小學(xué)三角形教案
發(fā)表時(shí)間:2020-10-06七年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):全等三角形。
七年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):全等三角形
知識(shí)概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”
(2)“角邊角”簡(jiǎn)稱“ASA”
(3)“邊邊邊”簡(jiǎn)稱“SSS”
(4)“角角邊”簡(jiǎn)稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。
相關(guān)推薦
七年級(jí)數(shù)學(xué)下冊(cè)《認(rèn)識(shí)三角形》知識(shí)點(diǎn)蘇教版
教案課件是老師需要精心準(zhǔn)備的,到寫教案課件的時(shí)候了。在寫好了教案課件計(jì)劃后,才能夠使以后的工作更有目標(biāo)性!有沒有好的范文是適合教案課件?以下是小編收集整理的“七年級(jí)數(shù)學(xué)下冊(cè)《認(rèn)識(shí)三角形》知識(shí)點(diǎn)蘇教版”,希望能為您提供更多的參考。
七年級(jí)數(shù)學(xué)下冊(cè)《認(rèn)識(shí)三角形》知識(shí)點(diǎn)蘇教版
知識(shí)點(diǎn)
1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
三角形的特征:
①不在同一直線上;
②三條線段;
③首尾順次相接;
④三角形具有穩(wěn)定性。
2.三角形中的三條重要線段:角平分線、中線、高
(1)角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
(2)中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
說明:
①三角形的角平分線、中線、高都是線段;
②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長(zhǎng)線)相交于一點(diǎn)。
課后習(xí)題
1.下列說法正確的是()
A.三角形的角平分線、中線、高都在三角形的內(nèi)部
B.直角三角形只有一條高
C.三角形的三條高至少有一條在三角形內(nèi)
D.鈍角三角形的三條高均在三角形外
2.等邊三角形三邊上的中線、高、角平分線共有()
A.3條B.5條C.7條D.9條
3.(1)在△ABC中,AD是∠BAC的平分線,BE是AC邊上的中線,∠BAD=40,則∠CAD=______,若AC=6cm,則AE=______.
(2)△ABC的周長(zhǎng)為18cm,BE、CF分別為AC、AB邊上的中線,BE、CF相交于O,AO的延長(zhǎng)線交BC于D,且AF=3cm,AE=2cm.則BD的長(zhǎng)為______.
答案:
1.C2.A3.(1)403cm(2)4cm(3)2
全等三角形
第十講全等三角形
全等三角形是平面幾何內(nèi)容的基礎(chǔ),這是因?yàn)槿热切问茄芯刻厥馊切?、四邊形等圖形性質(zhì)的有力工具,是解決與線段、角相關(guān)問題的一個(gè)出發(fā)點(diǎn),運(yùn)用全等三角形,可以證明線段相等、線段的和差倍分關(guān)系、角相等、兩直線位置關(guān)系等常見的幾何問題.
利用全等三角形證明問題,關(guān)鍵在于從復(fù)雜的圖形中找到一對(duì)基礎(chǔ)的三角形,這對(duì)基礎(chǔ)的三角形從實(shí)質(zhì)上來說,是由三角形全等判定定理中的一對(duì)三角形變位而來,也可能是由幾對(duì)三角形組成,其間的關(guān)系互相傳遞,應(yīng)熟悉涉及有公共邊、公共角的以下兩類基本圖形:
例題求解
【例1】如圖,∠E=∠F=90°,∠B=∠C,AC=AF,給出下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正確的結(jié)論是(把你認(rèn)為所有正確結(jié)論的序號(hào)填上).(廣州市中考題)
思路點(diǎn)撥對(duì)一個(gè)復(fù)雜的圖形,先找出比較明顯的一對(duì)全等三角形,并發(fā)現(xiàn)有用的條件,進(jìn)而判斷推出其他三角形全等.
注兩個(gè)三角形的全等是指兩個(gè)圖形之間的一種‘對(duì)應(yīng)”關(guān)系,“對(duì)應(yīng)’兩字,有“相當(dāng)”、“相應(yīng)”的含意,對(duì)應(yīng)關(guān)系是按一定標(biāo)準(zhǔn)的一對(duì)一的關(guān)系,“互相重合”是判斷其對(duì)應(yīng)部分的標(biāo)準(zhǔn).
實(shí)際遇到的圖形,兩個(gè)全等三角形并不重合在一起,但其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻拆、旋轉(zhuǎn)等方法得到,這種改變位置,不改變形狀大小的圖形變動(dòng)叫三角形的全等變換.
【例2】在△ABC中,AC=5,中線AD=4,則邊AB的取值范圍是()
A.1AB9B.3AB13C.5AB13D.9AB13
(連云港市中考題)
思路點(diǎn)撥線段AC、AD、AB不是同一個(gè)三角形的三條邊,通過中線倍長(zhǎng)將分散的條件加以集中.
【例3】如圖,BD、CE分別是△ABC的邊AC和AB上的高,點(diǎn)P在BD的延長(zhǎng)線上,BP=AC,點(diǎn)Q在CE上,CQ=AB
求證:(1)AP=AQ;(2)AP⊥AQ.
(江蘇省競(jìng)賽題)
思路點(diǎn)撥(1)證明對(duì)應(yīng)的兩個(gè)三角形全等;(2)在(1)的基礎(chǔ)上,證明∠PAQ=90°
【例4】若兩個(gè)三角形的兩邊和其中一邊上的高分別對(duì)應(yīng)相等,試判斷這兩個(gè)三角形的第三邊所對(duì)的角之間的關(guān)系,并說明理由.
(“五羊杯”競(jìng)賽題改編題)
思路點(diǎn)撥運(yùn)用全等三角形的判定和性質(zhì),探討兩角之間的關(guān)系,解題的關(guān)鍵是由高的特殊性,分三角形的形狀討論.
注有時(shí)圖中并沒有直接的全等三角形,,需要通過作輔助線構(gòu)造全等三角形,完成恰當(dāng)添輔助線的任務(wù),我們的思堆要經(jīng)歷一個(gè)觀察、聯(lián)想、構(gòu)造的過程.
邊、角、中線、角平分線、高是三角形的基本元素,從以上諸元素中選取三個(gè)條件使之組合可得到關(guān)于三角形全等判定的若干命題,其中有真有假,課本中全等三角形的判定方法只涉及邊、角兩類元素.
【例5】如圖,已知四邊形紙片ABCD中,AD∥BC,將∠ABC、∠DAB分別對(duì)折,如果兩條折痕恰好相交于DC上一點(diǎn)E,你能獲得哪些結(jié)論?
思路點(diǎn)撥折痕前后重合的部分是全等的,從線段關(guān)系、角的關(guān)系、面積關(guān)系等不同方面進(jìn)行探索,以獲得更多的結(jié)論.
注例5融操作、觀察、猜想、推理于一體,需要一定的綜合能力.推理論證既是說明道理,也是探索、發(fā)現(xiàn)的逄徑.
善于在復(fù)雜的圖形中發(fā)現(xiàn)、分解、構(gòu)造基本的全等三角形是解題的關(guān)鍵,需要注的是,通常面臨以下情況時(shí),我們才考慮構(gòu)造全等三角形:
(1)給出的圖形中沒有全等三角形,而證明結(jié)論需要全等三角形;
(2)從題設(shè)條件無法證明圖形中的三角形全等,證明需要另行構(gòu)造全等三角形.
學(xué)力訓(xùn)練
1.如圖,AD、A′D′分別是銳角△ABC和△A′B′C′中BC、B′C邊上的高,且AB=A′B′,AD=A′D,若使△ABC≌△A′B′C′,請(qǐng)你補(bǔ)充條件(只需要填寫一個(gè)你
認(rèn)為適當(dāng)?shù)臈l件).(黑龍江省中考題)
2.如圖,在△ABD和△ACE中,有下列4個(gè)論斷:①AB=AC;②AD=AC;③∠B=∠C;④BD=CE,請(qǐng)以其中三個(gè)論斷作為條件,余下一個(gè)論斷作為結(jié)論,寫出一個(gè)真命題(用序號(hào)○○○→○的形式寫出).(海南省中考題)
3.如圖,把大小為4×4的正方形方格圖形分割成兩個(gè)全等圖形,例如圖1.請(qǐng)?jiān)谙聢D中,沿著虛線畫出四種不同的分法,把4×4的正方形方格圖形分割成兩個(gè)全等圖形.
4.如圖,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,則∠DOE的度數(shù)是.
5.如圖,已知OA=OB,OC=OD,下列結(jié)論中:①∠A=∠B;(②DE=CE;③連OE,則OE平分∠O,正確的是()
A.①②B.②③C.①③D.①②③
6.如圖,A在DE上,F(xiàn)在AB上,且AC=CE,∠1=∠2=∠3,則DE的長(zhǎng)等于()
A.DCB.BCC.ABD.AE+AC(2003年武漢市選拔賽試題)
7.如圖,AE∥CD,AC∥DB,AD與BC交于O,AE⊥BC于E,DF⊥BC于F,那么圖中全等的三角形有()對(duì)
A.5B.6C.7D.8
8.如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)35°,得到△A′B′C′,A′B′交AC于點(diǎn)D,已知∠A′DC=90°,求∠A的度數(shù).(貴州省中考題)
9.如圖,在△ABE和△ACD中,給出以下4個(gè)論斷:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中3個(gè)論斷為題設(shè),填人下面的“已知”欄中,一個(gè)論斷為結(jié)論,填人下面的“求證”欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知:
求證:
(荊州市中考題)
10.如圖,已知∠1=∠2,EF⊥AD于P,交BC延長(zhǎng)線于M,
求證:∠M=(∠ACB-∠B).(天津市競(jìng)賽題)
11.在△ABC中,高AD和BE交于H點(diǎn),且BH=AC,則∠ABC=.
12.如圖,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED.
(河南省競(jìng)賽題)
13.如圖,D是△ABC的邊AB上一點(diǎn),DF交AC于點(diǎn)F,給出3個(gè)論斷:①DE=FE;②AE=CE;③FC∥AB,以其中一個(gè)論斷為結(jié)論,其余兩個(gè)論斷為條件,可作出3個(gè)命題,其中正確命題的個(gè)數(shù)是.
(武漢市選拔賽試題)
14.如圖,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=.
15.如圖,在△ABC中,AD是∠A的外角平分線,P是AD上異于A的任意一點(diǎn),設(shè)PB=m,PC=n,AB=c,AC=b,則(m+n)與(b+c)大小關(guān)系是()
A.m+nb+cB.m+nb+cC.m+n=b+cD.不能確定
16.如圖,在四邊形ABCD中,對(duì)角線AC平分∠BAD,ABAD,下列結(jié)論中正確的是()A.AB-ADCB-CDB.AB-AD=CB—CD
C.AB—ADCB—CDD.AB-AD與CB—CD的大小關(guān)系不確定.
(江蘇省競(jìng)賽題)
17.考查下列命題()
(1)全等三角形的對(duì)應(yīng)邊上的中線、高、角平分線對(duì)應(yīng)相等;
(2)兩邊和其中一邊上的中線(或第三邊上的中線)對(duì)應(yīng)相等的兩個(gè)三角形全等;
(3)兩角和其中一角的角平分線(或第三角的角平分線)對(duì)應(yīng)相等的兩個(gè)三角形全等;
(4)兩邊和其中一邊上的高(或第三邊上的高)對(duì)應(yīng)相等的兩個(gè)三角形全等.
其中正確命題的個(gè)數(shù)有()
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
18.如圖,在四邊形ABCD中,AC平分∠BAD,過C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度數(shù).(上海市競(jìng)賽題)
19.如圖,△ABC中,D是BC的中點(diǎn),DE⊥DF,試判斷BE+CF與EF的大小關(guān)系,并證明你的結(jié)論.
20.如圖,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五邊形ABCDC的面積.
(江蘇省競(jìng)賽題)
21.如圖,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,求證:AC=AF+CD.
(武漢市選拔賽試題)
22.(1)已知△ABC和△A′B′C′中,AB=A′B′,BC=B′C′,∠BAC=∠B′A′C′=100°,求證:△ABC≌△A′B′C′;
(2)上問中,若將條件改為AB=A′B′,BC=B′C′,∠BAC=∠∠B′A′C′=70°,
結(jié)論是否成立?為什么?
八年級(jí)數(shù)學(xué)上冊(cè)《三角形全等的判定》知識(shí)點(diǎn)浙教版
八年級(jí)數(shù)學(xué)上冊(cè)《三角形全等的判定》知識(shí)點(diǎn)浙教版
知識(shí)點(diǎn)
①三邊分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“邊邊邊”或“SSS”);
②兩邊和它們的夾角分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“邊角邊”或“SAS”);
③兩角和它們的夾邊分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角邊角”或“ASA”);
④兩角和其中一個(gè)角的對(duì)邊分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角角邊”或“AAS”);
⑤斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等(可以簡(jiǎn)寫成“斜邊、直角邊”或“HL”).
課后練習(xí)
1.下列關(guān)系中的兩個(gè)量成正比例的是()
A.從甲地到乙地,所用的時(shí)間和速度;B.正方形的面積與邊長(zhǎng)
C.買同樣的作業(yè)本所要的錢數(shù)和作業(yè)本的數(shù)量;D.人的體重與身高
2.下列函數(shù)中,y是x的正比例函數(shù)的是()
A.y=4x+1B.y=2x2C.y=-xD.y=3.下列說法中不成立的是()
A.在y=3x-1中y+1與x成正比例;B.在y=-中y與x成正比例
C.在y=2(x+1)中y與x+1成正比例;D.在y=x+3中y與x成正比例
4.若函數(shù)y=(2m+6)x2+(1-m)x是正比例函數(shù),則m的值是()
A.m=-3B.m=1C.m=3D.m-3
5.已知(x1,y1)和(x2,y2)是直線y=-3x上的兩點(diǎn),且x1x2,則y1與y2的大小關(guān)系是()
A.y1y2B.y1
6.形如___________的函數(shù)是正比例函數(shù).
7.若x、y是變量,且函數(shù)y=(k+1)xk2是正比例函數(shù),則k=_________.
8.正比例函數(shù)y=kx(k為常數(shù),k0)的圖象依次經(jīng)過第________象限,函數(shù)值隨自變量的增大而_________.
9.已知y與x成正比例,且x=2時(shí)y=-6,則y=9時(shí)x=________.
10.寫出下列各題中x與y的關(guān)系式,并判斷y是否是x的正比例函數(shù)?
(1)電報(bào)收費(fèi)標(biāo)準(zhǔn)是每個(gè)字0.1元,電報(bào)費(fèi)y(元)與字?jǐn)?shù)x(個(gè))之間的函數(shù)關(guān)系;
(2)地面氣溫是28℃,如果每升高1km,氣溫下降5℃,則氣溫x(℃)與高度y(km)的關(guān)系;
(3)圓面積y(cm2)與半徑x(cm)的關(guān)系.