小學一年級的數(shù)學教案
發(fā)表時間:2020-11-24八年級上冊數(shù)學期末知識點:生活中的軸對稱。
八年級上冊數(shù)學期末知識點:生活中的軸對稱
第一章生活中的軸對稱
1.1軸對稱現(xiàn)象
1.軸對稱圖形:(1)如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,這個圖形叫軸對稱圖形。這條直線叫對稱軸。(注意:對稱軸是一條直線,不是線段,也不是射線)。
(2)軸對稱圖形至少有一條對稱軸,最多可達無數(shù)條。
例:①圓的對稱軸是它的直徑(×)直徑是線段,而對稱軸是直線(應說圓的對稱軸是過圓心的直線或直徑所在的直線);
②角的對稱軸是它的角平分線(×)角平分線是射線而不是直線(應說角的對稱軸是角平分線所在的直線);
③正方形的對角線是正方形的對稱軸(×)對角線也是線段而不是直線。
2.軸對稱:(1)對于兩個圖形,如果沿一條直線折疊后,它們能夠完全重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。(成軸對稱的兩圖形本身可以不是軸對稱圖形)。
(2)軸對稱圖形與軸對稱的關系:
①聯(lián)系:都是沿一條直線折疊后能夠互相重合;當把成軸對稱的兩個圖形看成一個整體時,它是一個軸對稱圖形;
②區(qū)別:軸對稱圖形是一個圖形,軸對稱是兩個圖形之間的關系。
1.2簡單的軸對稱圖形
有兩邊相等的三角形叫等腰三角形。
1.三線合一定理:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱為“三線合一”,它們所在的直線就是等腰三角形的對稱軸)。注意:對于一般的等腰三角形,一定要說清哪邊上的中線、高和哪個角的平分線;等邊三角形有三組三線合一,任意一邊上的中線和高及其所對的角的平分線。
2.等角對等邊,等邊對等角:如果一個三角形有兩個角相等,那么它們所對的邊也相等;如果一個三角形有兩個邊相等,那么它們所對的角也相等。
3.角平分線定理:角平分線上的任意一點到角的兩邊的距離(垂線段)相等。
4.中垂線定理(1)概念:既垂直又平分線段的直線叫垂直平分線,簡稱中垂線;
(2)定理:垂直平分線上的任一點到線段兩端點的距離(與端點的連線)相等。
5.30°所對直角邊等于斜邊的一半;斜邊上的中線等于斜邊的一半。
1.3探索軸對稱的性質
1.對應點所連的線段被對稱軸垂直平分;
2.軸對稱圖形對應線段相等,對應角相等。
1.4利用軸對稱設計圖案
1.畫點A關于直線L的對應點A:1、過點A作對稱軸L的垂線,垂足為B
2、延長AB至A,使得BA=AB
3、點A就是點A關于直線L的對應點
2.畫線段AB關于L的對應線段AB:1、過點A作對稱軸L的垂線AA,使CA=CA
2、過點A作對稱軸L的垂線BB,使DB=DB
3、連接AB,AB即是關于直線L的對應線段。
jaB88.coM
相關推薦
八年級上冊數(shù)學期末知識點:勾股定理
八年級上冊數(shù)學期末知識點:勾股定理
第二章勾股定理
2.1探索勾股定理
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。(一個直角三角形,以它的兩直角邊為邊長所作的兩正方形面積之和等于以它的斜邊為邊長所作的正方形的面積)
注意:電視機有多少英寸,指的是電視屏幕對角線的長度。
2.2勾股數(shù)
1.勾股定理的逆定理:若三角形的三邊長a,b,c滿足a2+b2=c2,則該三角形是直角三角形。
在ABC中,a,b,c為三邊長,其中c為最大邊,
若a2+b2=c2,則ABC為直角三角形;
若a2+b2c2,則ABC為銳角三角形;
若a2+b2c2,則ABC為鈍角三角形。
2.勾股數(shù):滿足a2+b2=c2的三個正整數(shù)(即能構成一個直角三角形三邊的一組正整數(shù)),稱為勾股數(shù)(勾股數(shù)是正整數(shù))。
規(guī)律:一組能構成直角三角形的三邊的數(shù),同時擴大或縮小同一倍數(shù)(即同乘以或除以同一個正數(shù)),仍能夠成直角三角形。
一組勾股數(shù)的倍數(shù)不一定是勾股數(shù),因為其倍數(shù)可能是小數(shù),只有整數(shù)倍數(shù)才仍是勾股數(shù)。
常用勾股數(shù):3,4,5(三四五)9,12,15(3,4,5的三倍)5,12,13(5.12記一生)
8,15,17(八月十五在一起)6,8,10(3,4,5的兩倍)7,24,25(企鵝是二百五)
勾股數(shù)須知:連續(xù)的勾股數(shù)只有3,4,5連續(xù)的偶數(shù)勾股數(shù)只有6,8,10
八年級上冊數(shù)學期末知識點:一次函數(shù)
每個老師不可缺少的課件是教案課件,大家在仔細設想教案課件了。教案課件工作計劃寫好了之后,這樣我們接下來的工作才會更加好!你們會寫一段適合教案課件的范文嗎?下面是小編幫大家編輯的《八年級上冊數(shù)學期末知識點:一次函數(shù)》,僅供參考,大家一起來看看吧。
八年級上冊數(shù)學期末知識點:一次函數(shù)
第六章一次函數(shù)
6.1函數(shù)
常量:在變化過程中,保持不變取值的量叫常量。
變量:在變化過程中,可以不斷變化取值的量叫變量。
函數(shù):一般地,設在一個變化的過程中有兩個變量x和y。如果對于變量x的每一個值,變量y都有唯一的值與它對應,我們稱y是x的函數(shù)。其中,x是自變量,y是因變量。
6.2一次函數(shù)
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數(shù),k不為零)的形式,則稱y是x的一次函數(shù)。x為自變量,y為因變量。特別地,當b=0時,稱y是x的正比例函數(shù)(正比例函數(shù)是特殊的一次函數(shù))。
6.3一次函數(shù)的圖像
1.一次函數(shù)的性質:
(1)當k>0時,y隨x的增大而增大;
(2)當k<0時,y隨x的增大而減?。?br>
(3)函數(shù)圖象經過定點(0,b)。
2.正比例函數(shù)的性質:
(1)當k>0時,圖象經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖象經過第二、四象限,y隨x的增大而減小;
(3)函數(shù)圖象經過定點(0,0)。
3.作正比例函數(shù)圖像:
對于正比例函數(shù)y=kx,通常取兩個點(0,0),(1,k),兩點的連線就是其圖象(兩點確定一條直線),所以正比例函數(shù)的圖象是一條直線。
4.作一次函數(shù)圖像:
通常取直線與坐標軸的交點來畫它的圖象。在x軸上的交點(-b/k,0),y軸上的交點(0,b)
5.一次函數(shù)y=kx+b的圖像的位置與k,b符號的關系:
(1)k﹥0,b﹥0時,圖象經過第一、二、三象限;
(2)k﹥0,b﹤0時,圖象經過第一、三、四象限;
(3)k0,b﹥0時,圖象經過第一、二、四象限;
(4)k0,b﹤0時,圖像經過第二、三、四象限;
(5)k﹥0,b=0時,圖象經過第一、三象限;
(6)k0,b=0時,圖象經過第二、四象限。
6.一元一次方程與一次函數(shù):
議一議:一元一次方程0.5x+1=0與一次函數(shù)y=0.5x+1有什么聯(lián)系?
從”數(shù)”的方面看,當一次函數(shù)y=0.5x+1的函數(shù)值為0時,相應的自變量的值即為方程0.5x+1=0的解;從“形”的方面看,函數(shù)y=0.5x+1與x軸交點的橫坐標即為方程0.5x+1=0的解。
八年級數(shù)學上冊知識點:軸對稱
八年級數(shù)學上冊知識點:軸對稱
1.軸對稱:
把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
2.軸對稱圖形:
如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質:
(1)關于某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線;
(3)兩個圖形關于某條直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上;
(4)如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質:
①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:
根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質:
①在角的平分線上的點到這個角的兩邊的距離相等.
②到一個角的兩邊距離相等的點,在這個角的平分線上.
注意:根據(jù)角平分線的性質,三角形的三個內角的平分線交于一點,并且這一點到三條邊的距離相等.
6.等腰三角形的性質與判定:
性質:
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質,
如:
①等腰三角形兩底角的平分線相等;
②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質與判定:
性質:
(1)等邊三角形的三個角都相等,并且每個角都等于60°;
(2)等邊三角形具有等腰三角形的所有性質,并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60°的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。