小學(xué)數(shù)學(xué)數(shù)學(xué)教案
發(fā)表時(shí)間:2021-08-13高一數(shù)學(xué)教案:《集合的含義》教學(xué)設(shè)計(jì)。
高一數(shù)學(xué)教案:《集合的含義》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
(1)了解集合、元素的概念,體會集合中元素的三個(gè)特征;
(2)理解元素與集合的“屬于”和“不屬于”關(guān)系;
(3)掌握常用數(shù)集及其記法;
教學(xué)重點(diǎn):掌握集合的基本概念;
教學(xué)難點(diǎn):元素與集合的關(guān)系;
教學(xué)過程:
一、引入課題
學(xué)校通知:8月20日8點(diǎn),高一年級在體育館集合;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題:集合的含義)。
閱讀課本P2-P3內(nèi)容
二、新課教學(xué)
(一)集合的有關(guān)概念
1.一般地,我們把研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
2.思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流;
(3)非負(fù)奇數(shù);
(4)方程的解;
(5)本校2015級新生;
(6)血壓很高的人;
(7)著名的數(shù)學(xué)家;
(8)平面直角坐標(biāo)系內(nèi)所有的第三象限的點(diǎn)
(9)全班成績好的學(xué)生。
對學(xué)生的解答予以討論、點(diǎn)評,進(jìn)而講解下面的問題。
3.集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)無序性:給定一個(gè)集合與集合里面元素的順序無關(guān)。
4.元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于A,記作:aA
例如,我們A表示“1~20以內(nèi)的所有質(zhì)數(shù)”組成的集合,則有3∈A
4A,等等。
5.集合與元素關(guān)系: 集合通常用大寫的拉丁字母A,B,C…表示,集合的元素用小寫的拉丁字母a,b,c,…表示。
6. 常用的數(shù)集:
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R;
7.等集:兩個(gè)集合的元素完全一樣。
(二)例題講解:
例1.用“∈”或“”符號填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設(shè)A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。
例2.已知集合P的元素為, 若3∈P且-1P,求實(shí)數(shù)m的值。
(三)課堂練習(xí):
課本P5練習(xí)1;jAb88.COM
歸納小結(jié):
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對集合的概念作了說明,然后介紹了常用集合及其記法。
作業(yè)布置:
1.習(xí)題1.1,第1- 2題;
2.預(yù)習(xí)集合的表示方法。
課后記:
相關(guān)閱讀
高一數(shù)學(xué)《集合的含義與表示》教案
一名優(yōu)秀的教師在教學(xué)時(shí)都會提前最好準(zhǔn)備,作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生更好地進(jìn)入課堂環(huán)境中來,使高中教師有一個(gè)簡單易懂的教學(xué)思路。您知道高中教案應(yīng)該要怎么下筆嗎?以下是小編收集整理的“高一數(shù)學(xué)《集合的含義與表示》教案”,希望能對您有所幫助,請收藏。
高一數(shù)學(xué)《集合的含義與表示》教案
學(xué)校
石泉中學(xué)
課名
《集合的含義與表示》
教師
王立民
學(xué)科(版本)
北師大版的數(shù)學(xué)必修1
章節(jié)
第一章第1節(jié)
學(xué)時(shí)
1學(xué)時(shí)
年級
高一年級
教材分析
集合是學(xué)生在初中已初步了解了生活知識的基礎(chǔ)上來進(jìn)一步學(xué)習(xí)《集合的含義與表示》,它既是前面對象知識的復(fù)習(xí)延伸,又是后繼學(xué)習(xí)集合的交并補(bǔ)的相關(guān)運(yùn)算奠定了基礎(chǔ)。因此,本節(jié)課在本章中起著承上啟下的重要作用。
教學(xué)目標(biāo)
1知識與技能:掌握集合的基本概念與表示方法,能具體求解和表示集合。
2.過程與方法:通過集合的含義與表示的學(xué)習(xí),選擇用不同的集合語言表述具體的問題,提高語言轉(zhuǎn)化和抽象概括能力。
3.情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識,提高學(xué)生分析解決問題的能力。
教學(xué)重點(diǎn)難點(diǎn)
以及措施
教學(xué)重點(diǎn):集合的基本概念與表示方法
教學(xué)難點(diǎn):選擇恰當(dāng)?shù)姆椒ū硎疽恍┖唵蔚募稀?br>
根據(jù)教學(xué)內(nèi)容的特點(diǎn)及高一年級學(xué)生的年齡、認(rèn)知特征,緊緊抓住課堂知識的結(jié)構(gòu)關(guān)系,遵循“直觀認(rèn)知――操作體會――感悟知識特征――應(yīng)用知識”的認(rèn)知過程,設(shè)計(jì)出包括:觀察、操作、思考、交流等內(nèi)容的教學(xué)流程。并且充分利用現(xiàn)代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識,給學(xué)生獨(dú)立操作、合作交流的機(jī)會。學(xué)法上注重讓學(xué)生參與方程的推導(dǎo)過程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學(xué)生真正體驗(yàn)知識的形成過程。
學(xué)習(xí)者分析
高一年級的學(xué)生從知識層面上已經(jīng)掌握了描述對象的語言;從能力層面具備了一定的觀察、分析能力,對數(shù)學(xué)問題有自己個(gè)人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數(shù)學(xué)應(yīng)用意識和語言表達(dá)的能力還有待加強(qiáng)。
教法設(shè)計(jì)
問題情境引入法啟發(fā)式教學(xué)法講授法
學(xué)法指導(dǎo)
自主學(xué)習(xí)法討論交流法練習(xí)鞏固法
教學(xué)準(zhǔn)備
ppt課件導(dǎo)學(xué)案
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
教師活動
學(xué)生活動
設(shè)計(jì)意圖
情景引入
回顧復(fù)習(xí)
(2分鐘)
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級在體育館集合進(jìn)行軍訓(xùn)動員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
教師創(chuàng)設(shè)情景,引領(lǐng)學(xué)生感受集合。
教師提出問題。引導(dǎo)學(xué)生思考,引出本節(jié)主旨。
學(xué)生思考問題。
生活中的問題展示,調(diào)動學(xué)生學(xué)習(xí)的積極性,讓學(xué)生體會到集合在日常生活中的廣泛應(yīng)用
自主學(xué)習(xí)
(5分鐘)
學(xué)生自主學(xué)習(xí)課本第3頁《集合的含義與表示》,并完成相應(yīng)學(xué)案內(nèi)容:
(1)指定對象的叫集合;集合常用表示;
(2)集合中的每個(gè)叫元素,元素常用表示;
(3)集合與元素的關(guān)系:
元素a在集合A中,記為;元素a不在集合B中,記為;
(4)常用數(shù)集的表示:
N;N+;Z;Q;R。
(5)列舉法特點(diǎn)
(6)描述法特點(diǎn)
教師介紹引導(dǎo)學(xué)生自學(xué)《集合的含義與表示》
自主學(xué)習(xí)課本中《集合的含義與表示》,并完成導(dǎo)學(xué)案的內(nèi)容,并當(dāng)堂展示。
培養(yǎng)學(xué)生自主學(xué)習(xí),獲取知識的能力
合作探究(10分鐘)
1.集合中元素有哪些特性?
2.列舉法適用范圍
3.描述法的適用范圍
教師引導(dǎo)學(xué)生分組探討,從旁巡視指導(dǎo)學(xué)生在自學(xué)和探討中遇到的問題,并鼓勵(lì)學(xué)生以小組為單位展示探究成果。
學(xué)生展開合作性的探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵(lì)學(xué)生合作學(xué)習(xí)的品質(zhì)
當(dāng)堂訓(xùn)練(18分鐘)
例1:判斷下列一組對象是否屬于一個(gè)集合呢?
(1)小于10的質(zhì)數(shù)
(2)著名數(shù)學(xué)家
(3)中國的直轄市
(4)maths中的字母
(5)book中的字母
(6)所有的偶數(shù)
(7)所有直角三角形
(8)滿足3x-2x+3的全體實(shí)數(shù)
(9)方程的實(shí)數(shù)解
2、判斷下面說法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的數(shù)都不在Z中()
(4)所有不在Q中的實(shí)數(shù)都在R中()
(5)由既在R中又在N*中的數(shù)組成的集合中一定包含數(shù)0()
(6)不在N中的數(shù)不能使方程4x=8成立()
指導(dǎo)學(xué)生就集合和元素間的關(guān)系展開訓(xùn)練。
學(xué)生自主開展訓(xùn)練,并糾正學(xué)習(xí)中所遇到的問題
鞏固所學(xué)知識,并查缺補(bǔ)漏。
回顧小結(jié)
(1分鐘)
1.你學(xué)到了哪些知識?
2.你掌握了哪些技能?
采用提問的形式幫助學(xué)生回顧和分析本節(jié)所學(xué)。
學(xué)生思考并從知識、技能和思想方法上回顧總結(jié)。
培養(yǎng)學(xué)生歸納總結(jié)能力
作業(yè)布置
(1分鐘)
課本6頁習(xí)題1-1
A組的第3、4道題
布置訓(xùn)練任務(wù)
標(biāo)記并完成相應(yīng)的任務(wù)
檢測學(xué)生掌握知識情況。
教學(xué)反思
本節(jié)教學(xué)主要遵循“回-導(dǎo)-學(xué)-展-講-練-結(jié)”的高效課堂教學(xué)模式,遵循學(xué)生學(xué)習(xí)的主體地位,鼓勵(lì)學(xué)生自主思考和探討。
集合章節(jié)學(xué)習(xí)中要更多地結(jié)合生活中的實(shí)例展開,讓學(xué)生就生活中的實(shí)例展開學(xué)習(xí)和討論,并能理解其中元素和集合間的關(guān)系,掌握描述對象的生活語言和數(shù)學(xué)語言的不同。
高一數(shù)學(xué)集合的含義及其表示教案
作為優(yōu)秀的教學(xué)工作者,在教學(xué)時(shí)能夠胸有成竹,教師要準(zhǔn)備好教案,這是教師的任務(wù)之一。教案可以讓學(xué)生們充分體會到學(xué)習(xí)的快樂,減輕教師們在教學(xué)時(shí)的教學(xué)壓力。教案的內(nèi)容具體要怎樣寫呢?下面是由小編為大家整理的“高一數(shù)學(xué)集合的含義及其表示教案”,僅供參考,歡迎大家閱讀。
1.1.1集合的含義及其表示(一)
教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性.了解有限集、無限集、空集概念,
教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“”的使用
教學(xué)難點(diǎn):集合概念的理解;
課型:新授課
教學(xué)手段:
教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級在體育館集合進(jìn)行軍訓(xùn)動員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對象的總體。
研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論創(chuàng)始者是由德國數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。
下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識,為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。
二、新課教學(xué)
“物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。
如:自然數(shù)的集合0,1,2,3,……
如:2x-13,即x2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。
如:幾何中,圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合。
1、一般地,指定的某些對象的全體稱為集合,標(biāo)記:A,B,C,D,…
集合中的每個(gè)對象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…
2、元素與集合的關(guān)系
a是集合A的元素,就說a屬于集合A,記作a∈A,
a不是集合A的元素,就說a不屬于集合A,記作aA
思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點(diǎn)評,
進(jìn)而講解下面的問題。
例1:判斷下列一組對象是否屬于一個(gè)集合呢?
(1)小于10的質(zhì)數(shù)(2)著名數(shù)學(xué)家(3)中國的直轄市(4)maths中的字母
(5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2x+3的全體實(shí)數(shù)
(9)方程的實(shí)數(shù)解
評注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。
3、集合的中元素的三個(gè)特性:
1.元素的確定性:對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
2.元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合
3.元素的無序性:集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
4、數(shù)的集簡稱數(shù)集,下面是一些常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N有理數(shù)集Q
正整數(shù)集N*或N+實(shí)數(shù)集R
整數(shù)集Z
5、集合的分類原則:集合中所含元素的多少
①有限集含有限個(gè)元素,如A={-2,3}
②無限集含無限個(gè)元素,如自然數(shù)集N,有理數(shù)
③空集不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ
三、課堂練習(xí)
1、用符合“∈”或“”填空:課本P15練習(xí)慣1
2、判斷下面說法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的數(shù)都不在Z中()
(4)所有不在Q中的實(shí)數(shù)都在R中()
(5)由既在R中又在N*中的數(shù)組成的集合中一定包含數(shù)0()
(6)不在N中的數(shù)不能使方程4x=8成立()
四、回顧反思
1、集合的概念
2、集合元素的三個(gè)特征
其中“集合中的元素必須是確定的”應(yīng)理解為:對于一個(gè)給定的集合,它的元素的意義是明確的.
“集合中的元素必須是互異的”應(yīng)理解為:對于給定的集合,它的任何兩個(gè)元素都是不同的.
3、常見數(shù)集的專用符號.
五、作業(yè)布置
1.下列各組對象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù)
(2)好心的人
(3)1,2,2,3,4,5.
2.設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是
3.由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含()
(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素
4.下列結(jié)論不正確的是()
A.O∈NB.QC.OQD.-1∈Z
5.下列結(jié)論中,不正確的是()
A.若a∈N,則-aNB.若a∈Z,則a2∈Z
C.若a∈Q,則|a|∈QD.若a∈R,則
6.求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;
板書設(shè)計(jì)(略)
高一數(shù)學(xué)教案:《集合》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《集合》教學(xué)設(shè)計(jì)
一、知識結(jié)構(gòu)
本小節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例人手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子.
二、重點(diǎn)難點(diǎn)分析
這一節(jié)的重點(diǎn)是集合的基本概念和表示方法,難點(diǎn)是運(yùn)用集合的三種常用表示方法正確表示一些簡單的集合.這一節(jié)的特點(diǎn)是概念多、符號多,正確理解概念和準(zhǔn)確使用符號是學(xué)好本節(jié)的關(guān)鍵.為此,在教學(xué)時(shí)可以配備一些需要辨析概念、判斷符號表示正誤的題目,以幫助學(xué)生提高判斷能力,加深理解集合的概念和表示方法.
1.關(guān)于牽頭圖和引言分析
章頭圖是一組跳傘隊(duì)員編成的圖案,引言給出了一個(gè)實(shí)際問題,其目的都是為了引出本章的內(nèi)容無論是分析還是解決這個(gè)實(shí)際間題,必須用到集合和邏輯的知識,也就是把它數(shù)學(xué)化.一方面提高用數(shù)學(xué)的意識,一方面說明集合和簡易邏輯知識是高中數(shù)學(xué)重要的基礎(chǔ).
2.關(guān)于集合的概念分析
點(diǎn)、線、面等概念都是幾何中原始的、不加定義的概念,集合則是集合論中原始的、不加定義的概念.
初中代數(shù)中曾經(jīng)了解“正數(shù)的集合”、“不等式解的集合”;初中幾何中也知道中垂線是“到兩定點(diǎn)距離相等的點(diǎn)的集合”等等.在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識.教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集.”這句話,只是對集合概念的描述性說明.
我們可以舉出很多生活中的實(shí)際例子來進(jìn)一步說明這個(gè)概念,從而闡明集合概念如同其他數(shù)學(xué)概念一樣,不是人們憑空想象出來的,而是來自現(xiàn)實(shí)世界.
德育目標(biāo):
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時(shí)安排:2課時(shí)
教 具:多媒體、實(shí)物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念(例子見書):
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個(gè)集合。
(2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素。
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合。記作N
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合。記作Z
(4)有理數(shù)集:全體有理數(shù)的集合。記作Q
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合。記作R
注:
(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+ 、Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A;
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作 .
4、集合中元素的特性
(1)確定性:
按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可。
(2)互異性:
集合中的元素沒有重復(fù)。
(3)無序性:
集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
注:
1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫。
練習(xí)題
1、教材P5練習(xí)
2、下列各組對象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù)。 (不確定)
(2)好心的人。 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
閱讀教材第二部分,問題如下:
1.集合的表示方法有幾種?分別是如何定義的?
2.有限集、無限集、空集的概念是什么?試各舉一例。
(二)集合的表示方法
1、列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合的方法。
例如,由方程 的所有解組成的集合,可以表示為{-1,1}.
注:(1)有些集合亦可如下表示:
從51到100的所有整數(shù)組成的集合:{51,52,53,…,100}
所有正奇數(shù)組成的集合:{1,3,5,7,…}
(2)a與{a}不同:a表示一個(gè)元素,{a}表示一個(gè)集合,該集合只有一個(gè)元素。
描述法:用確定的條件表示某些對象是否屬于這個(gè)集合,并把這個(gè)條件寫在大括號內(nèi)表示集合的方法。
格式:{x∈A| P(x)}
含義:在集合A中滿足條件P(x)的x的集合。
例如,不等式 的解集可以表示為: 或
所有直角三角形的集合可以表示為:
注:(1)在不致混淆的情況下,可以省去豎線及左邊部分。
如:{直角三角形};{大于104的實(shí)數(shù)}
(2)錯(cuò)誤表示法:{實(shí)數(shù)集};{全體實(shí)數(shù)}
3、文氏圖:用一條封閉的曲線的內(nèi)部來表示一個(gè)集合的方法。
注:何時(shí)用列舉法?何時(shí)用描述法?
(1) 有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列舉法。
如:集合
(2) 有些集合的元素不能無遺漏地一一列舉出來,或者不便于、不需要一一列舉出來,常用描述法。
如:集合 ;集合{1000以內(nèi)的質(zhì)數(shù)}
注:集合 與集合 是同一個(gè)集合嗎?
答:不是。
集合 是點(diǎn)集,集合 = 是數(shù)集。
(三) 有限集與無限集
1、 有限集:含有有限個(gè)元素的集合。
2、 無限集:含有無限個(gè)元素的集合。
3、 空集:不含任何元素的集合。記作Φ,如:
1、P6練習(xí)
2、用描述法表示下列集合
①{1,4,7,10,13}
②{-2,-4,-6,-8,-10}
3、用列舉法表示下列集合
①{x∈N|x是15的約數(shù)} {1,3,5,15}
②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}寫成{1,2}或{x=1,y=2}
③
④ {-1,1}
⑤ {(0,8)(2,5),(4,2)}
⑥
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小 結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.集合的有關(guān)概念:(集合、元素、屬于、不屬于、有限集、無限集、空集)
2.集合的表示方法:(列舉法、描述法、文氏圖共3種)
3.常用數(shù)集的定義及記法
四、課后作業(yè):教材P7習(xí)題1.1
五、板書設(shè)計(jì):
課題
一、知識點(diǎn)
(一)
(二)
例題:
1.
2.
六、課后反思:
本節(jié)課在教學(xué)時(shí)主要教會學(xué)生學(xué)習(xí)集合的表示方法,在認(rèn)識集合時(shí),應(yīng)從兩方面入手:
(1)元素是什么?
(2)確定集合的表示方法是什么?表示集合時(shí),與采用字母名稱無關(guān)。
探究活動
【題目】數(shù)集A滿足條件:若 ,則 ( )
(1)若 ,試求出A中其他所有元素;
(2)自己設(shè)計(jì)一個(gè)數(shù)屬于A,然后求出A中其他所有元素;
(3)從上面兩小題的解答過程中,你能悟出什么道理?并大膽證明你發(fā)現(xiàn)的這個(gè)“道理”.
【參考答案】
(1)其他所有元素為-1, .
(2)略
(3)A中只能有3個(gè)元素,它們分別是 , , 且三個(gè)數(shù)的乘積為-1.
高一數(shù)學(xué)教案:《集合的表示》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《集合的表示》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
(1)了解集合的表示方法;
(2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學(xué)重點(diǎn):掌握集合的表示方法;
教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒ǎ?/p>
教學(xué)過程:
一、復(fù)習(xí)回顧:
1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
通過以上的學(xué)習(xí),我們知道可以大寫的拉丁字母表示集合,也可以用“自然語言”來描述一個(gè)集合,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。
如:“地球上的四大洋”可以表示為{太平洋,大西洋,印度洋,北冰洋};
“方程的所有實(shí)數(shù)”根組成的集合可以表示成{1,2};…;
說明:1.集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
2.各個(gè)元素之間要用逗號隔開;
3.元素不能重復(fù);
4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;
5.對于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實(shí)數(shù)根組成的集合;
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;