一元二次方程高中教案
發(fā)表時間:2020-10-19七年級下冊數(shù)學知識點:二元一次方程組。
每個老師需要在上課前弄好自己的教案課件,到寫教案課件的時候了。教案課件工作計劃寫好了之后,才能使接下來的工作更加有序!你們到底知道多少優(yōu)秀的教案課件呢?下面是小編幫大家編輯的《七年級下冊數(shù)學知識點:二元一次方程組》,希望能對您有所幫助,請收藏。
七年級下冊數(shù)學知識點:二元一次方程組
一、目標與要求
1.認識二元一次方程和二元一次方程組。
2.了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解。
3.會用代入法解二元一次方程組。
4.初步體會解二元一次方程組的基本思想――“消元”。
5.通過研究解決問題的方法,培養(yǎng)學生合作交流意識與探究精神。
6.使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用。
7.通過應用題教學使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關系,體會代數(shù)方法的優(yōu)越性。
二、重點
用代入消元法解二元一次方程組;
理解二元一次方程組的解的意義。
三、難點
求二元一次方程的正整數(shù)解;
探索如何用代入法將“二元”轉化為“一元”的消元過程。
四、結構圖
五、知識點、概念總結
1.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有一個解,有時沒有解,有時有無數(shù)個解。
2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
5.消元:將未知數(shù)的個數(shù)由多化少,逐一解決的想法,叫做消元思想。
歸納:基本思路:“消元”——把“二元”變?yōu)椤耙辉薄?/p>
6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
7.加減消元法:當兩個方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),這種方法叫做加減消元法,簡稱加減法。
8.教科書中沒有的幾種解法
(1)加減-代入混合使用的方法:
特點:兩方程相加減,單個x或單個y,這樣就適用接下來的代入消元。
(2)換元法
特點:兩方程中都含有相同的代數(shù)式,換元后可簡化方程也是主要原因。
(3)設參數(shù)法
9.列方程(組)解應用題步驟:
(1)審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。
(2)設元(未知數(shù))。
①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
(3)用含未知數(shù)的代數(shù)式表示相關的量。
(4)尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。
(5)解方程及檢驗。
(6)答案。
綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。
10.三元一次方程組:如果方程組中含有三個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次,這樣的方程組叫做三元一次方程組。舉例如下:
11.三元一次方程組解法:
主要的解法就是加減消元法和代入消元法,通常采用加減消元法,若方程難解就用代入消元法,因題而異。
12.簡單的三元一次方程組的解法步驟:
(1)思路:解三元一次方程組的基本思想仍是消元,其基本方法是代入法和加減法。
(2)步驟:①利用代入法或加減法,消去一個未知數(shù),得出一個二元一次方程組;
②解這個二元一次方程組,求得兩個未知數(shù)的值;
③將這兩個未知數(shù)的值代入原方程中較簡單的一個方程,求出第三個未知數(shù)的值,把這三個數(shù)寫在一起的就是所求的三元一次方程組的解。
靈活運用加減消元法,代入消元法解簡單的三元一次方程組。
延伸閱讀
七年級上冊數(shù)學二元一次方程組
每個老師不可缺少的課件是教案課件,大家在認真寫教案課件了。只有寫好教案課件計劃,未來工作才會更有干勁!你們知道適合教案課件的范文有哪些呢?以下是小編為大家精心整理的“七年級上冊數(shù)學二元一次方程組”,希望能為您提供更多的參考。
第28講二元一次方程組
方法運用
1.如果,那么=_____________.
2.如圖,周長為34的長方形ABCD被分成7個大小完全一樣的小長方形,則每個小長方形的面積_____________.
3.解方程組:
⑴⑵
4.已知y=kx+b,若x=4時,y=15;x=7時,y=24,求當x=-2時,y的值是多少?
5.已知y=x2+px+q,當x=1時,y的值為2;當x=-2時,y的值為2;求當x=-3時,y的值.
6.關于x、y方程組中x,y相等,求k的值.
7.已知方程組的解x、y互為相反數(shù),求方程組的解.
8.在解關于x、y方程組可以用⑴×2+⑵消去未知數(shù)x;也可以用⑴+⑵×5消去未知數(shù),求m、n的值.
9.已知(xyz≠0),求x:y:z的值.
10.若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求式子的值.
11.張阿姨要把若干個蘋果分給小朋友們吃,若每人2個,則多1個;若每人3個,則缺2個,蘋果有_________個,小朋友有__________個.
12.小明和小亮做數(shù)字游戲:他們各寫一個兩位數(shù),先將小明寫的兩位數(shù)減去小亮寫的兩位數(shù),得到的差是一個一位數(shù);再將他們寫的兩位數(shù)相加,得到一個三位數(shù).在這個三位數(shù)后面添寫上面得到的差就得到一個四位數(shù)為1482.小明、小亮各寫的是子什么數(shù)?
13.某人裝修房屋,原預算25000元.裝修時因材料費下降了20%,工資漲了10%,實際用去了21500元.求原來材料費及工資各是多少元?
14.一列勻速行駛的火車通過一座160米的鐵路橋用了30秒,而它以同樣的速度穿過一段200米長的隧道用了35秒,求這列火車的速度和長度?
綜合思考
15.天興洲大橋的護欄由兩種金屬材料建成,規(guī)格為30米和60米.某公司承建了1200米路段的工程,要求每種規(guī)格的材料多于10根,已知建成后30米規(guī)格的材料每根可盈利8000元,60米規(guī)格的材料每根可盈利15000元.若設30米規(guī)格的材料用x根,60米規(guī)格的材料用y根.
⑴用含y的式子表示x;
⑵該公司共有多少種承建方案?
⑶哪種方案的盈利較大?
16.建設國家森林城市,園林部門決定搭配A、B兩種園藝造型共50個擺放在市區(qū),現(xiàn)有3490盆甲種花卉和2950盆乙種花卉可供使用,已知搭配一個A種造型需甲種花卉80盆,乙種花卉40盆.搭配一個B種造型需甲種花卉50盆,乙種花卉90盆.
⑴問符合題意的搭配方案有幾種?請你幫助設計出來.
⑵若搭配一個A種造型的費用是800元,搭配一個B種造型的費用是960元,試說明⑴中哪種方案費用最低?最低費用是多少元?
17.要運送一批貨物,若用3臺大貨車各運7次,結果還有12件貨物未運送完;若9臺小貨車各運4次,結果剛好運送完,已知每臺大貨車比每臺小貨車一次多運送3件貨物.
⑴求這批貨物共有多少件?
⑵已知每臺大貨車每次的運送費用為60元,每臺小貨車每次的運送費用為40元,若要想兩次將所有貨物運送完(每臺貨車都運送2次,每次都是滿載貨物),問如何租用這兩種貨車,才合算呢?
18.如圖,MN∥ST,直線PQ交MN,ST分別于A、B兩點,AC平分∠MAB交ST于C,∠ACB=400.
⑴求∠ABT的度數(shù);
⑵直線PQ上是否存在點D,使∠ACB=2∠ACD?若存在,求∠ADC的度數(shù);若不存在,請說明理由.
⑶E為∠MAC的平分線上一動點,連接BE,∠CBE的平分線BF交AC于F,當點E在運動過程中,2∠AFB-∠AEB的度數(shù)是否變化?若不變,求其值;若變化,求出變化范圍.
七年級下冊《二元一次方程組》教案
七年級下冊《二元一次方程組》教案
教學目標:
1.認識二元一次方程和二元一次方程組.
2.了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解.
教學重點:
理解二元一次方程組的解的意義.
教學難點:
求二元一次方程的正整數(shù)解.
教學過程:
籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?
思考:
這個問題中包含了哪些必須同時滿足的條件?設勝的場數(shù)是x,負的場數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數(shù)+負的場數(shù)=總場數(shù),
勝場積分+負場積分=總積分.
這兩個條件可以用方程
x+y=22
2x+y=40
表示.
上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.
把兩個方程合在一起,寫成
《二元一次方程組》教案nx+y=22
2x+y=40
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組.
探究:
滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中.
x
上表中哪對x、y的值還滿足方程②
一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解.
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解.
例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,試求a、b的取值范圍.
(2)方程x∣a∣–1+(a-2)y=2是二元一次方程,試求a的值.
例2若方程x2m–1+5y3n–2=7是二元一次方程.求m、n的值
例3已知下列三對值:
《二元一次方程組》教案n《二元一次方程組》教案n《二元一次方程組》教案nx=-6x=10x=10
y=-9y=-6y=-1
(1)《二元一次方程組》教案n《二元一次方程組》教案n哪幾對數(shù)值使方程《二元一次方程組》教案nx-y=6的左、右兩邊的值相等?
(2)哪幾對數(shù)值是方程組的解?
例4求二元一次方程3x+2y=19的正整數(shù)解.
課堂練習:
教科書第102頁練習
習題8.11、2題
作業(yè):
教科書第102頁3、4、5題
評價與反思
1.概念課教學模式:本節(jié)課的主要內容是二元一次方程(組)的有關概念,設計時按照“實例研究,初步體會——比較分析,把握實質——歸納概括,形成定義——應用提高,發(fā)展能力”的思路進行,讓學生體會到是因為“需要”而學習新知識,逐步滲透應用意識。
2.類比法的運用:二元一次方程及其解的意義類比一元一次方程學習,一方面加深學生對于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關知識的異同,同時為二元一次方程組相關概念掃清障礙。
3.分層遞進,循環(huán)上升:學生對知識的理解,教師對學生的要求,都是由低到高,逐步提升,題目的設計從單一知識點的直接運用,逐漸到多個知識點的靈活運用,給學生設計必要的臺階,使其一步步向前,最終達到教學目標。
解二元一次方程組
每個老師上課需要準備的東西是教案課件,規(guī)劃教案課件的時刻悄悄來臨了。此時就可以對教案課件的工作做個簡單的計劃,才能規(guī)范的完成工作!有沒有出色的范文是關于教案課件的?下面是由小編為大家整理的“解二元一次方程組”,歡迎您閱讀和收藏,并分享給身邊的朋友!
第七章二元一次方程組總課時:8課時使用人:
備課時間:第九周上課時間:第十三周
第2課時:7、2解二元一次方程組(1)
教學目標
知識與技能:會用代入消元法解二元一次方程組.
過程與方法:了解“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.
情感態(tài)度與價值觀:讓學生經(jīng)歷自主探索過程,化未知為已知,從中獲得成功的體驗,從而激發(fā)學生的學習興趣.
教學重點
用代入消元法解二元一次方程組.
教學難點
在解題過程中體會“消元”思想和“化未知為已知”的化歸思想.
教學準備:多媒體課件
教學過程:
第一環(huán)節(jié):情境引入(5分鐘,學生理解題意,小組討論解決方案)
內容:
教師引導學生共同回憶上一節(jié)課討論的“買門票”問題,想一想當時是怎么獲得二元一次方程組的解的.
設他們中有x個成人,y個兒童,我們得到了方程組成人和兒童到底去了多少人呢?在上一節(jié)課的“做一做”中,我們通過檢驗是不是方程x+y=8和方程5x+3y=34的解,從而得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組的解的定義,得出是方程組的解.所以成人和兒童分別去了5人和3人.
提出問題:每一個二元一次方程的解都有無數(shù)多個,而方程組的解是方程組中各個方程的公共解,前面的方法中卻好我們找到了這個公共解,但如果數(shù)據(jù)不巧,這可沒那么容易,那么,有什么方法可以獲得任意一個二元一次方程組的解呢?
第二環(huán)節(jié):探索新知(10分鐘,教師引導學生分析方程中的數(shù)量關系,找到方法)
內容:回顧七年級第一學期學習的一元一次方程,是不是也曾碰到過類似的問題,能否利用一元一次方程求解該問題?(由學生獨立思考解決,教師注意指導學生規(guī)范表達)
解:設去了x個成人,則去了(8-x)個兒童,根據(jù)題意,得:
5x+3(8-x)=34.
解得:x=5.
將x=5代入8-x=8-5=3.
答:去了5個成人,3個兒童.
在學生解決的基礎上,引導學生進行比較:列二元一次方程組和列一元一次方程設未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?
(先讓學生獨立思考,然后在學生充分思考的前提下,進行小組討論,在此基礎上由學生代表回答,老師適時地引導與補充,力求通過學生觀察、思考與討論后能得出以下的一些要點.)
1.列二元一次方程組設有兩個未知數(shù):x個成人,y個兒童.列一元一次方程只設了一個未知數(shù):x個成人,兒童去的個數(shù)通過去的總人數(shù)與去的成人數(shù)相比較,得出(8-x)個.因此y應該等于(8-x).而由二元一次方程組的一個方程x+y=8,根據(jù)等式的性質可以推出y=8-x.
2.發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個方程5x+3y=34相類似,只需把5x+3y=34中的“y”用“(8-x)”代替就轉化成了一元一次方程.
教師引導學生發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法——即將新知識(二元一次方程組)轉化為舊知識(一元一次方程)便可.
(由學生來回答)上一節(jié)課我們就已知道方程組中相同的字母表示的是同一個未知量.所以將中的①變形,得y=8-x③,我們把y=8-x代入方程②,即將②中的y用(8-x)代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.
教師總結:同學們很善于思考.這就是我們在數(shù)學研究中經(jīng)常用到的“化未知為已知”的化歸思想,通過它使問題得到完美解決.下面我們完整地解一下這個二元一次方程組.
(教師把解答的詳細過程板書在黑板上,并要求學生一起來完成)
解:
由①得:.③
將③代入②得:
.
解得:.
把代入③得:.
所以原方程組的解為:
(提醒學生進行檢驗,即把求出的解代入原方程組,必然使原方程組中的每個方程都同時成立,如不成立,則可知解有問題)
下面我們試著用這種方法來解答上一節(jié)的“誰的包裹多”的問題.
(放手讓學生用已經(jīng)獲取的經(jīng)驗去解決新的問題,由學生自己完成,讓兩個學生在黑板上規(guī)范的板書,教師巡視:發(fā)現(xiàn)學生的閃光點以及存在的問題并適時的加以輔導,以期學生在解答的過程中領會“代入消元法”的真實含義和“化歸”的數(shù)學思想.)
第三環(huán)節(jié):鞏固新知(10分鐘,教師演示,學生理解、識記)
內容:
1例解下列方程組:
(1)(2)
(根據(jù)學生的情況可以選擇學生自己完成或教師指導完成)
(1)解:將②代入①,得:.
解得:.
把代入②,得:.
所以原方程組的解為:
(2)由②,得:.③
將③代入①,得:.
解得:.
將y=2代入③,得:.
所以原方程組的解是
(⑵題需先進行恒等變形,教師要鼓勵學生通過自主探索與交流獲得求解,在求解過程中學生消元的具體方法可能不同,所以教學中不必強求解答過程的統(tǒng)一,但要提出如何選擇將哪個方程恒等變形、消去哪個未知數(shù)能使運算較為簡單.讓學生在解題中進行思考)
(教師在解完后要引導學生再次就解出的結果進行思考,判斷它們是否是原方程組的解.促使學生進一步理解方程組解的含義以及學會檢驗方程組解的方法.)
2思考總結:(教師根據(jù)學生的實際情況進行生與生、師與生之間的相互補充與評價,并提出下面的問題)
⑴給這種解方程組的方法取個什么名字好?
⑵上面解方程組的基本思路是什么?
⑶主要步驟有哪些?
⑷我們觀察例題的解法會發(fā)現(xiàn),我們在解方程組之前,首先要觀察方程組中未知數(shù)的特點,盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關鍵的一步.你認為選擇未知數(shù)有何特點的方程變形好呢?
(由學生分組討論,教師深入?yún)⑴c到學生討論中,發(fā)現(xiàn)學生在自主探索、討論過程中的獨特想法,請學生小組的代表回答或學生舉手回答,其余學生可以補充,力求讓學生能夠回答出以下的要點,教師要板書要點,在學生回答時注意進行積極評價)
1.在解上面兩個二元一次方程組時,我們都是將其中的一個方程變形,即用含其中一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后代入另一個未變形的方程,從而由“二元”轉化為“一元”,達到消元的目的.我們將這種方法叫代入消元法.
2.解二元一次方程組的基本思路是消元,把“二元”變?yōu)椤耙辉?
3.解上述方程組的步驟:
第一步:在已知方程組的兩個方程中選擇一個適當?shù)姆匠蹋瑢⑺哪硞€未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來.
第二步:把此代數(shù)式代入沒有變形的另一個方程中,可得一個一元一次方程.
第三步:解這個一元一次方程,得到一個未知數(shù)的值.
第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個方程或變形后的方程(一般代入變形后的方程),求得另一個未知數(shù)的值.
第五步:把方程組的解表示出來.
第六步:檢驗(口算或筆算在草稿紙上進行),即把求得的解代入每一個方程看是否成立.
4.用代入消元法解二元一次方程組時,盡量選取一個未知數(shù)的系數(shù)的絕對值是1的方程進行變形;若未知數(shù)的系數(shù)的絕對值都不是1,則選取系數(shù)的絕對值較小的方程變形.
第四環(huán)節(jié):練習提高(10分鐘,學生獨立完成,教師個別指導,全班交流)
內容:
1.教材隨堂練習(在隨堂練習中,可以鼓勵學生通過自主探索與交流,各個學生消元的具體方法可能不同,可以不必強調解答過程統(tǒng)一.可能會出現(xiàn)整體代換的思想,若有條件可以提出,為下一課做點鋪墊也可以)
2.補充練習:用代入消元法解下列方程組:
(1)(2)⑶(注意分數(shù)線有括號功能)
第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結解方程的方法)
內容:師生相互交流總結解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉?;解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.
第六環(huán)節(jié):布置作業(yè)習題7.2A組(優(yōu)等生)1、2
B組(中等生)1
C組(后三分之一生)1
教學反思