小學(xué)數(shù)學(xué)數(shù)學(xué)教案
發(fā)表時(shí)間:2021-08-13高一數(shù)學(xué)教案:《集合的表示》教學(xué)設(shè)計(jì)。
高一數(shù)學(xué)教案:《集合的表示》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
(1)了解集合的表示方法;
(2)能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):掌握集合的表示方法;
教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒ǎ?/p>
教學(xué)過程:
一、復(fù)習(xí)回顧:
1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
通過以上的學(xué)習(xí),我們知道可以大寫的拉丁字母表示集合,也可以用“自然語(yǔ)言”來(lái)描述一個(gè)集合,除此之外還常用列舉法和描述法來(lái)表示集合。
(1)列舉法:把集合中的元素一一列舉出來(lái),寫在大括號(hào)內(nèi)。
如:“地球上的四大洋”可以表示為{太平洋,大西洋,印度洋,北冰洋};
“方程的所有實(shí)數(shù)”根組成的集合可以表示成{1,2};…;
說(shuō)明:1.集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
2.各個(gè)元素之間要用逗號(hào)隔開;
3.元素不能重復(fù);
4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;
5.對(duì)于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號(hào),象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實(shí)數(shù)根組成的集合;jAb88.COM
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;
相關(guān)推薦
高一數(shù)學(xué)教案:《函數(shù)的表示方法》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《函數(shù)的表示方法》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1.進(jìn)一步理解函數(shù)的概念,了解函數(shù)表示的多樣性,能熟練掌握函數(shù)的三種不同的表示方法;
2.在理解掌握函數(shù)的三種表示方法基礎(chǔ)上,了解函數(shù)不同表示法的優(yōu)缺點(diǎn),針對(duì)具體問題能合理地選擇表示方法;
3.通過教學(xué),培養(yǎng)學(xué)生重要的數(shù)學(xué)思想方法——分類思想方法.
教學(xué)重點(diǎn):
函數(shù)的表示.
教學(xué)難點(diǎn):
針對(duì)具體問題合理選擇表示方法.
教學(xué)過程:
一、問題情境
1. 情境.
下表的對(duì)應(yīng)關(guān)系能否表示一個(gè)函數(shù):
MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0
x
1
3
5
7
y
-1
-3
0
0
2.問題.
如何表示一個(gè)函數(shù)呢?
二、學(xué)生活動(dòng)
1.閱讀課本掌握函數(shù)的三種常用表示方法;
2.比較三種表示法之間的優(yōu)缺點(diǎn).
3.完成練習(xí)
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的表示方法:
2.三種不同方法的優(yōu)缺點(diǎn):
函數(shù)的表示方法
優(yōu)點(diǎn)
缺點(diǎn)
列表法
對(duì)應(yīng)關(guān)系清晰直接
不連貫,容量小
解析法
便于用解析式研究函數(shù)的性質(zhì)
抽象,不直觀
圖象法
直觀形象,整體把握
圖象過程比較繁
3.三種不同方法的相互轉(zhuǎn)化:能用解析式表示的,一般都能列出符合條件的表、畫出符合條件的圖,反之亦然;列表法也能通過圖形來(lái)表示.
四、數(shù)學(xué)運(yùn)用
(一)例題
例1 購(gòu)買某種飲料x聽,所需錢數(shù)為y元.若每聽2元,試分別用解析法、列表法、圖象法將y表示成x(x∈{1,2,3,4})的函數(shù),并指出該函數(shù)的值域.
跟蹤練習(xí):某公司將進(jìn)貨單價(jià)為8元一個(gè)的商品按10元一個(gè)銷售,每天可賣出100個(gè),若這種商品的銷售價(jià)每個(gè)上漲1元,則銷售量就減少10個(gè).
(1)列表:
單價(jià)
10
20
數(shù)量
100
0
利潤(rùn)
200
0
(2)圖象:
(3)解析式:
將條件變換成:“某公司將進(jìn)貨單價(jià)為8元一個(gè)
的商品按10元一個(gè)銷售,每天可賣出110個(gè)”
例2 如圖,是一個(gè)二次函數(shù)的圖象的一部分,試根據(jù)圖象中的有關(guān)數(shù)據(jù),求出函數(shù)f(x)的解析式及其定義域.
(二)練習(xí):
1.1 nmile(海里)約為1854m,根據(jù)這一關(guān)系,寫出米數(shù)y關(guān)于海里數(shù)x的函數(shù)解析式.
2.用長(zhǎng)為30cm的鐵絲圍成矩形,試將矩形的面積S(cm2)表示為矩形一邊長(zhǎng)x(cm)的函數(shù),并畫出函數(shù)的圖象.
3.已知f(x)是一次函數(shù),且圖象經(jīng)過(1,0)和(-2,3)兩點(diǎn),求f(x)的解析式.
4.已知f(x)是一次函數(shù),且f(f(x))=9x-4,求f(x)的解析式.
五、回顧小結(jié)
1.函數(shù)表示的多樣性;
2.函數(shù)不同表示方法之間的聯(lián)系性;
3.待定系數(shù)法求函數(shù)的解析式.
六、作業(yè)
課堂作業(yè):課本35頁(yè)習(xí)題1,4,5.
高一數(shù)學(xué)教案:《集合》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《集合》教學(xué)設(shè)計(jì)
一、知識(shí)結(jié)構(gòu)
本小節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例人手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明.然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子.
二、重點(diǎn)難點(diǎn)分析
這一節(jié)的重點(diǎn)是集合的基本概念和表示方法,難點(diǎn)是運(yùn)用集合的三種常用表示方法正確表示一些簡(jiǎn)單的集合.這一節(jié)的特點(diǎn)是概念多、符號(hào)多,正確理解概念和準(zhǔn)確使用符號(hào)是學(xué)好本節(jié)的關(guān)鍵.為此,在教學(xué)時(shí)可以配備一些需要辨析概念、判斷符號(hào)表示正誤的題目,以幫助學(xué)生提高判斷能力,加深理解集合的概念和表示方法.
1.關(guān)于牽頭圖和引言分析
章頭圖是一組跳傘隊(duì)員編成的圖案,引言給出了一個(gè)實(shí)際問題,其目的都是為了引出本章的內(nèi)容無(wú)論是分析還是解決這個(gè)實(shí)際間題,必須用到集合和邏輯的知識(shí),也就是把它數(shù)學(xué)化.一方面提高用數(shù)學(xué)的意識(shí),一方面說(shuō)明集合和簡(jiǎn)易邏輯知識(shí)是高中數(shù)學(xué)重要的基礎(chǔ).
2.關(guān)于集合的概念分析
點(diǎn)、線、面等概念都是幾何中原始的、不加定義的概念,集合則是集合論中原始的、不加定義的概念.
初中代數(shù)中曾經(jīng)了解“正數(shù)的集合”、“不等式解的集合”;初中幾何中也知道中垂線是“到兩定點(diǎn)距離相等的點(diǎn)的集合”等等.在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí).教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.”這句話,只是對(duì)集合概念的描述性說(shuō)明.
我們可以舉出很多生活中的實(shí)際例子來(lái)進(jìn)一步說(shuō)明這個(gè)概念,從而闡明集合概念如同其他數(shù)學(xué)概念一樣,不是人們憑空想象出來(lái)的,而是來(lái)自現(xiàn)實(shí)世界.
德育目標(biāo):
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類型:新授課
課時(shí)安排:2課時(shí)
教 具:多媒體、實(shí)物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號(hào)?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念(例子見書):
1、集合的概念
(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合。
(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合。記作N
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合。記作Z
(4)有理數(shù)集:全體有理數(shù)的集合。記作Q
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合。記作R
注:
(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+ 、Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A;
(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作 .
4、集合中元素的特性
(1)確定性:
按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可。
(2)互異性:
集合中的元素沒有重復(fù)。
(3)無(wú)序性:
集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
注:
1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來(lái)寫。
練習(xí)題
1、教材P5練習(xí)
2、下列各組對(duì)象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù)。 (不確定)
(2)好心的人。 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
閱讀教材第二部分,問題如下:
1.集合的表示方法有幾種?分別是如何定義的?
2.有限集、無(wú)限集、空集的概念是什么?試各舉一例。
(二)集合的表示方法
1、列舉法:把集合中的元素一一列舉出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。
例如,由方程 的所有解組成的集合,可以表示為{-1,1}.
注:(1)有些集合亦可如下表示:
從51到100的所有整數(shù)組成的集合:{51,52,53,…,100}
所有正奇數(shù)組成的集合:{1,3,5,7,…}
(2)a與{a}不同:a表示一個(gè)元素,{a}表示一個(gè)集合,該集合只有一個(gè)元素。
描述法:用確定的條件表示某些對(duì)象是否屬于這個(gè)集合,并把這個(gè)條件寫在大括號(hào)內(nèi)表示集合的方法。
格式:{x∈A| P(x)}
含義:在集合A中滿足條件P(x)的x的集合。
例如,不等式 的解集可以表示為: 或
所有直角三角形的集合可以表示為:
注:(1)在不致混淆的情況下,可以省去豎線及左邊部分。
如:{直角三角形};{大于104的實(shí)數(shù)}
(2)錯(cuò)誤表示法:{實(shí)數(shù)集};{全體實(shí)數(shù)}
3、文氏圖:用一條封閉的曲線的內(nèi)部來(lái)表示一個(gè)集合的方法。
注:何時(shí)用列舉法?何時(shí)用描述法?
(1) 有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列舉法。
如:集合
(2) 有些集合的元素不能無(wú)遺漏地一一列舉出來(lái),或者不便于、不需要一一列舉出來(lái),常用描述法。
如:集合 ;集合{1000以內(nèi)的質(zhì)數(shù)}
注:集合 與集合 是同一個(gè)集合嗎?
答:不是。
集合 是點(diǎn)集,集合 = 是數(shù)集。
(三) 有限集與無(wú)限集
1、 有限集:含有有限個(gè)元素的集合。
2、 無(wú)限集:含有無(wú)限個(gè)元素的集合。
3、 空集:不含任何元素的集合。記作Φ,如:
1、P6練習(xí)
2、用描述法表示下列集合
①{1,4,7,10,13}
②{-2,-4,-6,-8,-10}
3、用列舉法表示下列集合
①{x∈N|x是15的約數(shù)} {1,3,5,15}
②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}寫成{1,2}或{x=1,y=2}
③
④ {-1,1}
⑤ {(0,8)(2,5),(4,2)}
⑥
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小 結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.集合的有關(guān)概念:(集合、元素、屬于、不屬于、有限集、無(wú)限集、空集)
2.集合的表示方法:(列舉法、描述法、文氏圖共3種)
3.常用數(shù)集的定義及記法
四、課后作業(yè):教材P7習(xí)題1.1
五、板書設(shè)計(jì):
課題
一、知識(shí)點(diǎn)
(一)
(二)
例題:
1.
2.
六、課后反思:
本節(jié)課在教學(xué)時(shí)主要教會(huì)學(xué)生學(xué)習(xí)集合的表示方法,在認(rèn)識(shí)集合時(shí),應(yīng)從兩方面入手:
(1)元素是什么?
(2)確定集合的表示方法是什么?表示集合時(shí),與采用字母名稱無(wú)關(guān)。
探究活動(dòng)
【題目】數(shù)集A滿足條件:若 ,則 ( )
(1)若 ,試求出A中其他所有元素;
(2)自己設(shè)計(jì)一個(gè)數(shù)屬于A,然后求出A中其他所有元素;
(3)從上面兩小題的解答過程中,你能悟出什么道理?并大膽證明你發(fā)現(xiàn)的這個(gè)“道理”.
【參考答案】
(1)其他所有元素為-1, .
(2)略
(3)A中只能有3個(gè)元素,它們分別是 , , 且三個(gè)數(shù)的乘積為-1.
高一數(shù)學(xué)教案:《函數(shù)的表示方法》優(yōu)秀教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《函數(shù)的表示方法》優(yōu)秀教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1.進(jìn)一步理解函數(shù)的表示方法的多樣性,理解分段函數(shù)的表示,能根據(jù)實(shí)際問題列出符合題意的分段函數(shù);
2.能較為準(zhǔn)確地作出分段函數(shù)的圖象;
3.通過教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
分段函數(shù)的圖象、定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
復(fù)習(xí)函數(shù)的表示方法;
已知A={1,2,3,4},B={1,3,5},試寫出從集合A到集合B的兩個(gè)函數(shù).
2.問題.
函數(shù)f(x)=|x|與f(x)=x是同一函數(shù)么?區(qū)別在什么地方?
二、學(xué)生活動(dòng)
1.畫出函數(shù)f(x)=|x|的圖象;
2.根據(jù)實(shí)際情況,能準(zhǔn)確地寫出分段函數(shù)的表達(dá)式.
三、數(shù)學(xué)建構(gòu)
1.分段函數(shù):在定義域內(nèi)不同的部分上,有不同的解析表達(dá)式的函數(shù)通常叫做分段函數(shù).
(1)分段函數(shù)是一個(gè)函數(shù),而不是幾個(gè)函數(shù);
(2)分段函數(shù)的定義域是幾部分的并;
(3)定義域的不同部分不能有相交部分;
(4)分段函數(shù)的圖象可能是一條連續(xù)但不平滑的曲線,也可能是由幾條曲線共同組成;
(5)分段函數(shù)的圖象未必是不連續(xù),不連續(xù)的圖象表示的函數(shù)也不一定是分段函數(shù),如反比例函數(shù)的圖象;
(6)分段函數(shù)是生活中最常見的函數(shù).
四、數(shù)學(xué)運(yùn)用
1.例題.
例1 某市出租汽車收費(fèi)標(biāo)準(zhǔn)如下:在3km以內(nèi)(含3km)路程按起步價(jià)7元收費(fèi),超過3km以外的路程按2.4元/km收費(fèi).試寫出收費(fèi)額關(guān)于路程的函數(shù)解析式.
例2 如圖,梯形OABC各頂點(diǎn)的坐標(biāo)分別為O(0,0),A(6,0),B(4,2),C(2,2).一條與y軸平行的動(dòng)直線l從O點(diǎn)開始作平行移動(dòng),到A點(diǎn)為止.設(shè)直線l與x軸的交點(diǎn)為M,OM=x,記梯形被直線l截得的在l左側(cè)的圖形的面積為y.求函數(shù)y=f(x)的解析式、定義域、值域.
例3 將函數(shù)f(x)= | x+1|+| x-2|表示成分段函數(shù)的形式,并畫出其圖象,根據(jù)圖象指出函數(shù)f(x)的值域.
2.練習(xí):
練習(xí)1:課本35頁(yè)第7題,36頁(yè)第9題.
(3)試比較函數(shù)f(x)=|x+1|+|x|與g(x)=|2x+1|是否為同一函數(shù).
(4)定義[x]表示不大于x的最大整數(shù),試作出函數(shù)f(x)=[x] (x∈[-1,3))的圖象.并將其表示成分段函數(shù).
練習(xí)3:如圖,點(diǎn)P在邊長(zhǎng)為2的正方形邊上按A→B→C→D→A的方向移動(dòng),試將AP表示成移動(dòng)的距離x的函數(shù).
五、回顧小結(jié)
分段函數(shù)的表示→分段函數(shù)的定義域→分段函數(shù)的圖象;
含絕對(duì)值的函數(shù)常與分段函數(shù)有關(guān);
利用對(duì)稱變換構(gòu)造函數(shù)的圖象.
六、作業(yè)
課堂作業(yè):課本35頁(yè)習(xí)題第3題,36頁(yè)第10,12題;
課后探究:已知函數(shù)f(x)=2x-1(x∈R),試作出函數(shù)f(|x|),|f(x)|的圖象.
高一數(shù)學(xué)教案:《集合的含義》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《集合的含義》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
(1)了解集合、元素的概念,體會(huì)集合中元素的三個(gè)特征;
(2)理解元素與集合的“屬于”和“不屬于”關(guān)系;
(3)掌握常用數(shù)集及其記法;
教學(xué)重點(diǎn):掌握集合的基本概念;
教學(xué)難點(diǎn):元素與集合的關(guān)系;
教學(xué)過程:
一、引入課題
學(xué)校通知:8月20日8點(diǎn),高一年級(jí)在體育館集合;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題:集合的含義)。
閱讀課本P2-P3內(nèi)容
二、新課教學(xué)
(一)集合的有關(guān)概念
1.一般地,我們把研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡(jiǎn)稱集。
2.思考1:判斷以下元素的全體是否組成集合,并說(shuō)明理由:
(1)大于3小于11的偶數(shù);
(2)我國(guó)的小河流;
(3)非負(fù)奇數(shù);
(4)方程的解;
(5)本校2015級(jí)新生;
(6)血壓很高的人;
(7)著名的數(shù)學(xué)家;
(8)平面直角坐標(biāo)系內(nèi)所有的第三象限的點(diǎn)
(9)全班成績(jī)好的學(xué)生。
對(duì)學(xué)生的解答予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問題。
3.集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)無(wú)序性:給定一個(gè)集合與集合里面元素的順序無(wú)關(guān)。
4.元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說(shuō)a屬于A,記作:a∈A
(2)如果a不是集合A的元素,就說(shuō)a不屬于A,記作:aA
例如,我們A表示“1~20以內(nèi)的所有質(zhì)數(shù)”組成的集合,則有3∈A
4A,等等。
5.集合與元素關(guān)系: 集合通常用大寫的拉丁字母A,B,C…表示,集合的元素用小寫的拉丁字母a,b,c,…表示。
6. 常用的數(shù)集:
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R;
7.等集:兩個(gè)集合的元素完全一樣。
(二)例題講解:
例1.用“∈”或“”符號(hào)填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設(shè)A為所有亞洲國(guó)家組成的集合,則中國(guó) A,美國(guó) A,印度 A,英國(guó) A。
例2.已知集合P的元素為, 若3∈P且-1P,求實(shí)數(shù)m的值。
(三)課堂練習(xí):
課本P5練習(xí)1;
歸納小結(jié):
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了常用集合及其記法。
作業(yè)布置:
1.習(xí)題1.1,第1- 2題;
2.預(yù)習(xí)集合的表示方法。
課后記: