小學(xué)三年級數(shù)學(xué)教案
發(fā)表時(shí)間:2020-12-08八年級數(shù)學(xué)上冊知識點(diǎn):直方圖。
教案課件是老師上課中很重要的一個(gè)課件,大家應(yīng)該要寫教案課件了。只有制定教案課件工作計(jì)劃,新的工作才會如魚得水!你們會寫適合教案課件的范文嗎?小編特地為您收集整理“八年級數(shù)學(xué)上冊知識點(diǎn):直方圖”,僅供您在工作和學(xué)習(xí)中參考。
八年級數(shù)學(xué)上冊知識點(diǎn):直方圖
知識點(diǎn)總結(jié)
一、頻數(shù)分布直方圖:
1.頻數(shù)與頻率:每個(gè)對象出現(xiàn)的次數(shù)為頻數(shù),而每個(gè)對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。
2.頻數(shù)分布表:運(yùn)用頻數(shù)分布直方圖進(jìn)行數(shù)據(jù)分析的時(shí)候,一般先列出它的分布表,其中有幾個(gè)常用的公式:各組頻數(shù)之和等于抽樣數(shù)據(jù)總數(shù);各組頻率之和等于1;數(shù)據(jù)總數(shù)×各組的頻率=相應(yīng)組的頻數(shù)。
畫頻數(shù)分布直方圖的目的,是為了將頻數(shù)分布表中的結(jié)果直觀、形象地表示出來。
3.頻數(shù)分布直方圖:
(1)當(dāng)收集的數(shù)據(jù)連續(xù)取值時(shí),我們通常先將數(shù)據(jù)適當(dāng)分組,然后再繪制頻數(shù)分布直方圖。
(2)繪制的頻數(shù)分布直方圖的一般步驟:①計(jì)算最大值與最小值的差(極差),確定統(tǒng)計(jì)量的范圍;②決定組數(shù)和組距,數(shù)據(jù)越多,分的組數(shù)也應(yīng)當(dāng)越多;③確定分點(diǎn);④列頻數(shù)分布表;⑤畫頻數(shù)分布直方圖。
二、常見的統(tǒng)計(jì)圖:
常見的統(tǒng)計(jì)圖有條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖三種,在解決實(shí)際問題時(shí),具體選擇用哪種統(tǒng)計(jì)圖,要依據(jù)統(tǒng)計(jì)圖的特點(diǎn)和問題的要求而定。
1.條形統(tǒng)計(jì)圖:
(1)條形統(tǒng)計(jì)圖是用一個(gè)單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同的直條,然后把這些直條按一定的順序排列起來。條形統(tǒng)計(jì)圖又分為條形統(tǒng)計(jì)圖和復(fù)式條形統(tǒng)計(jì)圖。
(2)特點(diǎn):能夠顯示每組中的具體數(shù)據(jù);易于比較數(shù)據(jù)間的差別;如果要表示的數(shù)據(jù)各自獨(dú)立,一般要選用條形統(tǒng)計(jì)圖。
(3)繪制方法:①為了使圖形大小適當(dāng),先要確定橫軸和縱軸的長度,畫出橫軸和縱軸;
②確定單位長度,根據(jù)要表示的數(shù)據(jù)的大小和數(shù)據(jù)的種類,分別確定兩個(gè)軸的單位長度,在橫縱、縱軸上從零開始等距離分段;③用長短(或高低)不同的直條來表示具體的數(shù)量,直條的寬度要適當(dāng),每個(gè)直條的寬度要相等,直條之間的距離也要相等;④要注明各直條所表示的統(tǒng)計(jì)對象、單位和數(shù)量,寫上統(tǒng)計(jì)圖的名稱、制圖日期,復(fù)式條形圖還要有圖例。
2.折線統(tǒng)計(jì)圖:
(1)折線統(tǒng)計(jì)圖用一個(gè)單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點(diǎn),然后把各點(diǎn)用線段順次連接起來,以折線的上升或下降來表示統(tǒng)計(jì)數(shù)量增減變化。
(2)特點(diǎn):折線統(tǒng)計(jì)圖能夠清晰地顯示數(shù)據(jù)增減變化。如果表示的數(shù)據(jù)是想了解隨時(shí)間變化而變化的情況,那么就采用折線統(tǒng)計(jì)圖。
(3)繪制方法:①根據(jù)統(tǒng)計(jì)資料整理數(shù)據(jù);②用一定單位表示一定的數(shù)量,畫出縱、橫軸;③根據(jù)數(shù)量的多少,在縱、橫軸的恰當(dāng)位置描出各點(diǎn);④把各點(diǎn)用線段按順序依次連接起來;
⑤統(tǒng)計(jì)圖中的數(shù)據(jù)是不是統(tǒng)計(jì)資料整理的數(shù)據(jù)。
3.扇形統(tǒng)計(jì)圖:
(1)扇形統(tǒng)計(jì)圖用圓表示總體,圓中的各個(gè)扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。
(2)特點(diǎn):扇形統(tǒng)計(jì)圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360的比。如果表示的數(shù)據(jù)是想了解各數(shù)據(jù)所占的百分比,那么一般采用扇形統(tǒng)計(jì)圖。
(3)繪制方法:①先算出個(gè)部分?jǐn)?shù)量占總數(shù)量的百分之幾。
②再算出表示個(gè)部分?jǐn)?shù)量的扇形的圓心角的度數(shù)。
③取適當(dāng)?shù)陌霃疆嬕粋€(gè)圓,并按照上面算出的圓心角的度數(shù)在圓里畫出各個(gè)扇形
④在每個(gè)扇形中標(biāo)明所表示的各個(gè)部分?jǐn)?shù)量名稱和所占的百分?jǐn)?shù),并用不同的顏色區(qū)別
⑤寫上名稱和制圖日期。
三、各類統(tǒng)計(jì)圖的優(yōu)點(diǎn):
條形統(tǒng)計(jì)圖:能清楚表示出每個(gè)項(xiàng)目的具體數(shù)目;折線統(tǒng)計(jì)圖:能清楚反映事物的變化情況;扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。
常見考法
(1)列頻數(shù)分布表,繪制頻數(shù)分布直方圖;
(2)從統(tǒng)計(jì)圖表中獲取信息,完成題目設(shè)計(jì)的問題;
(3)補(bǔ)全頻數(shù)分布直方圖、統(tǒng)計(jì)圖,并回答問題;
(4)統(tǒng)計(jì)圖的繪制和轉(zhuǎn)化。
誤區(qū)提醒
(1)在做統(tǒng)計(jì)時(shí),沒有合理選擇統(tǒng)計(jì)圖表;
(2)提取圖表中的信息時(shí),不完全,有遺漏;
(3)繪制扇形統(tǒng)計(jì)圖時(shí),錯(cuò)誤判斷部分的數(shù)量。
頻數(shù)分布直方圖:
1.頻數(shù)與頻率:每個(gè)對象出現(xiàn)的次數(shù)為頻數(shù),而每個(gè)對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。
2.頻數(shù)分布表:運(yùn)用頻數(shù)分布直方圖進(jìn)行數(shù)據(jù)分析的時(shí)候,一般先列出它的分布表,其中有幾個(gè)常用的公式:各組頻數(shù)之和等于抽樣數(shù)據(jù)總數(shù);各組頻率之和等于1;數(shù)據(jù)總數(shù)×各組的頻率=相應(yīng)組的頻數(shù)。
畫頻數(shù)分布直方圖的目的,是為了將頻數(shù)分布表中的結(jié)果直觀、形象地表示出來。
3.頻數(shù)分布直方圖:
(1)當(dāng)收集的數(shù)據(jù)連續(xù)取值時(shí),我們通常先將數(shù)據(jù)適當(dāng)分組,然后再繪制頻數(shù)分布直方圖。
(2)繪制的頻數(shù)分布直方圖的一般步驟:①計(jì)算最大值與最小值的差(極差),確定統(tǒng)計(jì)量的范圍;②決定組數(shù)和組距,數(shù)據(jù)越多,分的組數(shù)也應(yīng)當(dāng)越多;③確定分點(diǎn);④列頻數(shù)分布表;⑤畫頻數(shù)分布直方圖。
相關(guān)閱讀
八年級數(shù)學(xué)上冊知識點(diǎn):倒數(shù)
教案課件是老師需要精心準(zhǔn)備的,到寫教案課件的時(shí)候了。在寫好了教案課件計(jì)劃后,才能夠使以后的工作更有目標(biāo)性!有沒有好的范文是適合教案課件?以下是小編收集整理的“八年級數(shù)學(xué)上冊知識點(diǎn):倒數(shù)”,希望能為您提供更多的參考。
八年級數(shù)學(xué)上冊知識點(diǎn):倒數(shù)
倒數(shù)就是指數(shù)學(xué)上設(shè)一個(gè)數(shù)x與其相乘的積為1的數(shù),記為1/x或x。
倒數(shù)
1.求一個(gè)分?jǐn)?shù)的倒數(shù),例如3/4,我們只須把3/4這個(gè)分?jǐn)?shù)的分子和分母交換位置,即得3/4的倒數(shù)為4/3。
2.求一個(gè)整數(shù)的倒數(shù),只須把這個(gè)整數(shù)看成是分母為1的分?jǐn)?shù),然后再按求分?jǐn)?shù)倒數(shù)的方法即可得到。
如12,即12/1,再把12/1這個(gè)分?jǐn)?shù)的分子和分母交換位置,把分子做分母,分母做分子,則有1/12。
即12倒數(shù)是1/12。
說明:倒數(shù)是本身的數(shù)是1和-1。(0沒有倒數(shù))
把0.25化成分?jǐn)?shù),即1/4
再把1/4這個(gè)分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子.則是4/1
再把4/1化成整數(shù),即4
所以0.25是4的倒數(shù)。也可以說4是0.25的倒數(shù)
也可以用1去除以這個(gè)數(shù),例如0.25
1/0.25等于4
所以0.25的倒數(shù)4.
因?yàn)槌朔e是1的兩個(gè)數(shù)互為倒數(shù)。
分?jǐn)?shù)、整數(shù)也都使用這種規(guī)律。
求倒數(shù)的約分問題在求倒數(shù)過程中,當(dāng)然要約分,如14/35
約分以后成2/5
最后按照求倒數(shù)的方法求出14/35的倒數(shù)。
數(shù)論倒數(shù)
而在數(shù)論中,還有數(shù)論倒數(shù)的概念,如果兩個(gè)數(shù)a和b,它們的乘積關(guān)于模m余1,那么我們稱它們互為關(guān)于模m的數(shù)論倒數(shù)。比如2*3=1(mod5),所以3是2關(guān)于5的數(shù)論倒數(shù)。數(shù)論倒數(shù)在中國剩余定理中非常重要。而輾轉(zhuǎn)相除法提供了計(jì)算數(shù)論倒數(shù)的方法。
群論中的倒數(shù)
近世代數(shù)中有群,域,環(huán)等概念,其中定義了抽象的乘法運(yùn)算和單位元。同樣的,關(guān)于其乘法如果有乘法逆,同樣可以看成是倒數(shù)。
倒數(shù)的特點(diǎn)
倒數(shù)的特點(diǎn):一個(gè)正實(shí)數(shù)(1除外)加上它的倒數(shù)一定大于2。理由:a/b,b/a為倒數(shù)當(dāng)ab時(shí)a/b一定大于1,可寫為1+(a-b)/b因?yàn)閎/a+(a-b)/a=b*b/a*b+(a*b-b*b)/ab=(a*a-b*b+b*b)/ab=a*a/a*b,又因?yàn)閍b,所以a*aa*b,所以a*a/a*b1,所以1+(a-b)/b+a*a/a*b2,所以一個(gè)正實(shí)數(shù)加上它的倒數(shù)一定大于2。
當(dāng)ba時(shí)也一樣。
同理可證,一個(gè)負(fù)實(shí)數(shù)(-1除外)加上它的倒數(shù)一定小于-2。
在四則混合運(yùn)算中,有時(shí)會用到倒數(shù)來解題,正規(guī)解起來很麻煩。
倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);
注意:0沒有倒數(shù);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
等于本身的數(shù)匯總:
相反數(shù)等于本身的數(shù):0
倒數(shù)等于本身的數(shù):1,-1
絕對值等于本身的數(shù):正數(shù)和0
平方等于本身的數(shù):0,1
立方等于本身的數(shù):0,1,-1.
八年級數(shù)學(xué)上冊知識點(diǎn):勾股定理
老師工作中的一部分是寫教案課件,大家應(yīng)該要寫教案課件了。只有制定教案課件工作計(jì)劃,可以更好完成工作任務(wù)!你們到底知道多少優(yōu)秀的教案課件呢?小編特地為您收集整理“八年級數(shù)學(xué)上冊知識點(diǎn):勾股定理”,歡迎閱讀,希望您能夠喜歡并分享!
八年級數(shù)學(xué)上冊知識點(diǎn):勾股定理
一、勾股定理:
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2.勾股定理的證明:
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4.勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1.逆定理的內(nèi)容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù).
四、一個(gè)重要結(jié)論:
由直角三角形三邊為邊長所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
常見考法
(1)直接考查勾股定理及其逆定理;(2)應(yīng)用勾股定理建立方程;(3)實(shí)際問題中應(yīng)用勾股定理及其逆定理。
誤區(qū)提醒
(1)忽略勾股定理的適用范圍;(2)誤以為直角三角形中的一定是斜邊。
【典型例題】(2010湖北孝感)
[問題情境]
勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語言。
[定理表述]
請你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號語言敘述);
[嘗試證明]
以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請你利用圖2,驗(yàn)證勾股定理;
[知識拓展]
勾股定理
一、勾股定理概述
直角三角形中,兩直邊的平方和等于斜邊的平方。
即令直角三角形ABC中,其中角C=90°,直邊BC的長度為a,AC的長度為b,斜邊AB的長度為c,則有a+b=c
①勾股定理應(yīng)用的前提是這個(gè)三角函數(shù)必須是直角三角形,解題時(shí),只能是同一直角三角形中時(shí),才能利用它求第三邊邊長
②在式子a+b=c中,a、b代表直角三角形的兩條直角邊,c代表斜邊,它們之間的關(guān)系不能弄錯(cuò)
③遇到直角三角形中線段求值問題(知識點(diǎn)詳解見解直角三角形),要首先向到勾股定理,勾股定理把“數(shù)”與“形”有機(jī)結(jié)合起來,把直角三角形這一“形”與三邊關(guān)系這一“數(shù)”結(jié)合起來,是屬性結(jié)合思想方法的典型。
④勾股定理的變式
在Rt△ABC中,其中角C=90°,直邊BC的長度為a,AC的長度為b,斜邊AB的長度為c,則
c=a+b
a=c-b=(c-b)(c+b)
b=c-a=(c-a)(c=a)
c=根號下(a+b)
a=根號下(c-b)
b=根號下(c-a)
二、勾股定理證明方法
1.面積法
一個(gè)直角梯形由2個(gè)直角邊分別為a、b,斜邊為c的直角三角形和1個(gè)直角邊為c的等腰直角三角形拼成。因?yàn)槿齻€(gè)直角三角形的面積之和等于梯形的面積,所以可以列出等式
1/2c2+2*1/2ab=(a+b)(b+a)/2,化簡c2=a2+b2
2.趙爽證明法
以a、b為直角邊(ba),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于1/2ab.把這四個(gè)直角三角形拼成如圖所示形狀.
∵RtΔDAH≌RtΔABE,
∴∠HDA=∠EAB.
∵∠HAD+∠HAD=90,
∴∠EAB+∠HAD=90,
∴ABCD是一個(gè)邊長為c的正方形,它的面積等于c2.
∵EF=FG=GH=HE=b―a,∠HEF=90.
∴EFGH是一個(gè)邊長為b―a的正方形,它的面積等于(b-a)2.
∴4*1/2ab+(b-a)2=c2
∴a2+b2=c2
三、勾股定理的逆定理
如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形。最長邊所對的角為直角。
勾股定理的逆定理是識別一個(gè)三角形是直角三角形的一種理論依據(jù),它通過數(shù)形結(jié)合來確定三角形的形狀,在運(yùn)用這一定理時(shí),可以用兩短邊的平方和a+b與較長邊的平方c做比較,如果a+b=c,則此三角形為直角三角形,若a+b>c,此三角形為銳角三角形,若a+b<c,則此三角形為鈍角三角形
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)(蘇教版)
老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,大家應(yīng)該要寫教案課件了。我們要寫好教案課件計(jì)劃,才能在以后有序的工作!你們會寫多少教案課件范文呢?急您所急,小編為朋友們了收集和編輯了“八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)(蘇教版)”,歡迎您參考,希望對您有所助益!
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)(蘇教版)
第一章軸對稱圖形(聽力部分)
第二章勾股定理與平方根
一.勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有關(guān)系,那么這個(gè)三角形是直角三角形。
3、勾股數(shù)
:滿足的三個(gè)正整數(shù),稱為勾股數(shù)。
二、實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類
正有理數(shù)
有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)
實(shí)數(shù)負(fù)有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負(fù)無理數(shù)
2、無理數(shù):
無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
(1)開方開不盡的數(shù),如
等;
(2)有特定意義的數(shù),如圓周率
π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
(4)某些三角函數(shù)值,如sin60
o等
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x
2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。
2、平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x
2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“
”,讀作“正、負(fù)根號a”。
性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方:求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。
注意的雙重非負(fù)性:
0
3、立方根
一般地,如果一個(gè)數(shù)x的立方等于a,即x
3=a那么這個(gè)數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作
性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。
注意:,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
四、實(shí)數(shù)大小的比較
1、實(shí)數(shù)比較大?。赫龜?shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對值大的反而小。
2、實(shí)數(shù)大小比較的幾種常用方法
(1)數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)求差比較:設(shè)a、b是實(shí)數(shù),
(3)求商比較法:設(shè)a、b是兩正實(shí)數(shù),
(4)絕對值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則
。
(5)平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則
。
五、實(shí)數(shù)的運(yùn)算
(1)六種運(yùn)算:
加、減、乘、除、乘方、開方
(2)
實(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
(3)運(yùn)算律
加法交換律
加法結(jié)合律
乘法交換律
乘法結(jié)合律
乘法對加法的分配律
第三章中心對稱圖形(一)
一、平移
1、定義
在平面內(nèi),將一個(gè)圖形整體沿某方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
2、性質(zhì)
平移前后兩個(gè)圖形是全等圖形,對應(yīng)點(diǎn)連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個(gè)圖形繞某一定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個(gè)圖形是全等圖形,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
三、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有條。從n邊形的一個(gè)頂點(diǎn)出發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個(gè)三角形。
四.平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
(1)平行四邊形的對邊平行且相等。
(2)平行四邊形相鄰的角互補(bǔ),對角相等
(3)平行四邊形的對角線互相平分。
(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點(diǎn)。
常用點(diǎn):(1)若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段的中點(diǎn)是對角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
五、矩形
1、矩形的定義
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)矩形的對邊平行且相等
(2)矩形的四個(gè)角都是直角
(3)矩形的對角線相等且互相平分
(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到矩形四個(gè)頂點(diǎn)的距離相等);對稱軸有兩條,是對邊中點(diǎn)連線所在的直線。
3、矩形的判定
(1)定義:有一個(gè)角是直角的平行四邊形是矩形
(2)定理1:有三個(gè)角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積
S矩形=長×寬=ab
六、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
(1)菱形的四條邊相等,對邊平行
(2)菱形的相鄰的角互補(bǔ),對角相等
(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
(3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
七.正方形
1、正方形的定義
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)正方形四條邊都相等,對邊平行
(2)正方形的四個(gè)角都是直角
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn);對稱軸有四條,是對角線所在的直線和對邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證它是菱形。
先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長為a,對角線長為b
S正方形=
八、梯形
(一)1、梯形的相關(guān)概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。
梯形中不平行的兩邊叫做梯形的腰。
梯形的兩底的距離叫做梯形的高。
2、梯形的判定
(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
(2)一組對邊平行且不相等的四邊形是梯形。
(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分類如下:
一般梯形
梯形直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
(1)等腰梯形的兩腰相等,兩底平行。
(2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ)。
(3)等腰梯形的對角線相等。
(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
(2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
(四)梯形的面積
(1)如圖,
(2)梯形中有關(guān)圖形的面積:
①;
②;
③
八、中心對稱圖形
1、定義
在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個(gè)圖形是全等形。
(2)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱。
第四章數(shù)量、位置的變化
一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)
時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限
點(diǎn)P(x,y)在第二象限
點(diǎn)P(x,y)在第三象限
點(diǎn)P(x,y)在第四象限
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上
,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上
,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上
x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上
x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上
x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p
’關(guān)于x軸對稱
橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P
’(x,-y)
點(diǎn)P與點(diǎn)p
’關(guān)于y軸對稱
縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P
’(-x,y)
點(diǎn)P與點(diǎn)p
’關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P
’(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化
圖形的變化
x×a或y×a
被橫向或縱向拉長(壓縮)為原來的a倍
x×a,y×a
放大(縮小)為原來的a倍
x×(-1)或y×(-1)
關(guān)于y軸或x軸對稱
x×(-1),y×(-1)
關(guān)于原點(diǎn)成中心對稱
x+a或y+a
沿x軸或y軸平移a個(gè)單位
x+a,y+a
沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單
第五章一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成
(k,b為常數(shù),k
0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即
)(k為常數(shù),k
0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)
的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
k的符號
b的符號
函數(shù)圖像
圖像特征
k0
b0
y
0x
圖像經(jīng)過一、二、三象限,y隨x的增大而增大。
b0
y
0x
圖像經(jīng)過一、三、四象限,y隨x的增大而增大。
K0
b0
y
0x
圖像經(jīng)過一、二、四象限,y隨x的增大而減小
b0
y
0x
圖像經(jīng)過二、三、四象限,y隨x的增大而減小。
注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。
4、正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù)有下列性質(zhì):
(1)當(dāng)k0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大;
(2)當(dāng)k0時(shí),圖像經(jīng)過第二、四象限,y隨x的增大而減小。
5、一次函數(shù)的性質(zhì)
一般地,一次函數(shù)有下列性質(zhì):
(1)當(dāng)k0時(shí),y隨x的增大而增大
(2)當(dāng)k0時(shí),y隨x的增大而減小
6、正比例函數(shù)和一次函數(shù)解析式的確定
確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k
0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式
(k
0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
7、一次函數(shù)與一元一次方程的關(guān)系:
任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式.而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同.
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值.
從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點(diǎn)的橫坐標(biāo)值.
第六章數(shù)據(jù)的集中度
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:
平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(1)平均數(shù):一般地,對于n個(gè)數(shù)
我們把叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為
。
(2)加權(quán)平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。