道適合教案課件的范文有哪些呢?下面是小編幫大家編輯的《七年級上冊《一元一次方程》知識點歸納》,歡迎您參考,希望對您有所助益!
七年級上冊《一元一次方程》知識點歸納
第二章一元一次方程
知識概念
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).
4.列一元一次方程解應(yīng)用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時間
(2)工程問題:工作量=工效·工時
(3)比率問題:部分=全體·比率
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折,利潤=售價-成本,
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=初中數(shù)學(xué)知識點總結(jié)(初一)πR2h.
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。
七年級數(shù)學(xué)上冊《解一元一次方程》知識點人教版
每個老師不可缺少的課件是教案課件,大家在仔細設(shè)想教案課件了。教案課件工作計劃寫好了之后,這樣我們接下來的工作才會更加好!你們會寫一段適合教案課件的范文嗎?下面是小編幫大家編輯的《七年級數(shù)學(xué)上冊《解一元一次方程》知識點人教版》,僅供參考,大家一起來看看吧。
七年級數(shù)學(xué)上冊《解一元一次方程》知識點人教版
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a≠0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。