一元二次方程高中教案
發(fā)表時間:2020-04-30七年級數(shù)學(xué)下冊必備知識點:一元一次方程。
七年級數(shù)學(xué)下冊必備知識點:一元一次方程
一元一次方程
1.等式與變量
用“=”號連接而成的式子叫等式。注意:“等量就能代入”。
2.等式的性質(zhì)
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式。
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式。
3.方程
含未知數(shù)的等式,叫方程。
4.方程的解
使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”。
5.移項
改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1。
6.一元一次方程
只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
7.一元一次方程的標(biāo)準(zhǔn)形式
ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
8.一元一次方程的最簡形式
ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。
9.一元一次方程解法的一般步驟
整理方程—去分母—去括號—移項—合并同類項—系數(shù)化為1—(檢驗方程的解)。
10.列一元一次方程解應(yīng)用題
(1)讀題分析法:多用于“和,差,倍,分問題”。
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套等”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
11.列方程解應(yīng)用題的常用公式
(1)行程問題:距離=速度·時間
(2)工程問題:工作量=工效·工時
(3)比率問題:部分=全體·比率
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折;利潤=售價-成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
相關(guān)閱讀
七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納
七年級數(shù)學(xué)上冊《一元一次方程》知識點歸納
【第一部分】知識點分布
1、一元一次方程的解(重點)
2、一元一次方程的應(yīng)用(難點)
3、求解一元一次方程及其在實際問題中的應(yīng)用(考點)
【第二部分】關(guān)于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質(zhì)
(1)用等號“=”表示相等關(guān)系的式子叫做等式。
(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。
【第一部分】知識點分布
1、一元一次方程的解(重點)
2、一元一次方程的應(yīng)用(難點)
3、求解一元一次方程及其在實際問題中的應(yīng)用(考點)
【第二部分】關(guān)于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質(zhì)
(1)用等號“=”表示相等關(guān)系的式子叫做等式。
(2)等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)運用等式的性質(zhì)時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近x=a(a常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a(a是常數(shù))的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×?xí)r間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進(jìn)價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進(jìn)價指商品的買入價,也稱成本價。
(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。
(5)盈虧問題:利潤=售價-成本;售價=進(jìn)價+利潤;售價=進(jìn)價+進(jìn)價×利潤率;
(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。
(7)應(yīng)用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×?xí)r間;
儲蓄利潤問題:利息=本金×利率×?xí)r間;
本息和=本金+利息。
(4)運用等式的性質(zhì)時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據(jù):乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近x=a(a常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據(jù):等式的性質(zhì)1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a(a是常數(shù))的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×?xí)r間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進(jìn)價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進(jìn)價指商品的買入價,也稱成本價。
(3)標(biāo)價指的是商家所標(biāo)出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標(biāo)價打了幾折。
(5)盈虧問題:利潤=售價-成本;售價=進(jìn)價+利潤;售價=進(jìn)價+進(jìn)價×利潤率;
(6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。
(7)應(yīng)用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×?xí)r間;
儲蓄利潤問題:利息=本金×利率×?xí)r間;
本息和=本金+利息。
七年級上冊《一元一次方程》知識點歸納
老師職責(zé)的一部分是要弄自己的教案課件,大家在認(rèn)真準(zhǔn)備自己的教案課件了吧。只有規(guī)劃好了教案課件新的工作計劃,新的工作才會如魚得水!你們知道適合教案課件的范文有哪些呢?下面是小編幫大家編輯的《七年級上冊《一元一次方程》知識點歸納》,歡迎您參考,希望對您有所助益!
七年級上冊《一元一次方程》知識點歸納
第二章一元一次方程
知識概念
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).
4.列一元一次方程解應(yīng)用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時間
(2)工程問題:工作量=工效·工時
(3)比率問題:部分=全體·比率
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折,利潤=售價-成本,
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=初中數(shù)學(xué)知識點總結(jié)(初一)πR2h.
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。
七年級數(shù)學(xué)一元一次方程教案
作為老師的任務(wù)寫教案課件是少不了的,是認(rèn)真規(guī)劃好自己教案課件的時候了。只有規(guī)劃好了教案課件新的工作計劃,新的工作才會如魚得水!你們清楚有哪些教案課件范文呢?以下是小編為大家收集的“七年級數(shù)學(xué)一元一次方程教案”供大家借鑒和使用,希望大家分享!
課題:3.1.1一元一次方程(2)教學(xué)目標(biāo)
①理解一元一次方程、方程的解等概念;
②掌握檢驗?zāi)硞€值是不是方程的解的方法;
③培養(yǎng)學(xué)生根據(jù)間題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的能力;
④體驗用估算方法尋求方程的解的過程,培養(yǎng)學(xué)生求實的態(tài)度。
教學(xué)重點
重點是尋找相等關(guān)系、列出方程.
教學(xué)難點
對于復(fù)雜一點的方程,用估算的方法尋求方程的解,需要多次的嘗試,也需要一定的估計能力
教學(xué)過程(師生活動)
設(shè)計理念
情境引入
問題:小雨、小思的年齡和是25.小雨年齡的2倍比小思的年齡大8歲,小雨、小思的年齡各是幾歲?
如果設(shè)小雨的年齡為x歲,你能用不同的方法表示小思的年齡嗎?
在學(xué)生回答的基礎(chǔ)上,教師加以引導(dǎo):小思的年齡可以用兩個不同的式子25-x和2x-8來表示,這說明許多實際問題中的數(shù)量關(guān)系可以用含字母的式子來表示.
由于這兩個不同的式子表示的是同一個量,因此我們又
可以寫成:25-x=2x-8.這樣就得到了一個方程.
用學(xué)生身邊的實際問題作為引入,能有效地激
發(fā)學(xué)生的參與欲望.用不同的方法表示同一個量,可以自然地列出方程.
自主嘗試
①.嘗試:
讓學(xué)生嘗試解答教科書第67頁的例1。對于基礎(chǔ)比
較差的學(xué)生,教師可以作如下提示:
(1)選擇一個未知數(shù),設(shè)為x,
(2)對于這三個問題,分別考慮:
用含x的式子表示這臺計算機(jī)的檢修時間;
用含x的式子分別表示長方形的長和寬;
用含x的式子分別表示男生和女生的人數(shù).
(3)找一個問題中的相等關(guān)系列出方程.
②交流:
在學(xué)生基本完成解答的基礎(chǔ)上,請幾名學(xué)生匯報所列的方程,并解釋方程等號左右兩邊式子的含義.
③教師在學(xué)生回答的基礎(chǔ)上作補(bǔ)充講解,并強(qiáng)調(diào):
(1)方程等號兩邊表示的是同一個量;
(2)左右兩邊表示的方法不同.
簡單地說:列方程就是用兩種不同的方法表示同一個量.以第(1)題為例:方程左邊的式子1700+150x”表示計算機(jī)已使用的時間加上后來可使用的時間,也就是規(guī)定的檢修時間.右邊的2450”也是規(guī)定檢修的時間.這樣就有“1700十150x=2450.
④討論:
問題1:在第(1)題中,你還能用兩種不同的方法來表示另一個量,再列出方程嗎?
讓學(xué)生在學(xué)習(xí)小組內(nèi)討論,然后分組匯報交流:
選“已使用的時間”可列方程:2450-150x=1700.
選“還可使用的時間”可列方程:150x=2450-1700.
問題2:在第(3)題中,你還能設(shè)其他的未知數(shù)為x嗎?
在學(xué)生獨立思考、小組討論的基礎(chǔ)上交流:
設(shè)這個學(xué)校的男生數(shù)為x,那么女生數(shù)為(x+80),全校的學(xué)生數(shù)為(x+x+80).
列方程:x+80=52%(x+x+80).
本環(huán)節(jié)采用“嘗試一交流一講評一討論”四個
步驟。
這幾個問題的提示教師可根據(jù)學(xué)生的基礎(chǔ)靈活處理.
“解釋式子的含義”有必要,它可以培養(yǎng)學(xué)生的自查的習(xí)慣。
強(qiáng)調(diào)的目的在于抓住列方程的關(guān)鍵。
討論的目的在于突出重點,突破難點,同時培養(yǎng)學(xué)生的靈活性,也為后面的“移項”打下伏筆。
建立概念
①概念的建立.
讓學(xué)生在觀察上述方程的基礎(chǔ)上,教師進(jìn)行歸納:各方程都只含有一個未知數(shù),并且未知數(shù)的指數(shù)都是1,這樣的方程叫做一元一次方程.
“一元”:一個未知數(shù);“一次”:未知數(shù)的指數(shù)是一次.判斷下列方程是不是一元一次方程:
(1)23-x=一7:(2)2a-b=3
(3)y+3=6y-9;(4)0.32m-(3+0.02m)=0.7.
(5)x2=1(6)
②引導(dǎo)學(xué)生歸納:
從上面的分析過程我們可以發(fā)現(xiàn),用方程的方法來解決實際問題,一般要經(jīng)歷哪幾個步驟?在學(xué)生回答的基礎(chǔ)上,教師用方框表示:
實際問題
一元一次方程
設(shè)未知數(shù)列方程
分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法.
概念的建立要經(jīng)歷由感性到理性的過程,“判斷”的目的就是為了對概念進(jìn)一步理解。
學(xué)生參與,滲透建立數(shù)學(xué)模型的思想。
估算求解
列出方程后,還必須解這個方程,求出未知數(shù)的值.對于簡單的方程,我們可以采用估算的方法.
①問題:你認(rèn)為該怎樣進(jìn)行估算?
可以采用“嘗試—發(fā)現(xiàn)—歸納”的方法:讓學(xué)生嘗試后發(fā)現(xiàn),要求出答案必須用一些具體的數(shù)值代入,看方程是否成立,最后教師進(jìn)行歸納.
可以像教科書那樣用列表的方法進(jìn)行嘗試,也可以像下面的示意圖那樣按程序進(jìn)行嘗試.
②在此基礎(chǔ)上給出概念:能使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解.求方程的解的過程,叫做解方程.
一般地,要檢驗?zāi)硞€值是不是方程的解,可以用這個值代替未知數(shù)代人方程,看方程左右兩邊的值是否相等.
估算是一種重要的方法,應(yīng)引起重視。
課堂練習(xí)
練習(xí)教科書第69頁中練習(xí)
小結(jié)與作業(yè)
課堂小結(jié)
著重引導(dǎo)學(xué)生從以下幾個方面進(jìn)行歸納:
①這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?
②用列方程的方法解決實際問題的一般思路是什么?
③列方程的實質(zhì)就是用兩種不同的方法來表示同一個量.
④估算是一種重要的方法.
思考:教科書第69頁中的“思考”.(不一定讓學(xué)生估算出方程的解,目的是體驗用估算的方法有時會很麻煩)
對于較復(fù)雜的方程,用估算的辦法一時很難求出方程的解,只須讓學(xué)生有所體驗即可。
本課作業(yè)
①必做題:教科書第73頁習(xí)題2.1第2,6,7,8題·
②選做題:教科書第74頁習(xí)題2.1第11題.
③備選題:
(1)x=3是下列哪個方程的解?()
A.3x-1-9=0B.x=10-4x
C.x(x-2)=3D.2x-7=12
(2)方程的解是()
A.-3.B-C.12D.-12
(3)已知x-5與2x-4的值互為相反數(shù),列出關(guān)于x的方程.
(4)某班開展為貧困山區(qū)學(xué)校捐書活動,捐的書比平均每人捐3本多21本,比平均每人捐4本少27本,求這個班,有多少名學(xué)生?如果設(shè)這個班有x名學(xué)生,請列出關(guān)于x的方程.
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
學(xué)生要學(xué)習(xí)的數(shù)學(xué)知識,是經(jīng)過前人的篩選和整理了的,但對于他們來說仍是全新的、未知的.這就需要教師通過對學(xué)習(xí)內(nèi)容的重新設(shè)計,啟發(fā)學(xué)生去思考,引導(dǎo)學(xué)生去探究,使學(xué)生在一定的條件下,經(jīng)過自身的學(xué)習(xí)活動,把新的知識納人原有的認(rèn)知結(jié)構(gòu),進(jìn)行重組、整合,構(gòu)建新的認(rèn)知結(jié)構(gòu).這就是建構(gòu)主義的教學(xué)觀.本教學(xué)設(shè)計在這方面力求得到體現(xiàn).另外還體現(xiàn)了以下幾個特點:
①符合學(xué)生的認(rèn)知規(guī)律.本設(shè)計以學(xué)生身邊的數(shù)學(xué)問題引人,然后采用先嘗試的方法學(xué)習(xí)例1的內(nèi)容.對于概念的建立采用從具體到抽象、從理論到實踐的過程,對于方法的探索采用從特殊到一般的思想.、
②體現(xiàn)了自主學(xué)習(xí)、合作交流的新課程理念.對于例題的處理,改變了傳統(tǒng)的教學(xué)模式,采用了“嘗試—交流—講評—討論”的方式,充分發(fā)揮學(xué)生的主體性、參與性.對于用估算的方法求方程的解時,同樣采用了“嘗試—發(fā)現(xiàn)—歸納”的方式.
③重視算法算理的滲透也是新課程的一個特點.本設(shè)計一開始就讓學(xué)生用兩種不同的方式來表示同一個量,在一步一步的學(xué)習(xí)中,逐步體現(xiàn)“列方程就是用兩種不同的方式來表示同一個量”的觀點.在用估算的方法求方程的解時,體現(xiàn)了用具體的數(shù)值代入檢驗的方法.