小學(xué)語(yǔ)文復(fù)習(xí)課教案
發(fā)表時(shí)間:2021-01-18高三語(yǔ)文總復(fù)習(xí)(一)。
一名優(yōu)秀的教師在每次教學(xué)前有自己的事先計(jì)劃,高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓學(xué)生能夠在課堂積極的參與互動(dòng),幫助高中教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。你知道怎么寫具體的高中教案內(nèi)容嗎?下面是小編幫大家編輯的《高三語(yǔ)文總復(fù)習(xí)(一)》,供您參考,希望能夠幫助到大家。
高三語(yǔ)文總復(fù)習(xí)(一)
一高三總復(fù)習(xí)指導(dǎo)思想
1回顧兩年來(lái)學(xué)習(xí)語(yǔ)文課的成果
學(xué)于書本培養(yǎng)能力
返回書本增強(qiáng)能力
2進(jìn)行三輪復(fù)習(xí),夯實(shí)基礎(chǔ)知識(shí)
“一輪”復(fù)習(xí)重在復(fù)習(xí)課本知識(shí)www.lvshijia.net
“二輪”專題復(fù)習(xí)旨在瞄準(zhǔn)考點(diǎn)
“三輪”綜合復(fù)習(xí)意在應(yīng)考準(zhǔn)備
3高考語(yǔ)文考點(diǎn),人人心中有數(shù)
二高三語(yǔ)文總復(fù)習(xí)暑假任務(wù)
1進(jìn)行“一輪”總復(fù)習(xí),重點(diǎn)在1-4冊(cè),兼顧5-6冊(cè)。
2通過“一輪”總復(fù)習(xí),初步夯實(shí)語(yǔ)文基礎(chǔ)知識(shí)。
3“一輪”總復(fù)習(xí)與高考考點(diǎn)掛鉤。使同學(xué)們明確復(fù)習(xí)課本與準(zhǔn)備高考的關(guān)系是什么。
4談?wù)務(wù)Z文暑假作業(yè),提倡做些什么。
(1)做一本語(yǔ)文總復(fù)習(xí)練習(xí)冊(cè)。
(2)有計(jì)劃地復(fù)習(xí)1-4冊(cè),可以兼顧已學(xué)過的5-6冊(cè)有關(guān)篇目。
(3)每天看《新聞聯(lián)播》《新聞360°》《特別關(guān)注》《法制進(jìn)行時(shí)》......可以根據(jù)個(gè)人時(shí)間進(jìn)行選擇,保持與時(shí)代步伐的一致性。
(4)文化積累:名人名言;奇聞異事;民俗文化......了解你生活區(qū)域特點(diǎn)的事物,了解一位或幾位你敬仰或喜歡的人物。請(qǐng)注意細(xì)致了解不可只知大略。
(5)翻閱《新華字典》《漢語(yǔ)成語(yǔ)小字典》《現(xiàn)代漢語(yǔ)詞典》《唐詩(shī)鑒賞辭典》《宋詩(shī)(詞)鑒賞辭典》......有計(jì)劃地閱讀。
(6)留心發(fā)生在你身邊的事情,留心;觀察;思索;評(píng)論,寫下點(diǎn)什么。
第一冊(cè)復(fù)習(xí)
高中語(yǔ)文第一冊(cè)共有六個(gè)單元,按每?jī)?cè)固定兩個(gè)古文單元外,其他四個(gè)單元:現(xiàn)當(dāng)代詩(shī)歌單元;散文單元;演講詞(議論文)單元;序言單元。
升入高中以后,我們開始接觸不同的文學(xué)樣式。
一、首先是“詩(shī)歌”。
文學(xué)體裁:散文,小說(shuō),戲劇,詩(shī)歌。
“詩(shī)歌”
1,概念
文學(xué)體裁的一種,它以高度凝煉的語(yǔ)言,形象的表達(dá)作者豐富的思想感情,集中地反映社會(huì)生活,并具有一定的節(jié)奏和韻律。
2,詩(shī)歌的特點(diǎn)
(1)詩(shī)歌內(nèi)容是社會(huì)生活最集中的反映;
(2)詩(shī)歌有豐富的感情和想象;
(3)詩(shī)歌的語(yǔ)言是精練的,形象的,音調(diào)和諧,節(jié)奏鮮明的;
(4)詩(shī)歌在形式上,不是以句子為單位,而是以行為單位的。
3,詩(shī)歌的分類
按內(nèi)容有無(wú)較完整抒情詩(shī)直接抒情
的故事和人物分借景抒情
借人,事的描述抒情
詩(shī)歌敘事詩(shī)
按形式分格律詩(shī)
自由詩(shī)
散文詩(shī)
4,律詩(shī)的排序及詩(shī)歌知識(shí)
首先,從押韻方面看:
律詩(shī)首句可入韻,也可不入韻。
偶句(二,四,六,八句)都押韻。
絕句第三句不押韻。
其次,從對(duì)仗方面看:
律詩(shī)首聯(lián)尾聯(lián)可不對(duì)仗;但頷聯(lián)頸聯(lián)必須對(duì)仗。
最后,從平仄看:
律詩(shī)的平仄規(guī)則從排序的角度可用“一,三,五不論;二,四,六分明”二句口訣概括,也就是說(shuō)一,三,五字平仄不管,二,四,六字的平仄必須符合規(guī)則。
“平仄”
“平聲”漢語(yǔ)四聲之一
“陽(yáng)平”“—”
“陽(yáng)平”“ˊ”平聲
“上聲”“ˇ”
“去聲”“ˋ”仄聲
律詩(shī)的結(jié)構(gòu):律詩(shī)共八句,一二兩句為首聯(lián),三四兩句為頷聯(lián),五六兩句為頸聯(lián),七八兩句為尾聯(lián)。
詞的鼎盛時(shí)期出現(xiàn)在寧朝。
詞的標(biāo)題和詞牌是有著嚴(yán)格區(qū)別的,詞的標(biāo)題是詞的內(nèi)容的集中體現(xiàn),它概括了詞的主要內(nèi)容。詞牌是一首詞詞調(diào)的句稱。
5,從第一單元看詩(shī)歌
《毛澤東詞二首》《沁園春·長(zhǎng)沙》《采桑子·重陽(yáng)》(稱之老瓶裝新酒)
《中國(guó)現(xiàn)代詩(shī)三首》需記憶和了解三位現(xiàn)代詩(shī)人:徐志摩,聞一多,穆旦。
不可忽視P11兩首詩(shī)的賞析
“賞析”即欣賞并分析。對(duì)于詩(shī)歌來(lái)講對(duì)于題目的分析,對(duì)于作品及背景的了解,都是有助于對(duì)于詩(shī)歌進(jìn)行“賞析”的。
《老馬》其深刻的含義是什么?
《斷章》如何反映了作者的哲學(xué)思想?
《中國(guó)當(dāng)代詩(shī)三首》對(duì)《錯(cuò)誤》《致橡樹》《面朝大海,春暖花開》三首詩(shī)的三位作者進(jìn)行再了解。
臺(tái)灣詩(shī)人鄭悉予
當(dāng)代女詩(shī)人舒婷
已故詩(shī)人海子
不同的詩(shī)人經(jīng)歷,不同的詩(shī)歌風(fēng)格,特別“朦朧詩(shī)”及“后朦朧詩(shī)”的膚淺的認(rèn)識(shí)。
通過意象表現(xiàn)作者內(nèi)心豐富的情感。
舒婷當(dāng)時(shí)以一位普通女工的身份在工余時(shí)間寫下了這首詩(shī)。以一位普通女工的赤子之心,真摯、委婉地抒發(fā)了對(duì)祖國(guó)的深情,吹奏出舒婷詩(shī)歌中最動(dòng)人的樂章。
在提倡“八榮八不恥”的今天,大力弘揚(yáng)愛國(guó)主義精神,歌唱祖國(guó)是時(shí)代的主旋律,我們應(yīng)當(dāng)從這方面去認(rèn)真思考。“感人心者,莫先乎情”白居易這樣說(shuō)過,舒婷這樣做了,我們呢?
不少同學(xué)對(duì)海子十分感興趣,有的同學(xué)認(rèn)真的研究了他短暫的一生,在高考中完成了一份滿分作文。
有人總結(jié)海子這首詩(shī)的特點(diǎn)說(shuō),一是意象空曠,讓人聯(lián)想到更多的內(nèi)容;二是以實(shí)顯虛,以近顯遠(yuǎn);三是語(yǔ)言純粹,本真。當(dāng)然一、二兩條用于分析這首詩(shī)的意象很適合。唯其單純明凈,才有“空曠”“虛實(shí)”“遠(yuǎn)近”的韻味?!懊娉蠛!笔菍?shí)景,“春暖花開”是虛景,海子獨(dú)具慧眼,竟然看出了“春暖花開”。“面對(duì)大?!薄跋∷善匠!?,“春暖花開”卻是神來(lái)之筆。這是詩(shī)人的“心畫”,是夢(mèng)想的溫柔之鄉(xiāng),寄托著詩(shī)人無(wú)限渺遠(yuǎn)的情思遐想。海子善于將詩(shī)中的意象美化。其美是極其洗煉的純凈的美。洗煉之美多出于老練,老到之手,多見于老作家之作。少年才子多有夸飾詞情。海子年輕有為,詩(shī)作意象洗煉,純凈,可謂出手不凡,令人稱奇。
我為什么這樣大段的講了海子詩(shī)作的特點(diǎn),目的是說(shuō)明我們?cè)撓蛩麑W(xué)習(xí)什么。
學(xué)習(xí)他的想象能力,學(xué)習(xí)他駕馭語(yǔ)言的能力。學(xué)習(xí)他輕柔,明麗的詩(shī)風(fēng)。
遺憾的是,海子寫完這首向往大海的詩(shī)之后不久,在離海不遠(yuǎn)的地方不幸逝世,永遠(yuǎn)地“面朝大?!绷?。大海是安魂之鄉(xiāng)。海子,海的兒子。
詩(shī)既沒有生動(dòng)的情節(jié),又沒有奇異的故事,它和小說(shuō),散文,電影,電視競(jìng)爭(zhēng)靠什么?靠語(yǔ)言,靠用奇妙的字和詞。
詩(shī)是語(yǔ)言文詞的魔術(shù)!
高考寫作是靠語(yǔ)言競(jìng)爭(zhēng)的,這應(yīng)當(dāng)是你的必備實(shí)國(guó),否則敗陣下來(lái)并不困難。(參考課本P26《談讀詩(shī)與趣味的培養(yǎng)》)
二、“散文”
1,概念:
散文是指同詩(shī)歌、小說(shuō)、戲劇并列的一種文學(xué)體裁。
散文可以分為敘事散文、抒情散文和議論散文。
敘事散文以寫人敘事為主,兼有抒情成分。抒情散文以抒發(fā)作者感情為主。議論散文以說(shuō)理為主。
散文的主要特點(diǎn)“形散神不散”?!靶紊ⅰ笔侵干⑽娜〔淖杂?,不受時(shí)空限制,表達(dá)方式多種多樣?!吧癫簧ⅰ笔侵干⑽牡闹黝}要明確集中。
以上介紹了散文的概念、分類,表達(dá)方式及主要特點(diǎn)。
隨后看一看編入第一冊(cè)第二單元的四篇散文名作。
2,四篇名作
《荷塘月色》《我的空中樓閣》《我與地壇》《花未眠》都是抒情散文。
抒情散文重在抒情。將這種情訴諸文字,往往不是直露無(wú)遺的,而是通過精巧、綿密的構(gòu)思,富有華彩或哲理性的語(yǔ)言,在寫景,狀物,敘事中深婉迂曲又自然而然地表現(xiàn)的。這種情,打上了作者個(gè)性,人格的印記,具有真實(shí)性,獨(dú)特性;同時(shí),它又是社會(huì)生活、時(shí)代風(fēng)云在作者心底留下的痕跡,具有社會(huì)性,時(shí)代性。
本單元的鑒賞重點(diǎn),是在整體把握散文思想內(nèi)容和藝術(shù)形式的基礎(chǔ)上,品味散文的語(yǔ)言,賞析散文的表現(xiàn)手法。P30
為什么格外重視單元之前這段“單元綜述”呢?請(qǐng)同學(xué)們?cè)俅伍喿x這四篇名作,想想下面幾個(gè)問題。
(1)《荷》《我的》《我與》《花》分別打上了作者怎樣的個(gè)性,人格的印記,又怎樣體現(xiàn)了社會(huì)生活,時(shí)代風(fēng)云在作者心底留下的痕跡。
(2)在這四篇中國(guó)現(xiàn)當(dāng)代散文和外國(guó)散文名作中,語(yǔ)言特點(diǎn)各為什么?表現(xiàn)手法又各具什么特點(diǎn)。
(3)以進(jìn)行“閱讀文學(xué)作品”的角度對(duì)四篇名作再次進(jìn)行閱讀,可在讀前自設(shè)問題,也可以在讀后自設(shè)問題。注意整體閱讀,品味文章,體會(huì)作者。
(4)總結(jié)散文閱讀要點(diǎn)是什么?一定要體現(xiàn)你個(gè)性閱讀特點(diǎn),把握不同文體的閱讀方法。
請(qǐng)參看課本P47《散文的藝術(shù)魅力》
三、再次是“演講詞”
1,概念:演講詞是為準(zhǔn)備演講而寫成的文稿。
2,特點(diǎn):論點(diǎn)鮮明,邏輯性強(qiáng),內(nèi)容的什對(duì)性,思想性和鼓動(dòng)性,語(yǔ)言的口語(yǔ)化,運(yùn)用多種修辭手法和表達(dá)技巧
3,作用:較強(qiáng)的說(shuō)服力和感染力。
四、最后是“序言”
1,概念:序言,簡(jiǎn)稱序,是寫在著作正文前的文章。
自序:作者寫的序叫自序,一般說(shuō)明自己寫書的宗旨和經(jīng)過。
他人寫序:多介紹作者或評(píng)論書的內(nèi)容
代序:把與本書相關(guān)的文章放在書前來(lái)代替序言。
2,特點(diǎn):內(nèi)容廣泛,形式自由,感情色彩濃厚
相關(guān)知識(shí)
高三語(yǔ)文文言文總復(fù)習(xí)
一名優(yōu)秀負(fù)責(zé)的教師就要對(duì)每一位學(xué)生盡職盡責(zé),作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生更好的消化課堂內(nèi)容,使高中教師有一個(gè)簡(jiǎn)單易懂的教學(xué)思路。你知道如何去寫好一份優(yōu)秀的高中教案呢?為了讓您在使用時(shí)更加簡(jiǎn)單方便,下面是小編整理的“高三語(yǔ)文文言文總復(fù)習(xí)”,大家不妨來(lái)參考。希望您能喜歡!
高考語(yǔ)文文言文總復(fù)習(xí)在高三復(fù)習(xí)迎考中,許多學(xué)生不太喜歡或很少“朗讀”文言文,所以,絕大數(shù)學(xué)生的文言文“語(yǔ)感”,即對(duì)語(yǔ)意及用法所產(chǎn)生的直覺感知還是比較“淺”、比較“滯”的。在考場(chǎng)上,面對(duì)第一次“見面”的生疏文言語(yǔ)段,不少學(xué)生反映“讀不懂”,于是只得云里霧里地去理解文義,連猜帶蒙地去解答題目。
若能在考前有限的時(shí)間里做到“朗讀”,在考場(chǎng)上輔之以“默讀”,在答題時(shí)就會(huì)容易“入題”,也容易“解題”,考生不妨一試。
考前進(jìn)行一遍“朗讀”
在考前有限的幾天時(shí)間里,如果能再進(jìn)行一次踏踏實(shí)實(shí)的“朗讀”,一定能夠獲得很大的收益。因?yàn)?“讀”,不易走神——聚精會(huì)神是最佳的復(fù)習(xí)效果;“讀”,不易忘記——刻骨銘心是把握知識(shí)的最好狀態(tài);“讀”,易加深理解——準(zhǔn)確理解是贏得高分的重要保障;“讀”,易觸發(fā)靈感——心有靈犀是立意創(chuàng)新的源源活水。
在考前這幾天,把語(yǔ)文書和各類考卷上的文言文“通讀”一遍,讀到能夠“同步翻譯”的最高境界。就是“嘴上”讀文,“腦中”譯文,自己嘴上所誦讀的“聲”與自己心里所理解的“義”,來(lái)一個(gè)“同步翻譯”。
重視文言實(shí)詞語(yǔ)言環(huán)境
在朗讀過程中,要抓住一個(gè)核心——實(shí)詞的理解。
每一個(gè)實(shí)詞都有著它最基本的意義,這些意義大都在我們的理解和把握之內(nèi);但每一個(gè)實(shí)詞在不同的語(yǔ)言環(huán)境中又會(huì)呈現(xiàn)出各自不同的意義。在解讀實(shí)詞時(shí)我們往往會(huì)忽略甚至忘記“這個(gè)實(shí)詞”的“語(yǔ)言環(huán)境”——這是我們?cè)凇袄首x”時(shí)要時(shí)時(shí)提醒自己的關(guān)鍵之處。如果在解答試卷時(shí),我們離開了“這個(gè)詞”的語(yǔ)言環(huán)境,就會(huì)自覺不自覺地習(xí)慣用實(shí)詞的“基本意義”來(lái)認(rèn)知試卷上的實(shí)詞,這樣就會(huì)造成對(duì)實(shí)詞理解的嚴(yán)重偏差。
在實(shí)詞的解答中,我們常常容易犯的錯(cuò)誤是:
組詞法——習(xí)慣于用“組詞”的方法來(lái)思考和釋詞;填空法——把需要解釋的詞扔掉,只是按照上下文的意思填入一個(gè)詞語(yǔ);對(duì)應(yīng)法——只是用一個(gè)雙音節(jié)的詞語(yǔ)釋詞對(duì)應(yīng)。這些應(yīng)引起考生的高度重視。
考場(chǎng)默讀提高閱讀質(zhì)量
如果有了考前朗讀的“熱身”過程,在考場(chǎng)上考生就會(huì)自然而然地進(jìn)入“默讀”狀態(tài)?!澳x”能夠促進(jìn)考生對(duì)文義的準(zhǔn)確、正確理解。
在考場(chǎng)“默讀”中,考生應(yīng)該具有這樣兩個(gè)“意識(shí)”:
知識(shí)點(diǎn)分布意識(shí)。高考文言文閱讀的命題者常常是用有限的題目量來(lái)涵蓋較多的文言文知識(shí),這樣可以使得考查的范圍更大、知識(shí)更廣。命題者命題的策略也正是我們復(fù)習(xí)和考試的策略,即同一個(gè)“知識(shí)點(diǎn)”在同一份試卷中重復(fù)出現(xiàn)的可能是微乎其微的。
整體把握意識(shí)。文言文句子翻譯需要了解修辭格、文化意義,以及人物、事件、觀點(diǎn)等。古人在表達(dá)時(shí),由于所處年代的政治氛圍、道德規(guī)范、文化背景、民俗習(xí)慣等要素,使得作者在表達(dá)文意的時(shí)候,染上了較明顯的時(shí)空色彩,這些都是我們“默讀”時(shí)需要注意的。
2012屆高三理科數(shù)學(xué)數(shù)列總復(fù)習(xí)
一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),作為教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助教師提前熟悉所教學(xué)的內(nèi)容。那么怎么才能寫出優(yōu)秀的教案呢?下面是小編為大家整理的“2012屆高三理科數(shù)學(xué)數(shù)列總復(fù)習(xí)”,相信您能找到對(duì)自己有用的內(nèi)容。
第六章數(shù)列
高考導(dǎo)航
考試要求重難點(diǎn)擊命題展望
1.數(shù)列的概念和簡(jiǎn)單表示法?
(1)了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式);?(2)了解數(shù)列是自變量為正整數(shù)的一類函數(shù).?
2.等差數(shù)列、等比數(shù)列?
(1)理解等差數(shù)列、等比數(shù)列的概念;?
(2)掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式;?
(3)能在具體問題情境中識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題;?
(4)了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.本章重點(diǎn):1.等差數(shù)列、等比數(shù)列的定義、通項(xiàng)公式和前n項(xiàng)和公式及有關(guān)性質(zhì);
2.注重提煉一些重要的思想和方法,如:觀察法、累加法、累乘法、待定系數(shù)法、倒序相加求和法、錯(cuò)位相減求和法、裂項(xiàng)相消求和法、分組求和法、函數(shù)與方程思想、數(shù)學(xué)模型思想以及離散與連續(xù)的關(guān)系.?
本章難點(diǎn):1.數(shù)列概念的理解;2.等差等比數(shù)列性質(zhì)的運(yùn)用;3.數(shù)列通項(xiàng)與求和方法的運(yùn)用.仍然會(huì)以客觀題考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式及性質(zhì),在解答題中,會(huì)保持以前的風(fēng)格,注重?cái)?shù)列與其他分支的綜合能力的考查,在高考中,數(shù)列??汲P?,其主要原因是它作為一個(gè)特殊函數(shù),使它可以與函數(shù)、不等式、解析幾何、三角函數(shù)等綜合起來(lái),命出開放性、探索性強(qiáng)的問題,更體現(xiàn)了知識(shí)交叉命題原則得以貫徹;又因?yàn)閿?shù)列與生產(chǎn)、生活的聯(lián)系,使數(shù)列應(yīng)用題也倍受歡迎.
知識(shí)網(wǎng)絡(luò)
6.1數(shù)列的概念與簡(jiǎn)單表示法
典例精析
題型一歸納、猜想法求數(shù)列通項(xiàng)
【例1】根據(jù)下列數(shù)列的前幾項(xiàng),分別寫出它們的一個(gè)通項(xiàng)公式:
(1)7,77,777,7777,…
(2)23,-415,635,-863,…
(3)1,3,3,5,5,7,7,9,9,…
【解析】(1)將數(shù)列變形為79(10-1),79(102-1),79(103-1),…,79(10n-1),
故an=79(10n-1).
(2)分開觀察,正負(fù)號(hào)由(-1)n+1確定,分子是偶數(shù)2n,分母是1×3,3×5,5×7,…,(2n-1)(2n+1),故數(shù)列的通項(xiàng)公式可寫成an=(-1)n+1.
(3)將已知數(shù)列變?yōu)?+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….
故數(shù)列的通項(xiàng)公式為an=n+.
【點(diǎn)撥】聯(lián)想與轉(zhuǎn)換是由已知認(rèn)識(shí)未知的兩種有效的思維方法,觀察歸納是由特殊到一般的有效手段,本例的求解關(guān)鍵是通過分析、比較、聯(lián)想、歸納、轉(zhuǎn)換獲得項(xiàng)與項(xiàng)序數(shù)的一般規(guī)律,從而求得通項(xiàng).
【變式訓(xùn)練1】如下表定義函數(shù)f(x):
x12345
f(x)54312
對(duì)于數(shù)列{an},a1=4,an=f(an-1),n=2,3,4,…,則a2008的值是()
A.1B.2C.3D.4
【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.
所以a2008=a4=2,故選B.
題型二應(yīng)用an=求數(shù)列通項(xiàng)
【例2】已知數(shù)列{an}的前n項(xiàng)和Sn,分別求其通項(xiàng)公式:
(1)Sn=3n-2;
(2)Sn=18(an+2)2(an>0).
【解析】(1)當(dāng)n=1時(shí),a1=S1=31-2=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,
又a1=1不適合上式,
故an=
(2)當(dāng)n=1時(shí),a1=S1=18(a1+2)2,解得a1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,
又an>0,所以an-an-1=4,
可知{an}為等差數(shù)列,公差為4,
所以an=a1+(n-1)d=2+(n-1)4=4n-2,
a1=2也適合上式,故an=4n-2.
【點(diǎn)撥】本例的關(guān)鍵是應(yīng)用an=求數(shù)列的通項(xiàng),特別要注意驗(yàn)證a1的值是否滿足“n≥2”的一般性通項(xiàng)公式.
【變式訓(xùn)練2】已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是()
A.2n-1B.(n+1n)n-1C.n2D.n
【解析】由an=n(an+1-an)an+1an=n+1n.
所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故選D.
題型三利用遞推關(guān)系求數(shù)列的通項(xiàng)
【例3】已知在數(shù)列{an}中a1=1,求滿足下列條件的數(shù)列的通項(xiàng)公式:
(1)an+1=an1+2an;(2)an+1=2an+2n+1.
【解析】(1)因?yàn)閷?duì)于一切n∈N*,an≠0,
因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.
所以{1an}是等差數(shù)列,1an=1a1+(n-1)2=2n-1,即an=12n-1.
(2)根據(jù)已知條件得an+12n+1=an2n+1,即an+12n+1-an2n=1.
所以數(shù)列{an2n}是等差數(shù)列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.
【點(diǎn)撥】通項(xiàng)公式及遞推關(guān)系是給出數(shù)列的常用方法,尤其是后者,可以通過進(jìn)一步的計(jì)算,將其進(jìn)行轉(zhuǎn)化,構(gòu)造新數(shù)列求通項(xiàng),進(jìn)而可以求得所求數(shù)列的通項(xiàng)公式.
【變式訓(xùn)練3】設(shè){an}是首項(xiàng)為1的正項(xiàng)數(shù)列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.
【解析】因?yàn)閿?shù)列{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,
所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,
令an+1an=t,所以(n+1)t2+t-n=0,
所以[(n+1)t-n](t+1)=0,
得t=nn+1或t=-1(舍去),即an+1an=nn+1.
所以a2a1a3a2a4a3a5a4…anan-1=12233445…n-1n,所以an=1n.
總結(jié)提高
1.給出數(shù)列的前幾項(xiàng)求通項(xiàng)時(shí),常用特征分析法與化歸法,所求通項(xiàng)不唯一.
2.由Sn求an時(shí),要分n=1和n≥2兩種情況.
3.給出Sn與an的遞推關(guān)系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.
6.2等差數(shù)列
典例精析
題型一等差數(shù)列的判定與基本運(yùn)算
【例1】已知數(shù)列{an}前n項(xiàng)和Sn=n2-9n.
(1)求證:{an}為等差數(shù)列;(2)記數(shù)列{|an|}的前n項(xiàng)和為Tn,求Tn的表達(dá)式.
【解析】(1)證明:n=1時(shí),a1=S1=-8,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,
當(dāng)n=1時(shí),也適合該式,所以an=2n-10(n∈N*).
當(dāng)n≥2時(shí),an-an-1=2,所以{an}為等差數(shù)列.
(2)因?yàn)閚≤5時(shí),an≤0,n≥6時(shí),an>0.
所以當(dāng)n≤5時(shí),Tn=-Sn=9n-n2,
當(dāng)n≥6時(shí),Tn=a1+a2+…+a5+a6+…+an
=-a1-a2-…-a5+a6+a7+…+an
=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,
所以,
【點(diǎn)撥】根據(jù)定義法判斷數(shù)列為等差數(shù)列,靈活運(yùn)用求和公式.
【變式訓(xùn)練1】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S21=42,若記bn=,則數(shù)列{bn}()
A.是等差數(shù)列,但不是等比數(shù)列B.是等比數(shù)列,但不是等差數(shù)列
C.既是等差數(shù)列,又是等比數(shù)列D.既不是等差數(shù)列,又不是等比數(shù)列
【解析】本題考查了兩類常見數(shù)列,特別是等差數(shù)列的性質(zhì).根據(jù)條件找出等差數(shù)列{an}的首項(xiàng)與公差之間的關(guān)系從而確定數(shù)列{bn}的通項(xiàng)是解決問題的突破口.{an}是等差數(shù)列,則S21=21a1+21×202d=42.
所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即數(shù)列{bn}是非0常數(shù)列,既是等差數(shù)列又是等比數(shù)列.答案為C.
題型二公式的應(yīng)用
【例2】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍;
(2)指出S1,S2,…,S12中哪一個(gè)值最大,并說(shuō)明理由.
【解析】(1)依題意,有
S12=12a1+12×(12-1)d2>0,S13=13a1+13×(13-1)d2<0,
即
由a3=12,得a1=12-2d.③
將③分別代入①②式,得
所以-247<d<-3.
(2)方法一:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,
即a6+a7>0,a7<0,因此a6>0,a7<0,
故在S1,S2,…,S12中,S6的值最大.
方法二:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,…,S12中的最大值.
故在S1,S2,…,S12中,S6的值最大.
【變式訓(xùn)練2】在等差數(shù)列{an}中,公差d>0,a2008,a2009是方程x2-3x-5=0的兩個(gè)根,Sn是數(shù)列{an}的前n項(xiàng)的和,那么滿足條件Sn<0的最大自然數(shù)n=.
【解析】由題意知又因?yàn)楣頳>0,所以a2008<0,a2009>0.當(dāng)
n=4015時(shí),S4015=a1+a40152×4015=a2008×4015<0;當(dāng)n=4016時(shí),S4016=a1+a40162×4016=a2008+a20092×4016>0.所以滿足條件Sn<0的最大自然數(shù)n=4015.
題型三性質(zhì)的應(yīng)用
【例3】某地區(qū)2010年9月份曾發(fā)生流感,據(jù)統(tǒng)計(jì),9月1日該地區(qū)流感病毒的新感染者有40人,此后,每天的新感染者人數(shù)比前一天增加40人;但從9月11日起,該地區(qū)醫(yī)療部門采取措施,使該種病毒的傳播得到控制,每天的新感染者人數(shù)比前一天減少10人.
(1)分別求出該地區(qū)在9月10日和9月11日這兩天的流感病毒的新感染者人數(shù);
(2)該地區(qū)9月份(共30天)該病毒新感染者共有多少人?
【解析】(1)由題意知,該地區(qū)9月份前10天流感病毒的新感染者的人數(shù)構(gòu)成一個(gè)首項(xiàng)為40,公差為40的等差數(shù)列.
所以9月10日的新感染者人數(shù)為40+(10-1)×40=400(人).
所以9月11日的新感染者人數(shù)為400-10=390(人).
(2)9月份前10天的新感染者人數(shù)和為S10=10(40+400)2=2200(人),
9月份后20天流感病毒的新感染者的人數(shù),構(gòu)成一個(gè)首項(xiàng)為390,公差為-10的等差數(shù)列.
所以后20天新感染者的人數(shù)和為T20=20×390+20(20-1)2×(-10)=5900(人).
所以該地區(qū)9月份流感病毒的新感染者共有2200+5900=8100(人).
【變式訓(xùn)練3】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4≥10,S5≤15,則a4的最大值為
.
【解析】因?yàn)榈炔顢?shù)列{an}的前n項(xiàng)和為Sn,且S4≥10,S5≤15,
所以5+3d2≤a4≤3+d,即5+3d≤6+2d,所以d≤1,
所以a4≤3+d≤3+1=4,故a4的最大值為4.
總結(jié)提高
1.在熟練應(yīng)用基本公式的同時(shí),還要會(huì)用變通的公式,如在等差數(shù)列中,am=an+(m-n)d.
2.在五個(gè)量a1、d、n、an、Sn中,知其中的三個(gè)量可求出其余兩個(gè)量,要求選用公式要恰當(dāng),即善于減少運(yùn)算量,達(dá)到快速、準(zhǔn)確的目的.
3.已知三個(gè)或四個(gè)數(shù)成等差數(shù)列這類問題,要善于設(shè)元,目的仍在于減少運(yùn)算量,如三個(gè)數(shù)成等差數(shù)列時(shí),除了設(shè)a,a+d,a+2d外,還可設(shè)a-d,a,a+d;四個(gè)數(shù)成等差數(shù)列時(shí),可設(shè)為a-3m,a-m,a+m,a+3m.
4.在求解數(shù)列問題時(shí),要注意函數(shù)思想、方程思想、消元及整體消元的方法的應(yīng)用.
6.3等比數(shù)列
典例精析
題型一等比數(shù)列的基本運(yùn)算與判定
【例1】數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).求證:
(1)數(shù)列{Snn}是等比數(shù)列;(2)Sn+1=4an.
【解析】(1)因?yàn)閍n+1=Sn+1-Sn,an+1=n+2nSn,
所以(n+2)Sn=n(Sn+1-Sn).
整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,
故{Snn}是以2為公比的等比數(shù)列.
(2)由(1)知Sn+1n+1=4Sn-1n-1=4ann+1(n≥2),
于是Sn+1=4(n+1)Sn-1n-1=4an(n≥2).
又a2=3S1=3,故S2=a1+a2=4.
因此對(duì)于任意正整數(shù)n≥1,都有Sn+1=4an.
【點(diǎn)撥】①運(yùn)用等比數(shù)列的基本公式,將已知條件轉(zhuǎn)化為關(guān)于等比數(shù)列的特征量a1、q的方程是求解等比數(shù)列問題的常用方法之一,同時(shí)應(yīng)注意在使用等比數(shù)列前n項(xiàng)和公式時(shí),應(yīng)充分討論公比q是否等于1;②應(yīng)用定義判斷數(shù)列是否是等比數(shù)列是最直接,最有依據(jù)的方法,也是通法,若判斷一個(gè)數(shù)列是等比數(shù)列可用an+1an=q(常數(shù))恒成立,也可用a2n+1=anan+2恒成立,若判定一個(gè)數(shù)列不是等比數(shù)列則只需舉出反例即可,也可以用反證法.
【變式訓(xùn)練1】等比數(shù)列{an}中,a1=317,q=-12.記f(n)=a1a2…an,則當(dāng)f(n)最大時(shí),n的值為()
A.7B.8C.9D.10
【解析】an=317×(-12)n-1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此時(shí)n=9.故選C.
題型二性質(zhì)運(yùn)用
【例2】在等比數(shù)列{an}中,a1+a6=33,a3a4=32,an>an+1(n∈N*).
(1)求an;
(2)若Tn=lga1+lga2+…+lgan,求Tn.
【解析】(1)由等比數(shù)列的性質(zhì)可知a1a6=a3a4=32,
又a1+a6=33,a1>a6,解得a1=32,a6=1,
所以a6a1=132,即q5=132,所以q=12,
所以an=32(12)n-1=26-n.
(2)由等比數(shù)列的性質(zhì)可知,{lgan}是等差數(shù)列,
因?yàn)閘gan=lg26-n=(6-n)lg2,lga1=5lg2,
所以Tn=(lga1+lgan)n2=n(11-n)2lg2.
【點(diǎn)撥】歷年高考對(duì)性質(zhì)考查較多,主要是利用“等積性”,題目“小而巧”且背景不斷更新,要熟練掌握.
【變式訓(xùn)練2】在等差數(shù)列{an}中,若a15=0,則有等式a1+a2+…+an=a1+a2+…+a29-n(n<29,n∈N*)成立,類比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b19=1,能得到什么等式?
【解析】由題設(shè)可知,如果am=0,在等差數(shù)列中有
a1+a2+…+an=a1+a2+…+a2m-1-n(n<2m-1,n∈N*)成立,
我們知道,如果m+n=p+q,則am+an=ap+aq,
而對(duì)于等比數(shù)列{bn},則有若m+n=p+q,則aman=apaq,
所以可以得出結(jié)論:
若bm=1,則有b1b2…bn=b1b2…b2m-1-n(n<2m-1,n∈N*)成立.
在本題中則有b1b2…bn=b1b2…b37-n(n<37,n∈N*).
題型三綜合運(yùn)用
【例3】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,其中an≠0,a1為常數(shù),且-a1,Sn,an+1成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=1-Sn,問是否存在a1,使數(shù)列{bn}為等比數(shù)列?若存在,則求出a1的值;若不存在,說(shuō)明理由.
【解析】(1)由題意可得2Sn=an+1-a1.
所以當(dāng)n≥2時(shí),有
兩式相減得an+1=3an(n≥2).
又a2=2S1+a1=3a1,an≠0,
所以{an}是以首項(xiàng)為a1,公比為q=3的等比數(shù)列.
所以an=a13n-1.
(2)因?yàn)镾n=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.
要使{bn}為等比數(shù)列,當(dāng)且僅當(dāng)1+12a1=0,即a1=-2,此時(shí)bn=3n.
所以{bn}是首項(xiàng)為3,公比為q=3的等比數(shù)列.
所以{bn}能為等比數(shù)列,此時(shí)a1=-2.
【變式訓(xùn)練3】已知命題:若{an}為等差數(shù)列,且am=a,an=b(m<n,m、n∈N*),則am+n=bn-amn-m.現(xiàn)在已知數(shù)列{bn}(bn>0,n∈N*)為等比數(shù)列,且bm=a,bn=b(m<n,m,n∈N*),類比上述結(jié)論得bm+n=.
【解析】n-mbnam.
總結(jié)提高
1.方程思想,即等比數(shù)列{an}中五個(gè)量a1,n,q,an,Sn,一般可“知三求二”,通過求和與通項(xiàng)兩公式列方程組求解.
2.對(duì)于已知數(shù)列{an}遞推公式an與Sn的混合關(guān)系式,利用公式an=Sn-Sn-1(n≥2),再引入輔助數(shù)列,轉(zhuǎn)化為等比數(shù)列問題求解.
3.分類討論思想:當(dāng)a1>0,q>1或a1<0,0<q<1時(shí),等比數(shù)列{an}為遞增數(shù)列;當(dāng)a1>0,0<q<1或a1<0,q>1時(shí),{an}為遞減數(shù)列;q<0時(shí),{an}為擺動(dòng)數(shù)列;q=1時(shí),{an}為常數(shù)列.
6.4數(shù)列求和
典例精析
題型一錯(cuò)位相減法求和
【例1】求和:Sn=1a+2a2+3a3+…+nan.
【解析】(1)a=1時(shí),Sn=1+2+3+…+n=n(n+1)2.
(2)a≠1時(shí),因?yàn)閍≠0,
Sn=1a+2a2+3a3+…+nan,①
1aSn=1a2+2a3+…+n-1an+nan+1.②
由①-②得(1-1a)Sn=1a+1a2+…+1an-nan+1=1a(1-1an)1-1a-nan+1,
所以Sn=a(an-1)-n(a-1)an(a-1)2.
綜上所述,Sn=
【點(diǎn)撥】(1)若數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,則求數(shù)列{anbn}的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法;
(2)當(dāng)?shù)缺葦?shù)列公比為字母時(shí),應(yīng)對(duì)字母是否為1進(jìn)行討論;
(3)當(dāng)將Sn與qSn相減合并同類項(xiàng)時(shí),注意錯(cuò)位及未合并項(xiàng)的正負(fù)號(hào).
【變式訓(xùn)練1】數(shù)列{2n-32n-3}的前n項(xiàng)和為()
A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1
【解析】取n=1,2n-32n-3=-4.故選C.
題型二分組并項(xiàng)求和法
【例2】求和Sn=1+(1+12)+(1+12+14)+…+(1+12+14+…+12n-1).
【解析】和式中第k項(xiàng)為ak=1+12+14+…+12k-1=1-(12)k1-12=2(1-12k).
所以Sn=2[(1-12)+(1-122)+…+(1-12n)]
=-(12+122+…+12n)]
=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.
【變式訓(xùn)練2】數(shù)列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n項(xiàng)和為()
A.2n-1B.n2n-n
C.2n+1-nD.2n+1-n-2
【解析】an=1+2+22+…+2n-1=2n-1,
Sn=(21-1)+(22-1)+…+(2n-1)=2n+1-n-2.故選D.
題型三裂項(xiàng)相消法求和
【例3】數(shù)列{an}滿足a1=8,a4=2,且an+2-2an+1+an=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=1n(14-an)(n∈N*),Tn=b1+b2+…+bn(n∈N*),若對(duì)任意非零自然數(shù)n,Tn>m32恒成立,求m的最大整數(shù)值.
【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,
從而可知數(shù)列{an}為等差數(shù)列,設(shè)其公差為d,則d=a4-a14-1=-2,
所以an=8+(n-1)×(-2)=10-2n.
(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),
所以Tn=b1+b2+…+bn=14[(11-13)+(12-14)+…+(1n-1n+2)]
=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)>m32,
上式對(duì)一切n∈N*恒成立.
所以m<12-8n+1-8n+2對(duì)一切n∈N*恒成立.
對(duì)n∈N*,(12-8n+1-8n+2)min=12-81+1-81+2=163,
所以m<163,故m的最大整數(shù)值為5.
【點(diǎn)撥】(1)若數(shù)列{an}的通項(xiàng)能轉(zhuǎn)化為f(n+1)-f(n)的形式,常采用裂項(xiàng)相消法求和.
(2)使用裂項(xiàng)相消法求和時(shí),要注意正負(fù)項(xiàng)相消時(shí),消去了哪些項(xiàng),保留了哪些項(xiàng).
【變式訓(xùn)練3】已知數(shù)列{an},{bn}的前n項(xiàng)和為An,Bn,記cn=anBn+bnAn-anbn(n∈N*),則數(shù)列{cn}的前10項(xiàng)和為()
A.A10+B10B.A10+B102C.A10B10D.A10B10
【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10項(xiàng)和為A10B10,故選C.
總結(jié)提高
1.常用的基本求和法均對(duì)應(yīng)數(shù)列通項(xiàng)的特殊結(jié)構(gòu)特征,分析數(shù)列通項(xiàng)公式的特征聯(lián)想相應(yīng)的求和方法既是根本,也是關(guān)鍵.
2.數(shù)列求和實(shí)質(zhì)就是求數(shù)列{Sn}的通項(xiàng)公式,它幾乎涵蓋了數(shù)列中所有的思想策略、方法和技巧,對(duì)學(xué)生的知識(shí)和思維有很高的要求,應(yīng)充分重視并系統(tǒng)訓(xùn)練.
6.5數(shù)列的綜合應(yīng)用
典例精析
題型一函數(shù)與數(shù)列的綜合問題
【例1】已知f(x)=logax(a>0且a≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N*)是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)設(shè)a是常數(shù),求證:{an}成等比數(shù)列;
(2)若bn=anf(an),{bn}的前n項(xiàng)和是Sn,當(dāng)a=2時(shí),求Sn.
【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,
所以anan-1=a2n+2a2n=a2(n≥2)為定值,所以{an}為等比數(shù)列.
(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,
當(dāng)a=2時(shí),bn=(2n+2)(2)2n+2=(n+1)2n+2,
Sn=223+324+425+…+(n+1)2n+2,
2Sn=224+325+…+n2n+2+(n+1)2n+3,
兩式相減得
-Sn=223+24+25+…+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,
所以Sn=n2n+3.
【點(diǎn)撥】本例是數(shù)列與函數(shù)綜合的基本題型之一,特征是以函數(shù)為載體構(gòu)建數(shù)列的遞推關(guān)系,通過由函數(shù)的解析式獲知數(shù)列的通項(xiàng)公式,從而問題得到求解.
【變式訓(xùn)練1】設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則數(shù)列{1f(n)}(n∈N*)的前n項(xiàng)和是()
A.nn+1B.n+2n+1C.nn+1D.n+1n
【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.
所以f(x)=x2+x,則1f(n)=1n(n+1)=1n-1n+1.
所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故選C.
題型二數(shù)列模型實(shí)際應(yīng)用問題
【例2】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行著頑強(qiáng)的斗爭(zhēng),到2009年底全縣的綠化率已達(dá)30%,從2010年開始,每年將出現(xiàn)這樣的局面:原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化.
(1)設(shè)全縣面積為1,2009年底綠化面積為a1=310,經(jīng)過n年綠化面積為an+1,求證:an+1=45an+425;
(2)至少需要多少年(取整數(shù))的努力,才能使全縣的綠化率達(dá)到60%?
【解析】(1)證明:由已知可得an確定后,an+1可表示為an+1=an(1-4%)+(1-an)16%,
即an+1=80%an+16%=45an+425.
(2)由an+1=45an+425有,an+1-45=45(an-45),
又a1-45=-12≠0,所以an+1-45=-12(45)n,即an+1=45-12(45)n,
若an+1≥35,則有45-12(45)n≥35,即(45)n-1≤12,(n-1)lg45≤-lg2,
(n-1)(2lg2-lg5)≤-lg2,即(n-1)(3lg2-1)≤-lg2,
所以n≥1+lg21-3lg2>4,n∈N*,
所以n取最小整數(shù)為5,故至少需要經(jīng)過5年的努力,才能使全縣的綠化率達(dá)到60%.
【點(diǎn)撥】解決此類問題的關(guān)鍵是如何把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過反復(fù)讀題,列出有關(guān)信息,轉(zhuǎn)化為數(shù)列的有關(guān)問題.
【變式訓(xùn)練2】規(guī)定一機(jī)器狗每秒鐘只能前進(jìn)或后退一步,現(xiàn)程序設(shè)計(jì)師讓機(jī)器狗以“前進(jìn)3步,然后再后退2步”的規(guī)律進(jìn)行移動(dòng).如果將此機(jī)器狗放在數(shù)軸的原點(diǎn),面向正方向,以1步的距離為1單位長(zhǎng)移動(dòng),令P(n)表示第n秒時(shí)機(jī)器狗所在的位置坐標(biāo),且P(0)=0,則下列結(jié)論中錯(cuò)誤的是()
A.P(2006)=402B.P(2007)=403
C.P(2008)=404D.P(2009)=405
【解析】考查數(shù)列的應(yīng)用.構(gòu)造數(shù)列{Pn},由題知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2005)=401,P(2006)=401+1=402,P(2007)=401+1+1=403,P(2008)=401+
3=404,P(2009)=404-1=403.故D錯(cuò).
題型三數(shù)列中的探索性問題
【例3】{an},{bn}為兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an),Bn(n-1n,2n)為直角坐標(biāo)平面上的點(diǎn).
(1)對(duì)n∈N*,若點(diǎn)M,An,Bn在同一直線上,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三項(xiàng)為8,公比為4的等比數(shù)列,求證:點(diǎn)列(1,b1),(2,b2),…,(n,bn)在同一直線上,并求此直線方程.
【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.
(2)由已知有Cn=22n-3,由log2Cn的表達(dá)式可知:
2(b1+2b2+…+nbn)=n(n+1)(2n-3),①
所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②
①-②得bn=3n-4,所以{bn}為等差數(shù)列.
故點(diǎn)列(1,b1),(2,b2),…,(n,bn)共線,直線方程為y=3x-4.
【變式訓(xùn)練3】已知等差數(shù)列{an}的首項(xiàng)a1及公差d都是整數(shù),前n項(xiàng)和為Sn(n∈N*).若a1>1,a4>3,S3≤9,則通項(xiàng)公式an=.
【解析】本題考查二元一次不等式的整數(shù)解以及等差數(shù)列的通項(xiàng)公式.
由a1>1,a4>3,S3≤9得
令x=a1,y=d得
在平面直角坐標(biāo)系中畫出可行域如圖所示.符合要求的整數(shù)點(diǎn)只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.
總結(jié)提高
1.數(shù)列模型應(yīng)用問題的求解策略
(1)認(rèn)真審題,準(zhǔn)確理解題意;
(2)依據(jù)問題情境,構(gòu)造等差、等比數(shù)列,然后應(yīng)用通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)求解,或通過探索、歸納構(gòu)造遞推數(shù)列求解;
(3)驗(yàn)證、反思結(jié)果與實(shí)際是否相符.
2.數(shù)列綜合問題的求解策略
(1)數(shù)列與函數(shù)綜合問題或應(yīng)用數(shù)學(xué)思想解決數(shù)列問題,或以函數(shù)為載體構(gòu)造數(shù)列,應(yīng)用數(shù)列的知識(shí)求解;
(2)數(shù)列的幾何型綜合問題,探究幾何性質(zhì)和規(guī)律特征建立數(shù)列的遞推關(guān)系式,然后求解問題.
2012屆高三數(shù)學(xué)概率統(tǒng)計(jì)總復(fù)習(xí)
一名合格的教師要充分考慮學(xué)習(xí)的趣味性,作為教師就要好好準(zhǔn)備好一份教案課件。教案可以讓學(xué)生更好的消化課堂內(nèi)容,幫助教師掌握上課時(shí)的教學(xué)節(jié)奏。您知道教案應(yīng)該要怎么下筆嗎?下面是小編為大家整理的“2012屆高三數(shù)學(xué)概率統(tǒng)計(jì)總復(fù)習(xí)”,歡迎大家與身邊的朋友分享吧!
高三特長(zhǎng)班數(shù)學(xué)復(fù)習(xí)概率統(tǒng)計(jì)(一)
一、知識(shí)梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別共同點(diǎn)不同點(diǎn)相互聯(lián)系適用范圍
簡(jiǎn)單隨機(jī)抽樣都是等概率抽樣從總體中逐個(gè)抽取總體中個(gè)體比較少
系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡(jiǎn)單隨機(jī)抽樣總體中個(gè)體比較多
分層抽樣將總體分成若干層,按個(gè)體個(gè)數(shù)的比例抽取在各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣總體中個(gè)體有明顯差異
(1)從含有N個(gè)個(gè)體的總體中抽取n個(gè)個(gè)體的樣本,每個(gè)個(gè)體被抽到的概率為
(2)系統(tǒng)抽樣的步驟:①將總體中的個(gè)體隨機(jī)編號(hào);②將編號(hào)分段;③在第1段中用簡(jiǎn)單隨機(jī)抽樣確定起始的個(gè)體編號(hào);④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個(gè)體的個(gè)數(shù);③各層抽樣;④匯合成樣本.
(4)要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是最高矩形的中點(diǎn)的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計(jì)中位數(shù)的值
2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動(dòng)大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù),,…,,其平均數(shù)為則方差,標(biāo)準(zhǔn)差
3.古典概型的概率公式:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有個(gè),而且所有結(jié)果都是等可能的,如果事件包含個(gè)結(jié)果,那么事件的概率P=
特別提醒:古典概型的兩個(gè)共同特點(diǎn):
○1,即試中有可能出現(xiàn)的基本事件只有有限個(gè),即樣本空間Ω中的元素個(gè)數(shù)是有限的;
○2,即每個(gè)基本事件出現(xiàn)的可能性相等。
4.幾何概型的概率公式:P(A)=
特別提醒:幾何概型的特點(diǎn):試驗(yàn)的結(jié)果是無(wú)限不可數(shù)的;○2每個(gè)結(jié)果出現(xiàn)的可能性相等。
二、夯實(shí)基礎(chǔ)
(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個(gè)容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.
(2)某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了
11場(chǎng)比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別為()
A.19、13B.13、19C.20、18D.18、20
(3)統(tǒng)計(jì)某校1000名學(xué)生的數(shù)學(xué)會(huì)考成績(jī),
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是;
優(yōu)秀率為。
(4)在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:
9.48.49.49.99.69.49.7
去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值
和方差分別為()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長(zhǎng)為12cm的線段AB上任取一點(diǎn)M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()
三、高考鏈接
07、某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與19秒之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,成績(jī)大于等于13秒且小于14秒;第二組,成績(jī)大于等于14秒且小于15秒
;第六組,成績(jī)大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設(shè)成績(jī)小于17秒
的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為,成績(jī)大于等于15秒
且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可分析
出和分別為()
08、從某項(xiàng)綜合能力測(cè)試中抽取100人的成績(jī),統(tǒng)計(jì)如表,則這100人成績(jī)的標(biāo)準(zhǔn)差為()
分?jǐn)?shù)54321
人數(shù)2010303010
09、在區(qū)間上隨機(jī)取一個(gè)數(shù)x,的值介于0到之間的概率為().
08、現(xiàn)有8名奧運(yùn)會(huì)志愿者,其中志愿者通曉日語(yǔ),通曉俄語(yǔ),通曉韓語(yǔ).從中選出通曉日語(yǔ)、俄語(yǔ)和韓語(yǔ)的志愿者各1名,組成一個(gè)小組.
(Ⅰ)求被選中的概率;(Ⅱ)求和不全被選中的概率.
高三理科數(shù)學(xué)復(fù)數(shù)總復(fù)習(xí)教學(xué)案
一位優(yōu)秀的教師不打無(wú)準(zhǔn)備之仗,會(huì)提前做好準(zhǔn)備,作為教師準(zhǔn)備好教案是必不可少的一步。教案可以讓學(xué)生們充分體會(huì)到學(xué)習(xí)的快樂,幫助教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。優(yōu)秀有創(chuàng)意的教案要怎樣寫呢?為了讓您在使用時(shí)更加簡(jiǎn)單方便,下面是小編整理的“高三理科數(shù)學(xué)復(fù)數(shù)總復(fù)習(xí)教學(xué)案”,希望能為您提供更多的參考。
第十五章復(fù)數(shù)
高考導(dǎo)航
考試要求重難點(diǎn)擊命題展望
1.理解復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件.
2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
3.會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.了解復(fù)數(shù)的代數(shù)形式的加、減運(yùn)算及其運(yùn)算的幾何意義.
4.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴(kuò)充的基本思想,體會(huì)理性思維在數(shù)系擴(kuò)充中的作用.本章重點(diǎn):1.復(fù)數(shù)的有關(guān)概念;2.復(fù)數(shù)代數(shù)形式的四則運(yùn)算.
本章難點(diǎn):運(yùn)用復(fù)數(shù)的有關(guān)概念解題.近幾年高考對(duì)復(fù)數(shù)的考查無(wú)論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢(shì),常以選擇題、填空題形式出現(xiàn),多為容易題.在復(fù)習(xí)過程中,應(yīng)將復(fù)數(shù)的概念及運(yùn)算放在首位.
知識(shí)網(wǎng)絡(luò)
15.1復(fù)數(shù)的概念及其運(yùn)算
典例精析
題型一復(fù)數(shù)的概念
【例1】(1)如果復(fù)數(shù)(m2+i)(1+mi)是實(shí)數(shù),則實(shí)數(shù)m=;
(2)在復(fù)平面內(nèi),復(fù)數(shù)1+ii對(duì)應(yīng)的點(diǎn)位于第象限;
(3)復(fù)數(shù)z=3i+1的共軛復(fù)數(shù)為z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實(shí)數(shù)1+m3=0m=-1.
(2)因?yàn)?+ii=i(1+i)i2=1-i,所以在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(1,-1),位于第四象限.
(3)因?yàn)閦=1+3i,所以z=1-3i.
【點(diǎn)撥】運(yùn)算此類題目需注意復(fù)數(shù)的代數(shù)形式z=a+bi(a,b∈R),并注意復(fù)數(shù)分為實(shí)數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)的幾何意義,共軛復(fù)數(shù)等概念.
【變式訓(xùn)練1】(1)如果z=1-ai1+ai為純虛數(shù),則實(shí)數(shù)a等于()
A.0B.-1C.1D.-1或1
(2)在復(fù)平面內(nèi),復(fù)數(shù)z=1-ii(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
【解析】(1)設(shè)z=xi,x≠0,則
xi=1-ai1+ai1+ax-(a+x)i=0或故選D.
(2)z=1-ii=(1-i)(-i)=-1-i,該復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第三象限.故選C.
題型二復(fù)數(shù)的相等
【例2】(1)已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足zz0=3z+z0,則復(fù)數(shù)z=;
(2)已知m1+i=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=;
(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實(shí)根,則這個(gè)實(shí)根為,實(shí)數(shù)k的值為.
【解析】(1)設(shè)z=x+yi(x,y∈R),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
則由復(fù)數(shù)相等的條件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
則由復(fù)數(shù)相等的條件得
所以m+ni=2+i.
(3)設(shè)x=x0是方程的實(shí)根,代入方程并整理得
由復(fù)數(shù)相等的充要條件得
解得或
所以方程的實(shí)根為x=2或x=-2,
相應(yīng)的k值為k=-22或k=22.
【點(diǎn)撥】復(fù)數(shù)相等須先化為z=a+bi(a,b∈R)的形式,再由相等得實(shí)部與實(shí)部相等、虛部與虛部相等.
【變式訓(xùn)練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,b∈R),則a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,b∈R,i為虛數(shù)單位,則a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
題型三復(fù)數(shù)的運(yùn)算
【例3】(1)若復(fù)數(shù)z=-12+32i,則1+z+z2+z3+…+z2008=;
(2)設(shè)復(fù)數(shù)z滿足z+|z|=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一個(gè)周期內(nèi)的和為0,且周期為3.
所以1+z+z2+z3+…+z2008
=1+z+(z2+z3+z4)+…+(z2006+z2007+z2008)
=1+z=12+32i.
(2)設(shè)z=x+yi(x,y∈R),則x+yi+x2+y2=2+i,
所以解得所以z=+i.
【點(diǎn)撥】解(1)時(shí)要注意x3=1(x-1)(x2+x+1)=0的三個(gè)根為1,ω,ω-,
其中ω=-12+32i,ω-=-12-32i,則
1+ω+ω2=0,1+ω-+ω-2=0,ω3=1,ω-3=1,ωω-=1,ω2=ω-,ω-2=ω.
解(2)時(shí)要注意|z|∈R,所以須令z=x+yi.
【變式訓(xùn)練3】(1)復(fù)數(shù)11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(2010江西鷹潭)已知復(fù)數(shù)z=23-i1+23i+(21-i)2010,則復(fù)數(shù)z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.計(jì)算容易有11+i+i2=12.
(2)A.
總結(jié)提高
復(fù)數(shù)的代數(shù)運(yùn)算是重點(diǎn),是每年必考內(nèi)容之一,復(fù)數(shù)代數(shù)形式的運(yùn)算:①加減法按合并同類項(xiàng)法則進(jìn)行;②乘法展開、除法須分母實(shí)數(shù)化.因此,一些復(fù)數(shù)問題只需設(shè)z=a+bi(a,b∈R)代入原式后,就可以將復(fù)數(shù)問題化歸為實(shí)數(shù)問題來(lái)解決.