88教案網(wǎng)
{year}新版數(shù)學(xué)必修一教案
2024新版數(shù)學(xué)必修一教案(經(jīng)典8篇)。
2024新版數(shù)學(xué)必修一教案 篇1
一、教學(xué)目標(biāo)
1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系
1。本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進(jìn)一步講解反證法。
2。教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3.“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)
1。以故事形式入題
2多媒體演示
四、教學(xué)過程
(一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
(二)復(fù)習(xí)提問:
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計(jì)意圖: 通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的'逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真
引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真.
(2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認(rèn)為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認(rèn)為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認(rèn)為說的是自己,所以丙也走了。
同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1.設(shè)原命題是“若
斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判
2.設(shè)原命題是“當(dāng) 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.
2024新版數(shù)學(xué)必修一教案 篇2
進(jìn)入高一的數(shù)學(xué)教學(xué)以來,我深感責(zé)任重大,同時也收獲了許多的經(jīng)驗(yàn)和教訓(xùn)。以下是我對高一數(shù)學(xué)教學(xué)的幾點(diǎn)反思。
首先,我認(rèn)識到高一數(shù)學(xué)的教學(xué)內(nèi)容相對于初中有了明顯的提升,知識點(diǎn)更為密集,抽象程度也有所增加。這要求我在備課時要更加細(xì)致,不僅要對教材內(nèi)容進(jìn)行深入的理解,還需要關(guān)注到每一個學(xué)生的接受程度。我嘗試通過多樣化的教學(xué)方式,如利用實(shí)物模型、動畫演示等,來幫助學(xué)生更好地理解和掌握抽象的數(shù)學(xué)概念。
其次,我注意到高一學(xué)生的學(xué)習(xí)習(xí)慣和思維方式與初中相比有了很大的變化。他們開始更加注重自我學(xué)習(xí)和獨(dú)立思考,而不再完全依賴?yán)蠋煹闹v解。因此,我在教學(xué)中也更加注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力,通過設(shè)計(jì)一些開放性的問題,引導(dǎo)學(xué)生主動思考、探索答案。
同時,我也意識到高一學(xué)生的數(shù)學(xué)基礎(chǔ)參差不齊,這給我的教學(xué)帶來了一定的挑戰(zhàn)。我嘗試通過分層教學(xué)和個性化輔導(dǎo)的方式,來滿足不同學(xué)生的需求。對于基礎(chǔ)較差的學(xué)生,我會加強(qiáng)基礎(chǔ)知識的.復(fù)習(xí)和鞏固;對于基礎(chǔ)較好的學(xué)生,我會提供一些具有挑戰(zhàn)性的題目,激發(fā)他們的學(xué)習(xí)熱情。
此外,我還發(fā)現(xiàn)高一學(xué)生在學(xué)習(xí)數(shù)學(xué)時容易出現(xiàn)一些常見的錯誤和難點(diǎn)。例如,對于一些復(fù)雜的公式和定理,學(xué)生往往難以理解和記憶。針對這些問題,我嘗試通過舉例、類比等方式,幫助學(xué)生更好地理解公式的含義和應(yīng)用;同時,我也會定期組織學(xué)生進(jìn)行復(fù)習(xí)和測試,幫助他們鞏固所學(xué)知識。
最后,我認(rèn)為在高一數(shù)學(xué)教學(xué)中,還需要注重培養(yǎng)學(xué)生的數(shù)學(xué)思維和解決問題的能力。我嘗試通過設(shè)計(jì)一些具有實(shí)際背景的問題,引導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識去解決實(shí)際問題;同時,我也會鼓勵學(xué)生參加一些數(shù)學(xué)競賽和活動,提高他們的數(shù)學(xué)素養(yǎng)和綜合能力。
總之,高一數(shù)學(xué)教學(xué)是一項(xiàng)具有挑戰(zhàn)性的工作,但同時也是一項(xiàng)充滿樂趣和收獲的工作。我將繼續(xù)努力探索更加有效的教學(xué)方法和策略,為學(xué)生的數(shù)學(xué)學(xué)習(xí)提供更好的支持和幫助。
2024新版數(shù)學(xué)必修一教案 篇3
古語云:授人以魚,只供一飯。授人以漁,則終身受用無窮。學(xué)知識,更要學(xué)方法。清華網(wǎng)校的學(xué)習(xí)方法欄目由清華附中名師結(jié)合多年教學(xué)經(jīng)驗(yàn)和附中優(yōu)秀學(xué)生學(xué)習(xí)心得組成,以幫助學(xué)生培養(yǎng)良好的學(xué)習(xí)習(xí)慣為目的,使學(xué)生在學(xué)習(xí)中能夠事半功倍。
數(shù)學(xué)是一個人的學(xué)習(xí)生涯中所占比重最大的學(xué)科,也是高考科目中最能夠拉開分?jǐn)?shù)層次的學(xué)科,因此學(xué)好數(shù)學(xué),無論是對高考,還是對以后學(xué)習(xí)工作都起著重要作用。那么高一新生在學(xué)習(xí)上剛剛踏入新階段,如何去除初中時養(yǎng)成的不適宜高中學(xué)習(xí)的習(xí)慣,又如何掌握正確的學(xué)習(xí)方法呢?我們應(yīng)注意以下三點(diǎn):
(1)注意和初中數(shù)學(xué)知識的銜接。這是一個十分困難的問題,初中數(shù)學(xué)與高中數(shù)學(xué)的`差別非常大,從原本的實(shí)際思維轉(zhuǎn)入抽象思維,需要一個大幅度轉(zhuǎn)變。這就需要重新整理初中數(shù)學(xué)知識,形成良好的知識基礎(chǔ),在此基礎(chǔ)上,再根據(jù)高中知識特點(diǎn),較快的吸收新的知識,形成新的知識結(jié)構(gòu)。
(2)認(rèn)真理解,反復(fù)推敲思考高中各知識點(diǎn)的涵義,各種表示方法。容易混淆的知識,仔細(xì)辨識、區(qū)別,達(dá)到熟練掌握,逐步建立與高中數(shù)學(xué)結(jié)構(gòu)相適應(yīng)的理論本質(zhì)與思考方法,切忌急于求成。
(3)通過學(xué)習(xí),要努力培養(yǎng)自己觀察,比較抽象,概括能力初步形成運(yùn)用知識準(zhǔn)確地表達(dá)數(shù)學(xué)問題和實(shí)際問題的意識和能力;培養(yǎng)科學(xué)的、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,為樹立辯證唯物主義科學(xué)的世界觀認(rèn)識世界打下基礎(chǔ)。
我們應(yīng)試時,時常發(fā)現(xiàn)厭試心理,有時會有些緊張,這是很正常的。但過分緊張也會導(dǎo)致考不好,所以平時應(yīng)把練習(xí)當(dāng)作考試,但考試時則平視為練習(xí),心態(tài)好了,成績自己就上去了。
如何減少解題失誤,這是一個考高分的關(guān)鍵。失誤少了,分?jǐn)?shù)就會濺漲。這需要學(xué)生的仔細(xì)觀察與認(rèn)真閱讀題目,抓住題目重點(diǎn)、題心,并圍繞重點(diǎn)、題心考慮其他條件與答案。其次,考慮要周全,避免出現(xiàn)遺漏情況,各個方面都要考慮到,這需要平日思考事物的長期積累。
考試考得不好,這是常遇到的問題,心情沮喪是正常心理,但不能持久下去。要將答案聽徹底,記下,并與自己的解題思路相比較,發(fā)現(xiàn)不同之處,或不要之處并記于心里,這樣對于下次考試則很有好處。
2024新版數(shù)學(xué)必修一教案 篇4
學(xué)習(xí)引導(dǎo)
一、自主學(xué)習(xí)
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
2. 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)
思考引導(dǎo)
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域?yàn)?.
總結(jié)引導(dǎo)
1.對數(shù)函數(shù)的有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
拓展引導(dǎo)
一、課外作業(yè): 習(xí)題3-5 A組 1,2,3, B組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
2024新版數(shù)學(xué)必修一教案 篇5
一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì)
本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會借助計(jì)算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識過程,滲透逐步逼近和無限逼近思想(極限思想),體會“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會知識之間的聯(lián)系。
所以本節(jié)課的本質(zhì)是讓學(xué)生體會函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。
二、本節(jié)課內(nèi)容的地位、作用
“二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個前奏和準(zhǔn)備;同時滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。
三、學(xué)生情況分析
學(xué)生已初步理解了函數(shù)圖象與方程的根之間的關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點(diǎn)附近的'函數(shù)值符號提供了知識準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對于高次方程、超越方程與對應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。
四、教學(xué)目標(biāo)定位
根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:
通過具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會用二分法求某些具體方程的近似解,從中體會函數(shù)與方程之間的聯(lián)系,體會程序化解決問題的思想。
借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識準(zhǔn)備。
通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識。
通過具體問題體會逼近過程,感受精確與近似的相對統(tǒng)一。
五、教學(xué)診斷分析
“二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識較少,算法流程比較簡潔,便于編寫計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學(xué)方法和特點(diǎn)
本節(jié)課采用的是問題驅(qū)動、啟發(fā)探究的教學(xué)方法。
通過分組合作、互動探究、搭建平臺、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問題逐步推進(jìn)、拾級而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。
本節(jié)課特點(diǎn)主要有以下幾方面:
1、以問題驅(qū)動教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。
2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會數(shù)學(xué)來源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問題。
以李詠主持的幸運(yùn)52猜商品價格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測的過程中體會二分法思想。
3、注重學(xué)生參與知識的形成過程,使他們“聽”有所思,“學(xué)”有所獲。
本節(jié)課中的每一個問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識。
4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。
本節(jié)課中利用計(jì)算器進(jìn)行了多次計(jì)算,逐步縮小實(shí)數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點(diǎn),提高了探究活動的有效性。整個課件都以PowerPoint為制作平臺,演示Excel
程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。
七、預(yù)期效果分析
以方程的根與函數(shù)的零點(diǎn)知識作基礎(chǔ),通過對求方程近似解的探究討論,使學(xué)生主動參與數(shù)學(xué)實(shí)踐活動;采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。
另外盡管使用了科學(xué)計(jì)算器,但求一個方程的近似解也是很費(fèi)時的,學(xué)生容易出現(xiàn)計(jì)算錯誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時間存在差異,教師要適時指導(dǎo)。
2024新版數(shù)學(xué)必修一教案 篇6
教學(xué)目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會直觀圖示對理解抽象概念的作用。
課 型:
新授課
教學(xué)重點(diǎn):
集合的交集與并集的概念;
教學(xué)難點(diǎn):
集合的交集與并集 “是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
一、 引入課題
我們兩個實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、 新課教學(xué)
1、 并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B 讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個元素)。
例題1求集合A與B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B 讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當(dāng)兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進(jìn)行運(yùn)算。
4、 集合基本運(yùn)算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
2024新版數(shù)學(xué)必修一教案 篇7
一、教學(xué)內(nèi)容分析:
本節(jié)教材選自人教a版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點(diǎn)、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點(diǎn),結(jié)合有關(guān)的實(shí)物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學(xué)習(xí)作用重大。
二、學(xué)生學(xué)習(xí)情況分析:
任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對不足,學(xué)習(xí)方面有一定困難。
三、設(shè)計(jì)思想
本節(jié)課的設(shè)計(jì)遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會數(shù)學(xué)的思想方法,養(yǎng)成積極主動、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。
四、教學(xué)目標(biāo)
通過直觀感知——觀察——操作確認(rèn)的認(rèn)識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗(yàn)學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學(xué)過程設(shè)計(jì)
(一)知識準(zhǔn)備、新課引入
提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??
提問2:根據(jù)直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶?,并指出是否有別的判定途徑。
[設(shè)計(jì)意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]
(二)判定定理的探求過程
1、直觀感知
提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動畫演示。
[學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]
2、動手實(shí)踐
教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺桌上作上述情形的演示)。
[設(shè)計(jì)意圖:設(shè)置這樣動手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內(nèi)心中,學(xué)自己身邊的數(shù)學(xué),領(lǐng)悟空間觀念與空間圖形性質(zhì)。]
3、探究思考
(1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個要素:①平面外一條線②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示為平面內(nèi)一條直線③這兩條直線平行
(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?
4、歸納確認(rèn):(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。
簡單概括:(內(nèi)外)線線平行?線面平行a符號表示:ba||? a||b??
溫馨提示:
作用:判定或證明線面平行。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。
思想:空間問題轉(zhuǎn)化為平面問題
(三)定理運(yùn)用,問題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說明理由:
①如果一條直線不在平面內(nèi),則這條直線就與平面平行()
②過直線外一點(diǎn)可以作無數(shù)個平面與這條直線平行( )
③一直線上有二個點(diǎn)到平面的距離相等,則這條直線與平面平行( )
(2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預(yù)設(shè):設(shè)計(jì)這組問題目的是強(qiáng)調(diào)定理中三個條件的重要性,同時預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個別學(xué)生進(jìn)行演示。]
2、作一作:
設(shè)a、b是二異面直線,則過a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?
先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。
[設(shè)計(jì)意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認(rèn)識,更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。]
3、證一證:
例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。
[設(shè)計(jì)意圖:設(shè)計(jì)二個變式訓(xùn)練,目的'是通過問題探究、討論,思辨,及時鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平
面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。
思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。
[知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]
4、練一練:
練習(xí)1:見課本6頁練習(xí)1、2
練習(xí)2:將兩個全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。
變式:若將練習(xí)2中m、n改為ac、bf分點(diǎn)且am = fn,試問結(jié)論仍成立嗎?試證之。
[設(shè)計(jì)意圖:設(shè)計(jì)這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]
(四)總結(jié)
先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。
2、定理的符號表示:ba||? a||b??簡述:(內(nèi)外)線線平行則線面平行
3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。
七、教學(xué)反思
本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計(jì)遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認(rèn)識直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗(yàn),發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計(jì)注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號語言、文字語言及圖形語言,加強(qiáng)各種語言的互譯。比如上課開始時的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動手實(shí)踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。
本節(jié)課對定理的探求與認(rèn)識過程的設(shè)計(jì)始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗(yàn)數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進(jìn)生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。
2024新版數(shù)學(xué)必修一教案 篇8
一、強(qiáng)調(diào)教法、學(xué)法、教學(xué)內(nèi)容以及教學(xué)媒介的有機(jī)整合。
教學(xué)設(shè)計(jì)的難點(diǎn)在于教師把學(xué)術(shù)形態(tài)的知識轉(zhuǎn)化為適合學(xué)生探究的認(rèn)知形態(tài)的知識。學(xué)生的.認(rèn)知結(jié)構(gòu)具有個性化特點(diǎn),教學(xué)內(nèi)容具有普遍性要求。如何在一節(jié)課中把二者較好地結(jié)合起來,是提高課堂教學(xué)效率的關(guān)鍵。
二、質(zhì)疑反思的培養(yǎng)
通過現(xiàn)狀調(diào)查,看出在目前的數(shù)學(xué)教學(xué)中缺乏有目的、有意識,具有針對性的培養(yǎng)學(xué)生對問題的質(zhì)疑與解決問題、認(rèn)識問題后的反思。學(xué)生的質(zhì)疑反思能力是可以培養(yǎng)的,要有目的設(shè)計(jì)、訓(xùn)練。因此要培養(yǎng)質(zhì)疑反思能力必須做到:
(1)明確教學(xué)目標(biāo)。要使學(xué)生由“學(xué)會”轉(zhuǎn)化為“學(xué)會——會學(xué)——創(chuàng)新”。
(2)在教學(xué)過程中要形成學(xué)生主動參與、積極探索、自覺建構(gòu)的教學(xué)過程。
(3)改善教學(xué)環(huán)境。
(4)優(yōu)化教學(xué)方法。
三、反思教育教學(xué)是否讓不同的學(xué)生得到了不同的發(fā)展
應(yīng)該怎樣對學(xué)生進(jìn)行教學(xué),教師會說要因材施教??蓪?shí)際教學(xué)中,又用一樣的標(biāo)準(zhǔn)去衡量每一位學(xué)生,要求每一位學(xué)生都應(yīng)該掌握哪些知識,要求每一位學(xué)生完成同樣難度的作業(yè)等等。每一位學(xué)生固有的素質(zhì),學(xué)習(xí)態(tài)度,學(xué)習(xí)能力都不一樣,對學(xué)習(xí)有余力的學(xué)生要幫助他們向更高層次邁進(jìn)。平時布置作業(yè)時,讓優(yōu)生做完書上的習(xí)題后,再加上兩三道有難度的題目,讓學(xué)生多多思考,提高思含量。對于學(xué)習(xí)有困難的學(xué)生,則要降低學(xué)習(xí)要求,努力達(dá)到基本要求。布置作業(yè)時,讓學(xué)困生,盡量完成書上的習(xí)題,課后習(xí)題不在家做,對于書上個別特別難的題目可以不做練習(xí)。
以上就是《2024新版數(shù)學(xué)必修一教案(經(jīng)典8篇)》的全部內(nèi)容,想了解更多內(nèi)容,請點(diǎn)擊數(shù)學(xué)必修教案查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
數(shù)學(xué)必修教案相關(guān)推薦
更多>-
2024高中必修一英語教案(經(jīng)典3篇) 2024高中必修一英語教案 篇1一、動名詞做主語的用法動名詞做主語往往表示經(jīng)常性、習(xí)慣性的'動作,在口語中也可以表示具體的動作。如:Seeing is believing. Helping her is my duty. Talking mends no holes.空談無濟(jì)于事?!?..
-
2024高中英語必修一新版教材教案(優(yōu)選10篇) 2024高中英語必修一新版教材教案 篇1一、指導(dǎo)思想:本學(xué)期高一英語組根據(jù)學(xué)校工作要點(diǎn),以教務(wù)處、教科室的工作計(jì)劃為指導(dǎo),全面配合學(xué)校的中心工作,力求將繼續(xù)運(yùn)用快樂教學(xué)的模式完成本學(xué)期人教新課標(biāo)高一英語(必修1、2)的教學(xué)工作,努力增強(qiáng)課堂教學(xué)趣味性及有效性,引導(dǎo)學(xué)生快樂學(xué)習(xí),從面全面提升教...
高一數(shù)學(xué)必修110-24
- 高一數(shù)學(xué)教案10-24
- 2024活動引流方案(推薦10篇)10-24
- 高一數(shù)學(xué)必修210-24
- 大學(xué)生思想?yún)R報(bào)預(yù)備黨員2024800字(精華6篇)10-24
- 2024學(xué)雷鋒發(fā)言稿格式(集合11篇)10-24
- 見義勇為作文十五篇10-24
- 2024初三美術(shù)教學(xué)計(jì)劃10-24
- 入黨積極匯報(bào)思想202410-24
- 心理咨詢活動總結(jié)12篇10-24
- 支教實(shí)習(xí)月總結(jié)匯集十三篇10-24
- 2024感恩節(jié)得句子10-24
- [薦]數(shù)學(xué)必修說課稿03-06
- 人教版必修二《離騷》說課稿12-28
- 必修一《小狗包弟》說課稿12-08
- 高中數(shù)學(xué)必修一《幾類不用增長的函數(shù)模型》說課稿08-07
- 必修二《蘭亭集序》說課稿(人教版)06-24