高中數(shù)列教案
發(fā)表時(shí)間:2020-04-07數(shù)列復(fù)習(xí)。
課題:數(shù)列復(fù)習(xí)專題(3)
班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組
【學(xué)習(xí)目標(biāo)】初步了解通過數(shù)列遞推公式求通項(xiàng)的方法;初步了解通過數(shù)列前項(xiàng)和求通項(xiàng)以及相關(guān)內(nèi)容的方法
【課前預(yù)習(xí)】
1.如果已知數(shù)列為等差(或等比)數(shù)列,可直接根據(jù)等差(或等比)數(shù)列的通項(xiàng)公式,求得,(或),然后直接套用公式.
2.對(duì)于形如型或形如型的數(shù)列,其中又是等差數(shù)列或等比數(shù)列,可以根據(jù)遞推公式,寫出取到時(shí)的所有遞推關(guān)系式,然后將它們分別相加(或相乘)即可得到通項(xiàng)公式.
3.有些數(shù)列本身不是等差或等比數(shù)列,但可以經(jīng)過適當(dāng)?shù)淖冃危瑯?gòu)造出一個(gè)新的等差或等比數(shù)列,從而利用這個(gè)數(shù)列求其通相公式,這叫做構(gòu)造法.
例如:在數(shù)列中,,如何求通項(xiàng)公式?
4.已知數(shù)列的前項(xiàng)和求通項(xiàng)時(shí),常用公式,用此公式時(shí)應(yīng)注意結(jié)論有兩種可能,一種是“一分為二”,即分段式;另一種是“合二為一”,即和合為一個(gè)表達(dá)式。
【課堂研討】
例1已知數(shù)列中,(1),求;
(2),求;
(3),求.
例2.已知數(shù)列中,,求的通項(xiàng).
例3.已知數(shù)列中,,(1)求的通項(xiàng)公式;
(2)求的通項(xiàng)公式;(3)求的前項(xiàng)和.
例4.已知數(shù)列滿足,
求的通項(xiàng)和前項(xiàng)和.
課題:數(shù)列復(fù)習(xí)(3)檢測(cè)案
班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組
【課堂檢測(cè)】
1.已知數(shù)列滿足,求的通項(xiàng).
2.根據(jù)下列條件求的通項(xiàng):
(1);
(2).
【課外作業(yè)】
1.已知數(shù)列中,,求:(1)的通項(xiàng);
(2)令,的通項(xiàng);(3)的前項(xiàng)和
2.已知數(shù)列中,,
(1)求的通項(xiàng);(2)當(dāng)為何值時(shí),是等比數(shù)列.
3.已知數(shù)列中,,
(1)求證是等比數(shù)列;(2)求的通項(xiàng).
4.已知數(shù)列中,,
(1)求的通項(xiàng);(2)求.
精選閱讀
數(shù)列
數(shù)列
教學(xué)目標(biāo)
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
教學(xué)建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
教學(xué)設(shè)計(jì)示例
數(shù)列的概念
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項(xiàng)公式寫出數(shù)列的項(xiàng).
2.通過數(shù)列定義的歸納概括,初步培養(yǎng)學(xué)生的觀察、抽象概括能力;滲透函數(shù)思想.
3.通過有關(guān)數(shù)列實(shí)際應(yīng)用的介紹,激發(fā)學(xué)生學(xué)習(xí)研究數(shù)列的積極性.
教學(xué)重點(diǎn),難點(diǎn)
教學(xué)重點(diǎn)是數(shù)列的定義的歸納與認(rèn)識(shí);教學(xué)難點(diǎn)是數(shù)列與函數(shù)的聯(lián)系與區(qū)別.
教學(xué)用具:電腦,課件(媒體資料),投影儀,幻燈片
教學(xué)方法:講授法為主
教學(xué)過程
一.揭示課題
今天開始我們研究一個(gè)新課題.
先舉一個(gè)生活中的例子:場(chǎng)地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律.實(shí)際上我們要研究的是這樣的一列數(shù)
(板書)象這樣排好隊(duì)的數(shù)就是我們的研究對(duì)象——數(shù)列.
(板書)第三章數(shù)列
(一)數(shù)列的概念
二.講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學(xué)概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片)①
自然數(shù)排成一列數(shù):
②
3個(gè)1排成一列:
③
無數(shù)個(gè)1排成一列:
④
的不足近似值,分別近似到排列起來:
⑤
正整數(shù)的倒數(shù)排成一列數(shù):
⑥
函數(shù)當(dāng)依次取時(shí)得到一列數(shù):
⑦
函數(shù)當(dāng)依次取時(shí)得到一列數(shù):
⑧
請(qǐng)學(xué)生觀察8列數(shù),說明每列數(shù)就是一個(gè)數(shù)列,數(shù)列中的每個(gè)數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù).
(板書)1.?dāng)?shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列.
為表述方便給出幾個(gè)名稱:項(xiàng),項(xiàng)數(shù),首項(xiàng)(以幻燈片的形式給出).以上述八個(gè)數(shù)列為例,讓學(xué)生練習(xí)指出某一個(gè)數(shù)列的首項(xiàng)是多少,第二項(xiàng)是多少,指出某一個(gè)數(shù)列的一些項(xiàng)的項(xiàng)數(shù).
由此可以看出,給定一個(gè)數(shù)列,應(yīng)能夠指明第一項(xiàng)是多少,第二項(xiàng)是多少,……,每一項(xiàng)都是確定的,即指明項(xiàng)數(shù),對(duì)應(yīng)的項(xiàng)就確定.所以數(shù)列中的每一項(xiàng)與其項(xiàng)數(shù)有著對(duì)應(yīng)關(guān)系,這與我們學(xué)過的函數(shù)有密切關(guān)系.
(板書)2.?dāng)?shù)列與函數(shù)的關(guān)系
數(shù)列可以看作特殊的函數(shù),項(xiàng)數(shù)是其自變量,項(xiàng)是項(xiàng)數(shù)所對(duì)應(yīng)的函數(shù)值,數(shù)列的定義域是正整數(shù)集,或是正整數(shù)集的有限子集.
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點(diǎn)看待數(shù)列.
遇到數(shù)學(xué)概念不單要下定義,還要給其數(shù)學(xué)表示,以便研究與交流,下面探討數(shù)列的表示法.
(板書)3.?dāng)?shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請(qǐng)學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法.相對(duì)于列表法表示一個(gè)函數(shù),數(shù)列有這樣的表示法:用表示第一項(xiàng),用表示第一項(xiàng),……,用表示第項(xiàng),依次寫出成為
(板書)(1)列舉法
.(如幻燈片上的例子)簡(jiǎn)記為.
一個(gè)函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個(gè)數(shù)列,把它稱作圖示法.
(板書)(2)圖示法
啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形.具體方法是以項(xiàng)數(shù)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),即以為坐標(biāo)在平面直角坐標(biāo)系中做出點(diǎn)(以前面提到的數(shù)列為例,做出一個(gè)數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點(diǎn),因?yàn)闄M坐標(biāo)為正整數(shù),所以這些點(diǎn)都在軸的右側(cè),而點(diǎn)的個(gè)數(shù)取決于數(shù)列的項(xiàng)數(shù).從圖象中可以直觀地看到數(shù)列的項(xiàng)隨項(xiàng)數(shù)由小到大變化而變化的趨勢(shì).
有些函數(shù)可以用解析式來表示,解析式反映了一個(gè)函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項(xiàng)能用其項(xiàng)數(shù)的函數(shù)式表示出來,即,這個(gè)函數(shù)式叫做數(shù)列的通項(xiàng)公式.
(板書)(3)通項(xiàng)公式法
如數(shù)列的通項(xiàng)公式為;
的通項(xiàng)公式為;
的通項(xiàng)公式為;
數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示.通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng).
例如,數(shù)列的通項(xiàng)公式,則.
值得注意的是,正如一個(gè)函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項(xiàng)公式,即便有通項(xiàng)公式,通項(xiàng)公式也未必唯一.
除了以上三種表示法,某些數(shù)列相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,這個(gè)關(guān)系用一個(gè)公式來表示,叫做遞推公式.
(板書)(4)遞推公式法
如前面所舉的鋼管的例子,第層鋼管數(shù)與第層鋼管數(shù)的關(guān)系是,再給定,便可依次求出各項(xiàng).再如數(shù)列中,,這個(gè)數(shù)列就是.
像這樣,如果已知數(shù)列的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系用一個(gè)公式來表示,這個(gè)公式叫做這個(gè)數(shù)列的遞推公式.遞推公式是數(shù)列所特有的表示法,它包含兩個(gè)部分,一是遞推關(guān)系,一是初始條件,二者缺一不可.
可由學(xué)生舉例,以檢驗(yàn)學(xué)生是否理解.
三.小結(jié)
1.?dāng)?shù)列的概念
2.?dāng)?shù)列的四種表示
四.作業(yè)略
五.板書設(shè)計(jì)
數(shù)列
(一)數(shù)列的概念涉及的數(shù)列及表示
1.?dāng)?shù)列的定義
2.?dāng)?shù)列與函數(shù)的關(guān)系
3.?dāng)?shù)列的表示法
(1)列舉法
(2)圖示法
(3)通項(xiàng)公式法
(4)遞推公式法
探究活動(dòng)將邊長(zhǎng)為厘米的正方形分成個(gè)邊長(zhǎng)為1厘米的正方形,數(shù)出其中所有正方形的個(gè)數(shù).
解:當(dāng)時(shí),共有正方形個(gè);當(dāng)時(shí),共有正方形個(gè);當(dāng)時(shí),共有正方形個(gè);當(dāng)時(shí),共有正方形個(gè);當(dāng)時(shí),共有正方形個(gè);歸納猜想邊長(zhǎng)為厘米的正方形中的正方形共有個(gè).
2013屆高考數(shù)學(xué)數(shù)列復(fù)習(xí)教案
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。高中教師要準(zhǔn)備好教案為之后的教學(xué)做準(zhǔn)備。教案可以讓學(xué)生能夠在課堂積極的參與互動(dòng),幫助授課經(jīng)驗(yàn)少的高中教師教學(xué)。所以你在寫高中教案時(shí)要注意些什么呢?小編特地為大家精心收集和整理了“2013屆高考數(shù)學(xué)數(shù)列復(fù)習(xí)教案”,希望對(duì)您的工作和生活有所幫助。
2013高中數(shù)學(xué)精講精練第五章數(shù)列
【知識(shí)圖解】
【方法點(diǎn)撥】
1.學(xué)會(huì)從特殊到一般的觀察、分析、思考,學(xué)會(huì)歸納、猜想、驗(yàn)證.
2.強(qiáng)化基本量思想,并在確定基本量時(shí)注重設(shè)變量的技巧與解方程組的技巧.
3.在重點(diǎn)掌握等差、等比數(shù)列的通項(xiàng)公式、求和公式、中項(xiàng)等基礎(chǔ)知識(shí)的同時(shí),會(huì)針對(duì)可化為等差(比)數(shù)列的比較簡(jiǎn)單的數(shù)列進(jìn)行化歸與轉(zhuǎn)化.
4.一些簡(jiǎn)單特殊數(shù)列的求通項(xiàng)與求和問題,應(yīng)注重通性通法的復(fù)習(xí).如錯(cuò)位相減法、迭加法、迭乘法等.
5.增強(qiáng)用數(shù)學(xué)的意識(shí),會(huì)針對(duì)有關(guān)應(yīng)用問題,建立數(shù)學(xué)模型,并求出其解.
第1課數(shù)列的概念
【考點(diǎn)導(dǎo)讀】
1.了解數(shù)列(含等差數(shù)列、等比數(shù)列)的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式),了解數(shù)列是一種特殊的函數(shù);
2.理解數(shù)列的通項(xiàng)公式的意義和一些基本量之間的關(guān)系;
3.能通過一些基本的轉(zhuǎn)化解決數(shù)列的通項(xiàng)公式和前項(xiàng)和的問題。
【基礎(chǔ)練習(xí)】
1.已知數(shù)列滿足,則=。
分析:由a1=0,得由此可知:數(shù)列是周期變化的,且三個(gè)一循環(huán),所以可得:
2.在數(shù)列中,若,,則該數(shù)列的通項(xiàng)2n-1。
3.設(shè)數(shù)列的前n項(xiàng)和為,,且,則____2__.
4.已知數(shù)列的前項(xiàng)和,則其通項(xiàng).
【范例導(dǎo)析】
例1.設(shè)數(shù)列的通項(xiàng)公式是,則
(1)70是這個(gè)數(shù)列中的項(xiàng)嗎?如果是,是第幾項(xiàng)?
(2)寫出這個(gè)數(shù)列的前5項(xiàng),并作出前5項(xiàng)的圖象;
(3)這個(gè)數(shù)列所有項(xiàng)中有沒有最小的項(xiàng)?如果有,是第幾項(xiàng)?
分析:70是否是數(shù)列的項(xiàng),只要通過解方程就可以知道;而作圖時(shí)則要注意數(shù)列與函數(shù)的區(qū)別,數(shù)列的圖象是一系列孤立的點(diǎn);判斷有無最小項(xiàng)的問題可以用函數(shù)的觀點(diǎn)來解決,一樣的是要注意定義域問題。
解:(1)由得:或
所以70是這個(gè)數(shù)列中的項(xiàng),是第13項(xiàng)。
(2)這個(gè)數(shù)列的前5項(xiàng)是;(圖象略)
(3)由函數(shù)的單調(diào)性:是減區(qū)間,是增區(qū)間,
所以當(dāng)時(shí),最小,即最小。
點(diǎn)評(píng):該題考察數(shù)列通項(xiàng)的定義,會(huì)判斷數(shù)列項(xiàng)的歸屬,要注重函數(shù)與數(shù)列之間的聯(lián)系,用函數(shù)的觀點(diǎn)解決數(shù)列的問題有時(shí)非常方便。
例2.設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)y=3x-2的圖像上,求數(shù)列的通項(xiàng)公式。
分析:根據(jù)題目的條件利用與的關(guān)系:,(要特別注意討論n=1的情況)求出數(shù)列的通項(xiàng)。
解:依題意得,即。
當(dāng)n≥2時(shí),;
當(dāng)n=1時(shí),所以。
例3.已知數(shù)列{a}滿足,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,證明:是等差數(shù)列;
分析:本題第1問采用構(gòu)造等比數(shù)列來求通項(xiàng)問題,第2問依然是構(gòu)造問題。
解:(I)
是以為首項(xiàng),2為公比的等比數(shù)列。
即
(II)
①
②;
②-①,得即③
∴④
③-④,得即是等差數(shù)列。
點(diǎn)評(píng):本小題主要考查數(shù)列、不等式等基本知識(shí),考查化歸的數(shù)學(xué)思想方法,考查綜合解題能力。
【反饋演練】
1.若數(shù)列前8項(xiàng)的值各異,且對(duì)任意n∈N*都成立,則下列數(shù)列中可取遍前8項(xiàng)值的數(shù)列為(2)。
(1)(2)(3)(4)
2.設(shè)Sn是數(shù)列的前n項(xiàng)和,且Sn=n2,則是等差數(shù)列,但不是等比數(shù)列。
3.設(shè)f(n)=(n∈N),那么f(n+1)-f(n)等于。
4.根據(jù)市場(chǎng)調(diào)查結(jié)果,預(yù)測(cè)某種家用商品從年初開始的n個(gè)月內(nèi)累積的需求量Sn(萬件)近似地滿足Sn=(21n-n2-5)(n=1,2,……,12).按此預(yù)測(cè),在本年度內(nèi),需求量超過1.5萬件的月份是7月、8月。
5.在數(shù)列中,則505。
6.?dāng)?shù)列中,已知,
(1)寫出,,;(2)是否是數(shù)列中的項(xiàng)?若是,是第幾項(xiàng)?
解:(1)∵,∴,
,;
(2)令,解方程得,
∵,∴,即為該數(shù)列的第15項(xiàng)。
第2課等差、等比數(shù)列
【考點(diǎn)導(dǎo)讀】
1.掌握等差、等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,能運(yùn)用公式解決一些簡(jiǎn)單的問題;
2.理解等差、等比數(shù)列的性質(zhì),了解等差、等比數(shù)列與函數(shù)之間的關(guān)系;
3.注意函數(shù)與方程思想方法的運(yùn)用。
【基礎(chǔ)練習(xí)】
1.在等差數(shù)列{an}中,已知a5=10,a12=31,首項(xiàng)a1=-2,公差d=3。
2.一個(gè)等比數(shù)列的第3項(xiàng)與第4項(xiàng)分別是12與18,則它的第1項(xiàng)是,第2項(xiàng)是8。
3.設(shè)是公差為正數(shù)的等差數(shù)列,若,,則。
4.公差不為0的等差數(shù)列{an}中,a2,a3,a6依次成等比數(shù)列,則公比等于3。
【范例導(dǎo)析】
例1.(1)若一個(gè)等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,則這個(gè)數(shù)列有
13項(xiàng)。
(2)設(shè)數(shù)列{an}是遞增等差數(shù)列,前三項(xiàng)的和為12,前三項(xiàng)的積為48,則它的首項(xiàng)是2。
解:(1)答案:13
法1:設(shè)這個(gè)數(shù)列有n項(xiàng)
∵∴
∴n=13
法2:設(shè)這個(gè)數(shù)列有n項(xiàng)
∵
∴∴
又∴n=13
(2)答案:2因?yàn)榍叭?xiàng)和為12,∴a1+a2+a3=12,∴a2==4
又a1a2a3=48,∵a2=4,∴a1a3=12,a1+a3=8,
把a(bǔ)1,a3作為方程的兩根且a1<a3,
∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴選B.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的運(yùn)用和學(xué)生分析問題、解決問題的能力。
例2.(1)已知數(shù)列為等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)證明
分析:(1)借助通過等差數(shù)列的定義求出數(shù)列的公差,再求出數(shù)列的通項(xiàng)公式,(2)求和還是要先求出數(shù)列的通項(xiàng)公式,再利用通項(xiàng)公式進(jìn)行求和。
解:(1)設(shè)等差數(shù)列的公差為d,
由即d=1。
所以即
(II)證明:因?yàn)椋?br>
所以
點(diǎn)評(píng):該題通過求通項(xiàng)公式,最終通過通項(xiàng)公式解釋復(fù)雜的不等問題,屬于綜合性的題目,解題過程中注意觀察規(guī)律。
例3.已知數(shù)列的首項(xiàng)(是常數(shù),且),(),數(shù)列的首項(xiàng),()。
(1)證明:從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)為數(shù)列的前n項(xiàng)和,且是等比數(shù)列,求實(shí)數(shù)的值。
分析:第(1)問用定義證明,進(jìn)一步第(2)問也可以求出。
解:(1)∵∴
(n≥2)
由得,,∵,∴,
即從第2項(xiàng)起是以2為公比的等比數(shù)列。
(2)
當(dāng)n≥2時(shí),
∵是等比數(shù)列,∴(n≥2)是常數(shù),∴3a+4=0,即。
點(diǎn)評(píng):本題考查了用定義證明等比數(shù)列,分類討論的數(shù)學(xué)思想,有一定的綜合性。
【反饋演練】
1.已知等差數(shù)列中,,則前10項(xiàng)的和=210。
2.在等差數(shù)列中,已知?jiǎng)t=42。
3.已知等差數(shù)列共有10項(xiàng),其中奇數(shù)項(xiàng)之和15,偶數(shù)項(xiàng)之和為30,則其公差是3。
4.如果成等比數(shù)列,則3,-9。
5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S120,S130.
(1)求公差d的取值范圍;
(2)指出S1、S2、…、S12中哪一個(gè)值最大,并說明理由.
解:(1)依題意有:
解之得公差d的取值范圍為-<d<-3.
(2)解法一:由d<0可知a1a2a3…a12a13,因此,在S1,S2,…,S12中Sk為最大值的條件為:ak≥0且ak+1<0,即
∵a3=12,∴,∵d<0,∴2-<k≤3-
∵-<d<-3,∴<-<4,得5.5<k<7.
因?yàn)閗是正整數(shù),所以k=6,即在S1,S2,…,S12中,S6最大.
解法二:由d<0得a1a2…a12a13,
因此若在1≤k≤12中有自然數(shù)k,使得ak≥0,且ak+1<0,則Sk是S1,S2,…,S12中的最大值。又2a7=a1+a13=S13<0,∴a7<0,a7+a6=a1+a12=S120,∴a6≥-a70
故在S1,S2,…,S12中S6最大.
解法三:依題意得:
最小時(shí),Sn最大;
∵-<d<-3,∴6<(5-)<6.5.
從而,在正整數(shù)中,當(dāng)n=6時(shí),[n-(5-)]2最小,所以S6最大.
點(diǎn)評(píng):該題的第(1)問通過建立不等式組求解屬基本要求,難度不高,入手容易.
第(2)問難度較高,為求{Sn}中的最大值Sk(1≤k≤12):思路之一是知道Sk為最大值的充要條件是ak≥0且ak+1<0;而思路之二則是通過等差數(shù)列的性質(zhì)等和性探尋數(shù)列的分布規(guī)律,找出“分水嶺”,從而得解;思路之三是可視Sn為n的二次函數(shù),借助配方法可求解,它考查了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想、邏輯思維能力和計(jì)算能力,較好地體現(xiàn)了高考試題注重能力考查的特點(diǎn).
第3課數(shù)列的求和
【考點(diǎn)導(dǎo)讀】
對(duì)于一般數(shù)列求和是很困難的,在推導(dǎo)等差、等比數(shù)列的和時(shí)出現(xiàn)了一些方法可以遷移到一般數(shù)列的求和上,掌握數(shù)列求和的常見方法有:
(1)公式法:⑴等差數(shù)列的求和公式,⑵等比數(shù)列的求和公式
(2)分組求和法:在直接運(yùn)用公式求和有困難時(shí)常,將“和式”中的“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和(如:通項(xiàng)中含因式,周期數(shù)列等等)
(3)倒序相加法:如果一個(gè)數(shù)列{a},與首末兩項(xiàng)等距的兩項(xiàng)之和等于首末兩項(xiàng)之和,則可用把正著寫和與倒著寫和的兩個(gè)和式相加,就得到了一個(gè)常數(shù)列的和,這一求和方法稱為倒序相加法。特征:an+a1=an-1+a2
(4)錯(cuò)項(xiàng)相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)相乘所組成,此時(shí)求和可采用錯(cuò)位相減法。
(5)裂項(xiàng)相消法:把一個(gè)數(shù)列的各項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)一些正負(fù)項(xiàng)相互抵消,于是前n項(xiàng)之和變成首尾若干少數(shù)項(xiàng)之和。
【基礎(chǔ)練習(xí)】
1.已知公差不為0的正項(xiàng)等差數(shù)列{an}中,Sn為前n項(xiàng)之和,lga1、lga2、lga4成等差數(shù)列,若a5=10,
則S5=30。
2.已知數(shù)列{an}是等差數(shù)列,且a2=8,a8=26,從{an}中依次取出第3項(xiàng),第9項(xiàng),第27項(xiàng)…,第3n項(xiàng),按原來的順序構(gòu)成一個(gè)新的數(shù)列{bn},則bn=__3n+1+2___
3.若數(shù)列滿足:,2,3….則.
【范例導(dǎo)析】
例1.已知等比數(shù)列分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且
(Ⅰ)求;
(Ⅱ)設(shè),求數(shù)列
解:(I)依題意
點(diǎn)評(píng):本題考查了等比數(shù)列的基本性質(zhì)和等差數(shù)列的求和,本題還考查了轉(zhuǎn)化的思想。
例2.?dāng)?shù)列前項(xiàng)之和滿足:
(1)求證:數(shù)列是等比數(shù)列;
(2)若數(shù)列的公比為,數(shù)列滿足:,求數(shù)列的通項(xiàng)公式;
(3)定義數(shù)列為,,求數(shù)列的前項(xiàng)之和。
解:(1)由得:
兩式相減得:即,
∴數(shù)列是等比數(shù)列。
(2),則有∴。
(3),
∴
點(diǎn)評(píng):本題考查了與之間的轉(zhuǎn)化問題,考查了基本等差數(shù)列的定義,還有裂項(xiàng)相消法求和問題。
例3.已知數(shù)列滿足,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè),數(shù)列的前項(xiàng)和為.求證:對(duì)任意的,.
分析:本題所給的遞推關(guān)系式是要分別“取倒”再轉(zhuǎn)化成等比型的數(shù)列,對(duì)數(shù)列中不等式的證明通常是放縮通項(xiàng)以利于求和。
解:(Ⅰ),,
又,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
,即.
(Ⅱ).
.
(Ⅲ),.
當(dāng)時(shí),則
.
,對(duì)任意的,.
點(diǎn)評(píng):本題利用轉(zhuǎn)化思想將遞推關(guān)系式轉(zhuǎn)化成我們熟悉的結(jié)構(gòu)求得數(shù)列的通項(xiàng),第二問分組求和法是非常常見的方法,第三問不等式的證明要用到放縮的辦法,放縮的目的是利于求和,所以通常會(huì)放成等差、等比數(shù)列求和,或者放縮之后可以裂項(xiàng)相消求和。
【反饋演練】
1.已知數(shù)列的通項(xiàng)公式,其前項(xiàng)和為,則數(shù)列的前10項(xiàng)的和為75。
2.已知數(shù)列的通項(xiàng)公式,其前項(xiàng)和為,則377。
3.已知數(shù)列的前項(xiàng)和為,且,則數(shù)列的通項(xiàng)公式為。
4.已知數(shù)列中,且有,則數(shù)列的通項(xiàng)公式為
,前項(xiàng)和為。
5.?dāng)?shù)列{an}滿足a1=2,對(duì)于任意的n∈N*都有an>0,且(n+1)an2+anan+1-nan+12=0,
又知數(shù)列{bn}的通項(xiàng)為bn=2n-1+1.
(1)求數(shù)列{an}的通項(xiàng)an及它的前n項(xiàng)和Sn;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn;
解:(1)可解得,從而an=2n,有Sn=n2+n,
(2)Tn=2n+n-1.
6.?dāng)?shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an,(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn;
(3)設(shè)bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整數(shù)m,使得對(duì)任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,說明理由.
解:(1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差數(shù)列,?
d==-2,∴an=10-2n.
(2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時(shí),Sn=-n2+9n,當(dāng)n>5時(shí),Sn=n2-9n+40,
故Sn=
(3)bn=
;要使Tn>總成立,需<T1=成立,即m<8且m∈Z,故適合條件的m的最大值為7.
第4課數(shù)列的應(yīng)用
【考點(diǎn)導(dǎo)讀】
1.能在具體的問題情景中發(fā)現(xiàn)數(shù)列的等差、等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題。
2.注意基本數(shù)學(xué)思想方法的運(yùn)用,構(gòu)造思想:已知數(shù)列構(gòu)造新數(shù)列,轉(zhuǎn)化思想:將非等差、等比數(shù)列轉(zhuǎn)化為等差、等比數(shù)列。
【基礎(chǔ)練習(xí)】
1.若數(shù)列中,,且對(duì)任意的正整數(shù)、都有,則.
2.設(shè)等比數(shù)列的公比為,前項(xiàng)和為,若成等差數(shù)列,則的值為。
3.已知等差數(shù)列的公差為2,若成等比數(shù)列,則。
【范例導(dǎo)析】
例1.已知正數(shù)組成的兩個(gè)數(shù)列,若是關(guān)于的方程的兩根
(1)求證:為等差數(shù)列;
(2)已知分別求數(shù)列的通項(xiàng)公式;
(3)求數(shù)。
(1)證明:由的兩根得:
是等差數(shù)列
(2)由(1)知
∴又也符合該式,
(3)①
②
①—②得
.
點(diǎn)評(píng):本題考查了等差、等比數(shù)列的性質(zhì),數(shù)列的構(gòu)造,數(shù)列的轉(zhuǎn)化思想,乘公比錯(cuò)項(xiàng)相減法求和等。
例2.設(shè)數(shù)列滿足,且數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列。
(I)求數(shù)列和的通項(xiàng)公式;
(II)是否存在,使,若存在,求出,若不存在,說明理由。
解:由題意得:
=;
由已知得公比
(2)
,所以當(dāng)時(shí),是增函數(shù)。
又,所以當(dāng)時(shí),
又,所以不存在,使。
【反饋演練】
1.制造某種產(chǎn)品,計(jì)劃經(jīng)過兩年要使成本降低,則平均每年應(yīng)降低成本。
2.等比數(shù)列的前項(xiàng)和為,,則54。
3.設(shè)為等差數(shù)列,為數(shù)列的前項(xiàng)和,已知,為數(shù)列{}的前項(xiàng)和,則.
4.已知數(shù)列
(1)求數(shù)列的通項(xiàng)公式;(2)求證數(shù)列是等比數(shù)列;
(3)求使得的集合.
解:(1)設(shè)數(shù)列,由題意得:
解得:
(2)由題意知:,
為首項(xiàng)為2,公比為4的等比數(shù)列
(3)由
5.已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,滿足關(guān)系.
證明:是等比數(shù)列;
證明:∵①∴②
②-①,得
∵
故:數(shù)列{an}是等比數(shù)列
2012屆高三理科數(shù)學(xué)數(shù)列總復(fù)習(xí)
一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),作為教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助教師提前熟悉所教學(xué)的內(nèi)容。那么怎么才能寫出優(yōu)秀的教案呢?下面是小編為大家整理的“2012屆高三理科數(shù)學(xué)數(shù)列總復(fù)習(xí)”,相信您能找到對(duì)自己有用的內(nèi)容。
第六章數(shù)列
高考導(dǎo)航
考試要求重難點(diǎn)擊命題展望
1.數(shù)列的概念和簡(jiǎn)單表示法?
(1)了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式);?(2)了解數(shù)列是自變量為正整數(shù)的一類函數(shù).?
2.等差數(shù)列、等比數(shù)列?
(1)理解等差數(shù)列、等比數(shù)列的概念;?
(2)掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式;?
(3)能在具體問題情境中識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題;?
(4)了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.本章重點(diǎn):1.等差數(shù)列、等比數(shù)列的定義、通項(xiàng)公式和前n項(xiàng)和公式及有關(guān)性質(zhì);
2.注重提煉一些重要的思想和方法,如:觀察法、累加法、累乘法、待定系數(shù)法、倒序相加求和法、錯(cuò)位相減求和法、裂項(xiàng)相消求和法、分組求和法、函數(shù)與方程思想、數(shù)學(xué)模型思想以及離散與連續(xù)的關(guān)系.?
本章難點(diǎn):1.數(shù)列概念的理解;2.等差等比數(shù)列性質(zhì)的運(yùn)用;3.數(shù)列通項(xiàng)與求和方法的運(yùn)用.仍然會(huì)以客觀題考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式及性質(zhì),在解答題中,會(huì)保持以前的風(fēng)格,注重?cái)?shù)列與其他分支的綜合能力的考查,在高考中,數(shù)列??汲P?,其主要原因是它作為一個(gè)特殊函數(shù),使它可以與函數(shù)、不等式、解析幾何、三角函數(shù)等綜合起來,命出開放性、探索性強(qiáng)的問題,更體現(xiàn)了知識(shí)交叉命題原則得以貫徹;又因?yàn)閿?shù)列與生產(chǎn)、生活的聯(lián)系,使數(shù)列應(yīng)用題也倍受歡迎.
知識(shí)網(wǎng)絡(luò)
6.1數(shù)列的概念與簡(jiǎn)單表示法
典例精析
題型一歸納、猜想法求數(shù)列通項(xiàng)
【例1】根據(jù)下列數(shù)列的前幾項(xiàng),分別寫出它們的一個(gè)通項(xiàng)公式:
(1)7,77,777,7777,…
(2)23,-415,635,-863,…
(3)1,3,3,5,5,7,7,9,9,…
【解析】(1)將數(shù)列變形為79(10-1),79(102-1),79(103-1),…,79(10n-1),
故an=79(10n-1).
(2)分開觀察,正負(fù)號(hào)由(-1)n+1確定,分子是偶數(shù)2n,分母是1×3,3×5,5×7,…,(2n-1)(2n+1),故數(shù)列的通項(xiàng)公式可寫成an=(-1)n+1.
(3)將已知數(shù)列變?yōu)?+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….
故數(shù)列的通項(xiàng)公式為an=n+.
【點(diǎn)撥】聯(lián)想與轉(zhuǎn)換是由已知認(rèn)識(shí)未知的兩種有效的思維方法,觀察歸納是由特殊到一般的有效手段,本例的求解關(guān)鍵是通過分析、比較、聯(lián)想、歸納、轉(zhuǎn)換獲得項(xiàng)與項(xiàng)序數(shù)的一般規(guī)律,從而求得通項(xiàng).
【變式訓(xùn)練1】如下表定義函數(shù)f(x):
x12345
f(x)54312
對(duì)于數(shù)列{an},a1=4,an=f(an-1),n=2,3,4,…,則a2008的值是()
A.1B.2C.3D.4
【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.
所以a2008=a4=2,故選B.
題型二應(yīng)用an=求數(shù)列通項(xiàng)
【例2】已知數(shù)列{an}的前n項(xiàng)和Sn,分別求其通項(xiàng)公式:
(1)Sn=3n-2;
(2)Sn=18(an+2)2(an>0).
【解析】(1)當(dāng)n=1時(shí),a1=S1=31-2=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,
又a1=1不適合上式,
故an=
(2)當(dāng)n=1時(shí),a1=S1=18(a1+2)2,解得a1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,
又an>0,所以an-an-1=4,
可知{an}為等差數(shù)列,公差為4,
所以an=a1+(n-1)d=2+(n-1)4=4n-2,
a1=2也適合上式,故an=4n-2.
【點(diǎn)撥】本例的關(guān)鍵是應(yīng)用an=求數(shù)列的通項(xiàng),特別要注意驗(yàn)證a1的值是否滿足“n≥2”的一般性通項(xiàng)公式.
【變式訓(xùn)練2】已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是()
A.2n-1B.(n+1n)n-1C.n2D.n
【解析】由an=n(an+1-an)an+1an=n+1n.
所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故選D.
題型三利用遞推關(guān)系求數(shù)列的通項(xiàng)
【例3】已知在數(shù)列{an}中a1=1,求滿足下列條件的數(shù)列的通項(xiàng)公式:
(1)an+1=an1+2an;(2)an+1=2an+2n+1.
【解析】(1)因?yàn)閷?duì)于一切n∈N*,an≠0,
因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.
所以{1an}是等差數(shù)列,1an=1a1+(n-1)2=2n-1,即an=12n-1.
(2)根據(jù)已知條件得an+12n+1=an2n+1,即an+12n+1-an2n=1.
所以數(shù)列{an2n}是等差數(shù)列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.
【點(diǎn)撥】通項(xiàng)公式及遞推關(guān)系是給出數(shù)列的常用方法,尤其是后者,可以通過進(jìn)一步的計(jì)算,將其進(jìn)行轉(zhuǎn)化,構(gòu)造新數(shù)列求通項(xiàng),進(jìn)而可以求得所求數(shù)列的通項(xiàng)公式.
【變式訓(xùn)練3】設(shè){an}是首項(xiàng)為1的正項(xiàng)數(shù)列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.
【解析】因?yàn)閿?shù)列{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,
所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,
令an+1an=t,所以(n+1)t2+t-n=0,
所以[(n+1)t-n](t+1)=0,
得t=nn+1或t=-1(舍去),即an+1an=nn+1.
所以a2a1a3a2a4a3a5a4…anan-1=12233445…n-1n,所以an=1n.
總結(jié)提高
1.給出數(shù)列的前幾項(xiàng)求通項(xiàng)時(shí),常用特征分析法與化歸法,所求通項(xiàng)不唯一.
2.由Sn求an時(shí),要分n=1和n≥2兩種情況.
3.給出Sn與an的遞推關(guān)系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.
6.2等差數(shù)列
典例精析
題型一等差數(shù)列的判定與基本運(yùn)算
【例1】已知數(shù)列{an}前n項(xiàng)和Sn=n2-9n.
(1)求證:{an}為等差數(shù)列;(2)記數(shù)列{|an|}的前n項(xiàng)和為Tn,求Tn的表達(dá)式.
【解析】(1)證明:n=1時(shí),a1=S1=-8,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,
當(dāng)n=1時(shí),也適合該式,所以an=2n-10(n∈N*).
當(dāng)n≥2時(shí),an-an-1=2,所以{an}為等差數(shù)列.
(2)因?yàn)閚≤5時(shí),an≤0,n≥6時(shí),an>0.
所以當(dāng)n≤5時(shí),Tn=-Sn=9n-n2,
當(dāng)n≥6時(shí),Tn=a1+a2+…+a5+a6+…+an
=-a1-a2-…-a5+a6+a7+…+an
=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,
所以,
【點(diǎn)撥】根據(jù)定義法判斷數(shù)列為等差數(shù)列,靈活運(yùn)用求和公式.
【變式訓(xùn)練1】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S21=42,若記bn=,則數(shù)列{bn}()
A.是等差數(shù)列,但不是等比數(shù)列B.是等比數(shù)列,但不是等差數(shù)列
C.既是等差數(shù)列,又是等比數(shù)列D.既不是等差數(shù)列,又不是等比數(shù)列
【解析】本題考查了兩類常見數(shù)列,特別是等差數(shù)列的性質(zhì).根據(jù)條件找出等差數(shù)列{an}的首項(xiàng)與公差之間的關(guān)系從而確定數(shù)列{bn}的通項(xiàng)是解決問題的突破口.{an}是等差數(shù)列,則S21=21a1+21×202d=42.
所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即數(shù)列{bn}是非0常數(shù)列,既是等差數(shù)列又是等比數(shù)列.答案為C.
題型二公式的應(yīng)用
【例2】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍;
(2)指出S1,S2,…,S12中哪一個(gè)值最大,并說明理由.
【解析】(1)依題意,有
S12=12a1+12×(12-1)d2>0,S13=13a1+13×(13-1)d2<0,
即
由a3=12,得a1=12-2d.③
將③分別代入①②式,得
所以-247<d<-3.
(2)方法一:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,
即a6+a7>0,a7<0,因此a6>0,a7<0,
故在S1,S2,…,S12中,S6的值最大.
方法二:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,…,S12中的最大值.
故在S1,S2,…,S12中,S6的值最大.
【變式訓(xùn)練2】在等差數(shù)列{an}中,公差d>0,a2008,a2009是方程x2-3x-5=0的兩個(gè)根,Sn是數(shù)列{an}的前n項(xiàng)的和,那么滿足條件Sn<0的最大自然數(shù)n=.
【解析】由題意知又因?yàn)楣頳>0,所以a2008<0,a2009>0.當(dāng)
n=4015時(shí),S4015=a1+a40152×4015=a2008×4015<0;當(dāng)n=4016時(shí),S4016=a1+a40162×4016=a2008+a20092×4016>0.所以滿足條件Sn<0的最大自然數(shù)n=4015.
題型三性質(zhì)的應(yīng)用
【例3】某地區(qū)2010年9月份曾發(fā)生流感,據(jù)統(tǒng)計(jì),9月1日該地區(qū)流感病毒的新感染者有40人,此后,每天的新感染者人數(shù)比前一天增加40人;但從9月11日起,該地區(qū)醫(yī)療部門采取措施,使該種病毒的傳播得到控制,每天的新感染者人數(shù)比前一天減少10人.
(1)分別求出該地區(qū)在9月10日和9月11日這兩天的流感病毒的新感染者人數(shù);
(2)該地區(qū)9月份(共30天)該病毒新感染者共有多少人?
【解析】(1)由題意知,該地區(qū)9月份前10天流感病毒的新感染者的人數(shù)構(gòu)成一個(gè)首項(xiàng)為40,公差為40的等差數(shù)列.
所以9月10日的新感染者人數(shù)為40+(10-1)×40=400(人).
所以9月11日的新感染者人數(shù)為400-10=390(人).
(2)9月份前10天的新感染者人數(shù)和為S10=10(40+400)2=2200(人),
9月份后20天流感病毒的新感染者的人數(shù),構(gòu)成一個(gè)首項(xiàng)為390,公差為-10的等差數(shù)列.
所以后20天新感染者的人數(shù)和為T20=20×390+20(20-1)2×(-10)=5900(人).
所以該地區(qū)9月份流感病毒的新感染者共有2200+5900=8100(人).
【變式訓(xùn)練3】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4≥10,S5≤15,則a4的最大值為
.
【解析】因?yàn)榈炔顢?shù)列{an}的前n項(xiàng)和為Sn,且S4≥10,S5≤15,
所以5+3d2≤a4≤3+d,即5+3d≤6+2d,所以d≤1,
所以a4≤3+d≤3+1=4,故a4的最大值為4.
總結(jié)提高
1.在熟練應(yīng)用基本公式的同時(shí),還要會(huì)用變通的公式,如在等差數(shù)列中,am=an+(m-n)d.
2.在五個(gè)量a1、d、n、an、Sn中,知其中的三個(gè)量可求出其余兩個(gè)量,要求選用公式要恰當(dāng),即善于減少運(yùn)算量,達(dá)到快速、準(zhǔn)確的目的.
3.已知三個(gè)或四個(gè)數(shù)成等差數(shù)列這類問題,要善于設(shè)元,目的仍在于減少運(yùn)算量,如三個(gè)數(shù)成等差數(shù)列時(shí),除了設(shè)a,a+d,a+2d外,還可設(shè)a-d,a,a+d;四個(gè)數(shù)成等差數(shù)列時(shí),可設(shè)為a-3m,a-m,a+m,a+3m.
4.在求解數(shù)列問題時(shí),要注意函數(shù)思想、方程思想、消元及整體消元的方法的應(yīng)用.
6.3等比數(shù)列
典例精析
題型一等比數(shù)列的基本運(yùn)算與判定
【例1】數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).求證:
(1)數(shù)列{Snn}是等比數(shù)列;(2)Sn+1=4an.
【解析】(1)因?yàn)閍n+1=Sn+1-Sn,an+1=n+2nSn,
所以(n+2)Sn=n(Sn+1-Sn).
整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,
故{Snn}是以2為公比的等比數(shù)列.
(2)由(1)知Sn+1n+1=4Sn-1n-1=4ann+1(n≥2),
于是Sn+1=4(n+1)Sn-1n-1=4an(n≥2).
又a2=3S1=3,故S2=a1+a2=4.
因此對(duì)于任意正整數(shù)n≥1,都有Sn+1=4an.
【點(diǎn)撥】①運(yùn)用等比數(shù)列的基本公式,將已知條件轉(zhuǎn)化為關(guān)于等比數(shù)列的特征量a1、q的方程是求解等比數(shù)列問題的常用方法之一,同時(shí)應(yīng)注意在使用等比數(shù)列前n項(xiàng)和公式時(shí),應(yīng)充分討論公比q是否等于1;②應(yīng)用定義判斷數(shù)列是否是等比數(shù)列是最直接,最有依據(jù)的方法,也是通法,若判斷一個(gè)數(shù)列是等比數(shù)列可用an+1an=q(常數(shù))恒成立,也可用a2n+1=anan+2恒成立,若判定一個(gè)數(shù)列不是等比數(shù)列則只需舉出反例即可,也可以用反證法.
【變式訓(xùn)練1】等比數(shù)列{an}中,a1=317,q=-12.記f(n)=a1a2…an,則當(dāng)f(n)最大時(shí),n的值為()
A.7B.8C.9D.10
【解析】an=317×(-12)n-1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此時(shí)n=9.故選C.
題型二性質(zhì)運(yùn)用
【例2】在等比數(shù)列{an}中,a1+a6=33,a3a4=32,an>an+1(n∈N*).
(1)求an;
(2)若Tn=lga1+lga2+…+lgan,求Tn.
【解析】(1)由等比數(shù)列的性質(zhì)可知a1a6=a3a4=32,
又a1+a6=33,a1>a6,解得a1=32,a6=1,
所以a6a1=132,即q5=132,所以q=12,
所以an=32(12)n-1=26-n.
(2)由等比數(shù)列的性質(zhì)可知,{lgan}是等差數(shù)列,
因?yàn)閘gan=lg26-n=(6-n)lg2,lga1=5lg2,
所以Tn=(lga1+lgan)n2=n(11-n)2lg2.
【點(diǎn)撥】歷年高考對(duì)性質(zhì)考查較多,主要是利用“等積性”,題目“小而巧”且背景不斷更新,要熟練掌握.
【變式訓(xùn)練2】在等差數(shù)列{an}中,若a15=0,則有等式a1+a2+…+an=a1+a2+…+a29-n(n<29,n∈N*)成立,類比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b19=1,能得到什么等式?
【解析】由題設(shè)可知,如果am=0,在等差數(shù)列中有
a1+a2+…+an=a1+a2+…+a2m-1-n(n<2m-1,n∈N*)成立,
我們知道,如果m+n=p+q,則am+an=ap+aq,
而對(duì)于等比數(shù)列{bn},則有若m+n=p+q,則aman=apaq,
所以可以得出結(jié)論:
若bm=1,則有b1b2…bn=b1b2…b2m-1-n(n<2m-1,n∈N*)成立.
在本題中則有b1b2…bn=b1b2…b37-n(n<37,n∈N*).
題型三綜合運(yùn)用
【例3】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,其中an≠0,a1為常數(shù),且-a1,Sn,an+1成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=1-Sn,問是否存在a1,使數(shù)列{bn}為等比數(shù)列?若存在,則求出a1的值;若不存在,說明理由.
【解析】(1)由題意可得2Sn=an+1-a1.
所以當(dāng)n≥2時(shí),有
兩式相減得an+1=3an(n≥2).
又a2=2S1+a1=3a1,an≠0,
所以{an}是以首項(xiàng)為a1,公比為q=3的等比數(shù)列.
所以an=a13n-1.
(2)因?yàn)镾n=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.
要使{bn}為等比數(shù)列,當(dāng)且僅當(dāng)1+12a1=0,即a1=-2,此時(shí)bn=3n.
所以{bn}是首項(xiàng)為3,公比為q=3的等比數(shù)列.
所以{bn}能為等比數(shù)列,此時(shí)a1=-2.
【變式訓(xùn)練3】已知命題:若{an}為等差數(shù)列,且am=a,an=b(m<n,m、n∈N*),則am+n=bn-amn-m.現(xiàn)在已知數(shù)列{bn}(bn>0,n∈N*)為等比數(shù)列,且bm=a,bn=b(m<n,m,n∈N*),類比上述結(jié)論得bm+n=.
【解析】n-mbnam.
總結(jié)提高
1.方程思想,即等比數(shù)列{an}中五個(gè)量a1,n,q,an,Sn,一般可“知三求二”,通過求和與通項(xiàng)兩公式列方程組求解.
2.對(duì)于已知數(shù)列{an}遞推公式an與Sn的混合關(guān)系式,利用公式an=Sn-Sn-1(n≥2),再引入輔助數(shù)列,轉(zhuǎn)化為等比數(shù)列問題求解.
3.分類討論思想:當(dāng)a1>0,q>1或a1<0,0<q<1時(shí),等比數(shù)列{an}為遞增數(shù)列;當(dāng)a1>0,0<q<1或a1<0,q>1時(shí),{an}為遞減數(shù)列;q<0時(shí),{an}為擺動(dòng)數(shù)列;q=1時(shí),{an}為常數(shù)列.
6.4數(shù)列求和
典例精析
題型一錯(cuò)位相減法求和
【例1】求和:Sn=1a+2a2+3a3+…+nan.
【解析】(1)a=1時(shí),Sn=1+2+3+…+n=n(n+1)2.
(2)a≠1時(shí),因?yàn)閍≠0,
Sn=1a+2a2+3a3+…+nan,①
1aSn=1a2+2a3+…+n-1an+nan+1.②
由①-②得(1-1a)Sn=1a+1a2+…+1an-nan+1=1a(1-1an)1-1a-nan+1,
所以Sn=a(an-1)-n(a-1)an(a-1)2.
綜上所述,Sn=
【點(diǎn)撥】(1)若數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,則求數(shù)列{anbn}的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法;
(2)當(dāng)?shù)缺葦?shù)列公比為字母時(shí),應(yīng)對(duì)字母是否為1進(jìn)行討論;
(3)當(dāng)將Sn與qSn相減合并同類項(xiàng)時(shí),注意錯(cuò)位及未合并項(xiàng)的正負(fù)號(hào).
【變式訓(xùn)練1】數(shù)列{2n-32n-3}的前n項(xiàng)和為()
A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1
【解析】取n=1,2n-32n-3=-4.故選C.
題型二分組并項(xiàng)求和法
【例2】求和Sn=1+(1+12)+(1+12+14)+…+(1+12+14+…+12n-1).
【解析】和式中第k項(xiàng)為ak=1+12+14+…+12k-1=1-(12)k1-12=2(1-12k).
所以Sn=2[(1-12)+(1-122)+…+(1-12n)]
=-(12+122+…+12n)]
=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.
【變式訓(xùn)練2】數(shù)列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n項(xiàng)和為()
A.2n-1B.n2n-n
C.2n+1-nD.2n+1-n-2
【解析】an=1+2+22+…+2n-1=2n-1,
Sn=(21-1)+(22-1)+…+(2n-1)=2n+1-n-2.故選D.
題型三裂項(xiàng)相消法求和
【例3】數(shù)列{an}滿足a1=8,a4=2,且an+2-2an+1+an=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=1n(14-an)(n∈N*),Tn=b1+b2+…+bn(n∈N*),若對(duì)任意非零自然數(shù)n,Tn>m32恒成立,求m的最大整數(shù)值.
【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,
從而可知數(shù)列{an}為等差數(shù)列,設(shè)其公差為d,則d=a4-a14-1=-2,
所以an=8+(n-1)×(-2)=10-2n.
(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),
所以Tn=b1+b2+…+bn=14[(11-13)+(12-14)+…+(1n-1n+2)]
=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)>m32,
上式對(duì)一切n∈N*恒成立.
所以m<12-8n+1-8n+2對(duì)一切n∈N*恒成立.
對(duì)n∈N*,(12-8n+1-8n+2)min=12-81+1-81+2=163,
所以m<163,故m的最大整數(shù)值為5.
【點(diǎn)撥】(1)若數(shù)列{an}的通項(xiàng)能轉(zhuǎn)化為f(n+1)-f(n)的形式,常采用裂項(xiàng)相消法求和.
(2)使用裂項(xiàng)相消法求和時(shí),要注意正負(fù)項(xiàng)相消時(shí),消去了哪些項(xiàng),保留了哪些項(xiàng).
【變式訓(xùn)練3】已知數(shù)列{an},{bn}的前n項(xiàng)和為An,Bn,記cn=anBn+bnAn-anbn(n∈N*),則數(shù)列{cn}的前10項(xiàng)和為()
A.A10+B10B.A10+B102C.A10B10D.A10B10
【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10項(xiàng)和為A10B10,故選C.
總結(jié)提高
1.常用的基本求和法均對(duì)應(yīng)數(shù)列通項(xiàng)的特殊結(jié)構(gòu)特征,分析數(shù)列通項(xiàng)公式的特征聯(lián)想相應(yīng)的求和方法既是根本,也是關(guān)鍵.
2.數(shù)列求和實(shí)質(zhì)就是求數(shù)列{Sn}的通項(xiàng)公式,它幾乎涵蓋了數(shù)列中所有的思想策略、方法和技巧,對(duì)學(xué)生的知識(shí)和思維有很高的要求,應(yīng)充分重視并系統(tǒng)訓(xùn)練.
6.5數(shù)列的綜合應(yīng)用
典例精析
題型一函數(shù)與數(shù)列的綜合問題
【例1】已知f(x)=logax(a>0且a≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N*)是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)設(shè)a是常數(shù),求證:{an}成等比數(shù)列;
(2)若bn=anf(an),{bn}的前n項(xiàng)和是Sn,當(dāng)a=2時(shí),求Sn.
【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,
所以anan-1=a2n+2a2n=a2(n≥2)為定值,所以{an}為等比數(shù)列.
(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,
當(dāng)a=2時(shí),bn=(2n+2)(2)2n+2=(n+1)2n+2,
Sn=223+324+425+…+(n+1)2n+2,
2Sn=224+325+…+n2n+2+(n+1)2n+3,
兩式相減得
-Sn=223+24+25+…+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,
所以Sn=n2n+3.
【點(diǎn)撥】本例是數(shù)列與函數(shù)綜合的基本題型之一,特征是以函數(shù)為載體構(gòu)建數(shù)列的遞推關(guān)系,通過由函數(shù)的解析式獲知數(shù)列的通項(xiàng)公式,從而問題得到求解.
【變式訓(xùn)練1】設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則數(shù)列{1f(n)}(n∈N*)的前n項(xiàng)和是()
A.nn+1B.n+2n+1C.nn+1D.n+1n
【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.
所以f(x)=x2+x,則1f(n)=1n(n+1)=1n-1n+1.
所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故選C.
題型二數(shù)列模型實(shí)際應(yīng)用問題
【例2】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行著頑強(qiáng)的斗爭(zhēng),到2009年底全縣的綠化率已達(dá)30%,從2010年開始,每年將出現(xiàn)這樣的局面:原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化.
(1)設(shè)全縣面積為1,2009年底綠化面積為a1=310,經(jīng)過n年綠化面積為an+1,求證:an+1=45an+425;
(2)至少需要多少年(取整數(shù))的努力,才能使全縣的綠化率達(dá)到60%?
【解析】(1)證明:由已知可得an確定后,an+1可表示為an+1=an(1-4%)+(1-an)16%,
即an+1=80%an+16%=45an+425.
(2)由an+1=45an+425有,an+1-45=45(an-45),
又a1-45=-12≠0,所以an+1-45=-12(45)n,即an+1=45-12(45)n,
若an+1≥35,則有45-12(45)n≥35,即(45)n-1≤12,(n-1)lg45≤-lg2,
(n-1)(2lg2-lg5)≤-lg2,即(n-1)(3lg2-1)≤-lg2,
所以n≥1+lg21-3lg2>4,n∈N*,
所以n取最小整數(shù)為5,故至少需要經(jīng)過5年的努力,才能使全縣的綠化率達(dá)到60%.
【點(diǎn)撥】解決此類問題的關(guān)鍵是如何把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過反復(fù)讀題,列出有關(guān)信息,轉(zhuǎn)化為數(shù)列的有關(guān)問題.
【變式訓(xùn)練2】規(guī)定一機(jī)器狗每秒鐘只能前進(jìn)或后退一步,現(xiàn)程序設(shè)計(jì)師讓機(jī)器狗以“前進(jìn)3步,然后再后退2步”的規(guī)律進(jìn)行移動(dòng).如果將此機(jī)器狗放在數(shù)軸的原點(diǎn),面向正方向,以1步的距離為1單位長(zhǎng)移動(dòng),令P(n)表示第n秒時(shí)機(jī)器狗所在的位置坐標(biāo),且P(0)=0,則下列結(jié)論中錯(cuò)誤的是()
A.P(2006)=402B.P(2007)=403
C.P(2008)=404D.P(2009)=405
【解析】考查數(shù)列的應(yīng)用.構(gòu)造數(shù)列{Pn},由題知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2005)=401,P(2006)=401+1=402,P(2007)=401+1+1=403,P(2008)=401+
3=404,P(2009)=404-1=403.故D錯(cuò).
題型三數(shù)列中的探索性問題
【例3】{an},{bn}為兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an),Bn(n-1n,2n)為直角坐標(biāo)平面上的點(diǎn).
(1)對(duì)n∈N*,若點(diǎn)M,An,Bn在同一直線上,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三項(xiàng)為8,公比為4的等比數(shù)列,求證:點(diǎn)列(1,b1),(2,b2),…,(n,bn)在同一直線上,并求此直線方程.
【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.
(2)由已知有Cn=22n-3,由log2Cn的表達(dá)式可知:
2(b1+2b2+…+nbn)=n(n+1)(2n-3),①
所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②
①-②得bn=3n-4,所以{bn}為等差數(shù)列.
故點(diǎn)列(1,b1),(2,b2),…,(n,bn)共線,直線方程為y=3x-4.
【變式訓(xùn)練3】已知等差數(shù)列{an}的首項(xiàng)a1及公差d都是整數(shù),前n項(xiàng)和為Sn(n∈N*).若a1>1,a4>3,S3≤9,則通項(xiàng)公式an=.
【解析】本題考查二元一次不等式的整數(shù)解以及等差數(shù)列的通項(xiàng)公式.
由a1>1,a4>3,S3≤9得
令x=a1,y=d得
在平面直角坐標(biāo)系中畫出可行域如圖所示.符合要求的整數(shù)點(diǎn)只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.
總結(jié)提高
1.數(shù)列模型應(yīng)用問題的求解策略
(1)認(rèn)真審題,準(zhǔn)確理解題意;
(2)依據(jù)問題情境,構(gòu)造等差、等比數(shù)列,然后應(yīng)用通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)求解,或通過探索、歸納構(gòu)造遞推數(shù)列求解;
(3)驗(yàn)證、反思結(jié)果與實(shí)際是否相符.
2.數(shù)列綜合問題的求解策略
(1)數(shù)列與函數(shù)綜合問題或應(yīng)用數(shù)學(xué)思想解決數(shù)列問題,或以函數(shù)為載體構(gòu)造數(shù)列,應(yīng)用數(shù)列的知識(shí)求解;
(2)數(shù)列的幾何型綜合問題,探究幾何性質(zhì)和規(guī)律特征建立數(shù)列的遞推關(guān)系式,然后求解問題.
數(shù)列求和
一名優(yōu)秀的教師在每次教學(xué)前有自己的事先計(jì)劃,教師要準(zhǔn)備好教案,這是教師需要精心準(zhǔn)備的。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助授課經(jīng)驗(yàn)少的教師教學(xué)。寫好一份優(yōu)質(zhì)的教案要怎么做呢?小編經(jīng)過搜集和處理,為您提供數(shù)列求和,供大家借鑒和使用,希望大家分享!
數(shù)列的求和教學(xué)目的:小結(jié)數(shù)列求和的常用方法,尤其是要求學(xué)生初步掌握用拆項(xiàng)法、裂項(xiàng)法和錯(cuò)位法求一些特殊的數(shù)列。
教學(xué)過程:
基本公式:
1.等差數(shù)列的前項(xiàng)和公式:
,
2.等比數(shù)列的前n項(xiàng)和公式:
當(dāng)時(shí),①或②
當(dāng)q=1時(shí),
一、特殊數(shù)列求和--常用數(shù)列的前n項(xiàng)和及其應(yīng)用:
例1設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且,
求數(shù)列{an}的前n項(xiàng)和
——由題和等差數(shù)列的前n項(xiàng)和公式先求通項(xiàng)公式an,再sn
例3求和S=1×2×3+2×3×4+…+n(n+1)(n+2).
——關(guān)鍵是處理好通項(xiàng):n(n+1)(n+2)=n+3n+2n,
應(yīng)用特殊公式和分組求解的方法。
二、拆項(xiàng)法(分組求和法):
例4求數(shù)列
的前n項(xiàng)和。
——拆成等比數(shù)和列等差數(shù)列{3n-2},應(yīng)用公式求和,注意分a=1和兩類討論.
三、裂項(xiàng)(相消)法:
例5求數(shù)列前n項(xiàng)和
——關(guān)鍵是處理好通項(xiàng)(裂項(xiàng)).設(shè)數(shù)列的通項(xiàng)為bn,則
例6求數(shù)列前n項(xiàng)和
解:
四、錯(cuò)位法:
例7求數(shù)列前n項(xiàng)和
解:①
②
兩式相減:
五、作業(yè):
1.求數(shù)列前n項(xiàng)和
2.求數(shù)列前n項(xiàng)和
3.求和:(5050)
4.求和:1×4+2×5+3×6+……+n×(n+1)
5.求數(shù)列1,(1+a),(1+a+a2),……,(1+a+a2+……+an1),……前n項(xiàng)和